Reference : On-Demand Intracellular Delivery of Single Particles in Single Cells by 3D Hollow Nan...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Multidisciplinary, general & others
http://hdl.handle.net/10993/38866
On-Demand Intracellular Delivery of Single Particles in Single Cells by 3D Hollow Nanoelectrodes
English
Huang, Jian-An [> >]
Caprettini, Valeria [> >]
Zhao, Yingqi [> >]
Melle, Giovanni [> >]
Maccaferri, Nicolò mailto [Istituto Italiano di Tecnologia]
Deleye, Lieselot [> >]
Zambrana-Puyalto, Xavier [> >]
Ardini, Matteo [> >]
Tantussi, Francesco [> >]
Dipalo, Michele [> >]
De Angelis, Francesco [> >]
2019
Nano Letters
American Chemical Society
19
2
722-731
Yes (verified by ORBilu)
1530-6984
1530-6992
Washington
DC
[en] Raman ; SERS ; Single nanoparticle ; electroporation ; intracellular delivery ; plasmonics
[en] Delivery of molecules into intracellular compartments is one of the fundamental requirements in molecular biology. However, the possibility of delivering a precise number of nano-objects with single-particle resolution is still an open challenge. Here we present an electrophoretic platform based on 3D hollow nanoelectrodes to enable delivery of single nanoparticles into single selected cells and monitoring of the single-particle delivery by surface-enhanced Raman scattering (SERS). The gold-coated hollow nanoelectrode capable of confinement and enhancement of electromagnetic fields upon laser illumination can distinguish the SERS signals of a single nanoparticle flowing through the nanoelectrode. Tight wrapping of cell membranes around the nanoelectrodes allows effective membrane electroporation such that single gold nanorods are delivered on demand into a living cell by electrophoresis. The capability of the 3D hollow nanoelectrodes to porate cells and reveal single emitters from the background in continuous flow is promising for the analysis of both intracellular delivery and sampling.
Researchers
http://hdl.handle.net/10993/38866
10.1021/acs.nanolett.8b03764
FP7 ; 616213 - NEURO-PLASMONICS - Neuro-Plasmonics

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
acs.nanolett.8b03764.pdfPublisher postprint7.48 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.