Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Thermal comfort of a new university building in Luxembourg with passive cooling
Thewes, Andreas; Maas, Stefan; Scholzen, Frank et al.
2010In Thermal comfort of a new university building in Luxembourg with passive cooling
Peer reviewed
 

Files


Full Text
Thewes.pdf
Author postprint (1.11 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Thermal comfort; Lighting; Night ventilation; Passive cooling
Abstract :
[en] The new Luxembourgish university buildings should comply with a low energy standard, which was defined for typical offices and smaller lecture rooms by a thermal end-energy lower than 14 kWh/m3a and an electricity use for HVAC and lighting of max. 6 kWh/m3a. Consequently it was necessary to find ways to avoid the need for mechanical ventilation and air-conditioning. The heat consumption was minimized by an air-tight and well insulated building envelope. A difficulty was posed by special outside façade elements which were set-up as a grid over the complete outer surface as an architectural element. To prevent the risk of overheating during summer, it is necessary to reduce the solar gains by optimizing the window sizes and the glazing types, as well as through the installation of movable indoor shading elements. Nevertheless enough daylight should enter the rooms to limit the consumption of electricity for artificial lighting. Hence detailed dynamic simulations were performed using TRNSYS and TRNFLOW to ensure thermal comfort without active cooling. The effective electricity consumption of a newly installed state-of-the-art lighting system, including presence detectors and daylight controllers for dimming, was measured in a test installation to determine the internal loads by lighting. Radiation and illuminance measurements were performed on sample elements of the façade grid. The results were used to verify the daylight simulations and to analyze the benefits of daylight controllers. Several iterative steps were taken to gradually improve the building by introducing different modifications, e.g. reduction of the window sizes, installation of a lighting control system, improving the night ventilation and effective use of the thermal inertia of the building.
Disciplines :
Materials science & engineering
Identifiers :
UNILU:UL-CONFERENCE-2010-473
Author, co-author :
Thewes, Andreas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Maas, Stefan ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Scholzen, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Zürbes, Arno 
Waldmann, Danièle ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Language :
English
Title :
Thermal comfort of a new university building in Luxembourg with passive cooling
Publication date :
2010
Event name :
Palenc 2010
Event place :
Rhodes, Greece
Event date :
29.09.2010 - 01.10.2010
Main work title :
Thermal comfort of a new university building in Luxembourg with passive cooling
ISBN/EAN :
978-960-6746-08-6
Pages :
220-233
Peer reviewed :
Peer reviewed
Commentary :
Palenc 2010 - Passive and low energy cooling for the built environment
Available on ORBilu :
since 26 December 2013

Statistics


Number of views
223 (27 by Unilu)
Number of downloads
310 (12 by Unilu)

Bibliography


Similar publications



Contact ORBilu