J wie JokerHeimböckel, Dieter ![]() Article for general public (2012) Detailed reference viewed: 122 (0 UL) J'accuse, oder die Wahrheit über den Sprachenunterricht in LuxemburgWeber, Jean-Jacques ; in Praxis des Neusprachlichen Unterrichts (2002), 49 Detailed reference viewed: 202 (11 UL) « J’éduque, tu éduques, nous CO-éduquons ». Famille-Ecole : des relations à construire pour les enfantsPoncelet, Débora ; Dierendonck, Christophe ; Mancuso, Giovanna et alArticle for general public (2014) Detailed reference viewed: 144 (3 UL) J-NERD: Joint Named Entity Recognition and Disambiguation with Rich Linguistic Features; Theobald, Martin ; in TACL (2016), 4 Detailed reference viewed: 245 (12 UL) J-REED: Joint Relation Extraction and Entity Disambiguation; Theobald, Martin ; in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017 (2017) Detailed reference viewed: 202 (20 UL) J. F. Böhmer: Regesta Imperii. VI. Die Regesten des Kaiserreiches unter Rudolf, Adolf, Heinrich VII 1273-1313. 4. Abteilung: Heinrich VII. 1288/1308-1313: Regesten ab 1310, Oktober 23/24Margue, Michel ; ; et alBook published by Mainzer Akademie der Wissenschaften und der literatur - Mainzer Akademie der Wissenschaften und der Literatur (2020) Detailed reference viewed: 88 (4 UL) J. F. Böhmer: Regesta Imperii. VI. Die Regesten des Kaiserreiches unter Rudolf, Adolf, Heinrich VII. 1273-1313. 4. Abteilung: Heinrich VII. 1288/1308-1313. Regesten zum Itinerar 1313. Elektronische pdf-RessourceMargue, Michel ; ; Book published by Mainzer Akademie der Wissenschaften und der literatur - Mainzer Akademie der Wissenschaften und der Literatur (2020) Detailed reference viewed: 70 (1 UL) J. F. Böhmer: Regesta Imperii. VI. Die Regesten des Kaiserreiches unter Rudolf, Adolf, Heinrich VII. 1273–1313. 4. Abteilung: HEINRICH VII. 1288/1308–1313. Regesten aus dem Register und dem Imbreviaturenbuchdes Bernardo de Mercato.Elektronische pdf-RessourceMargue, Michel ; ; Book published by Mainzer Akademie der Wissenschaften und der Literatur - Mainzer Akademie der Wissenschaften und der Literatur (2020) Detailed reference viewed: 63 (1 UL) Jack of All Trades - Stolz und HilflosigkeitRichter, Daniel ![]() in Scuto, Denis; Jaspers, Susanne (Eds.) This Hard Minett Land (2022) Detailed reference viewed: 49 (1 UL) Jack of All Trades - Stolz und HilflosigkeitRichter, Daniel ![]() Article for general public (2022) Detailed reference viewed: 85 (2 UL) Jacky Antoine: une âme de pédagogueGoedert, Maly ; Weber, Jean-Marie ![]() in Transfert (2008) Detailed reference viewed: 343 (0 UL) Jacobian varieties of genus 3 and the inverse Galois problemArias De Reyna Dominguez, Sara ![]() Presentation (2015, October 28) The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q$. This question is encompassed in the general problem ... [more ▼] The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q$. This question is encompassed in the general problem of understanding the structure of the absolute Galois group G_Q of the rational numbers. A deep fact in arithmetic geometry is that one can attach compatible systems of Galois representations of G_Q to certain arithmetic-geometric objects, (e.g. abelian varieties). These representations can be used to realise classical linear groups as Galois groups over Q. In this talk we will discuss the case of Galois representations attached to Jacobian varieties of genus n curves. For n=3, we provide an explicit construction of curves C defined over Q such that the action of G_Q on the group of l-torsion points of the Jacobian of C provides a Galois realisation of GSp(6, l) for a prefixed prime l. This construction is a joint work with Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas and Núria Vila, and was initiated as a working group in the Conference Women in Numbers Europe (CIRM, 2013). [less ▲] Detailed reference viewed: 90 (0 UL) Jacobian varieties of genus 3 and the inverse Galois problemArias De Reyna Dominguez, Sara ![]() Presentation (2015, September 11) The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q. This question is encompassed in the general problem ... [more ▼] The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q. This question is encompassed in the general problem of understanding the structure of the absolute Galois group G_Q of the rational numbers. A deep fact in arithmetic geometry is that one can attach compatible systems of Galois representations of GQ to certain arithmetic-geometric objects, (e.g. abelian varieties). These representations can be used to realise classical linear groups as Galois groups over Q. In this talk we will discuss the case of Galois representations attached to Jacobian varieties of genus n curves. For n = 3, we provide an explicit construction of curves C defined over Q such that the action of G_Q on the group of l-torsion points of the Jacobian of C provides a Galois realisation of GSp(6, l) for a prefixed prime l. This construction is a joint work with Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas and Núria Vila, and was initiated as a working group in the Conference Women in Numbers Europe (CIRM, 2013). [less ▲] Detailed reference viewed: 121 (0 UL) Jacobians of genus 2 curves with a rational point of order 11Leprévost, Franck ; Bernard, Nicolas ; in Experimental Mathematics (2009), 18(1), 65-70 On the one hand, it is well-known that Jacobians of (hyper)elliptic curves defined over $\Q$ having a rational point of order $l$ can be used in many applications, for instance in the construction of ... [more ▼] On the one hand, it is well-known that Jacobians of (hyper)elliptic curves defined over $\Q$ having a rational point of order $l$ can be used in many applications, for instance in the construction of class groups of quadratic fields with a non-trivial $l$-rank. On the other hand, it is also well-known that $11$ is the least prime number which is not the order of a rational point of an elliptic curve defined over $\Q$. It is therefore interesting to look for curves of higher genus, whose Jacobians have a rational point of order $11$. This problem has already been addressed, and Flynn found such a family $\Fl_t$ of genus $2$ curves. Now, it turns out, that the Jacobian $J_0(23)$ of the modular genus $2$ curve $X_0(23)$ has the required property, but does not belong to $\Fl_t$. The study of $X_0(23)$ leads to a method to partially solving the considered problem. Our approach allows us to recover $X_0(23)$, and to construct another $18$ distinct explicit curves of genus $2$ defined over $\Q$ and whose Jacobians have a rational point of order $11$. Of these $19$ curves, $10$ do not have any rational Weierstrass point, and $9$ have a rational Weierstrass point. None of these curves are $\Qb$-isomorphic to each other, nor $\Qb$-isomorphic to an element of Flynn's family $\Fl_t$. Finally, the Jacobians of these new curves are absolutely simple. [less ▲] Detailed reference viewed: 236 (13 UL) Jacobiennes de certaines courbes de genre 2 : torsion et simplicitéLeprévost, Franck ![]() in Journal de Théorie des Nombres de Bordeaux (1995), 7 Detailed reference viewed: 141 (1 UL) Jacques Derrida et l’esthétiqueRoelens, Nathalie ![]() Book published by L'Harmattan (2000) Detailed reference viewed: 150 (2 UL)![]() Jacques Derrida's religion with/out religion and the im/possibility of religious education; Biesta, Gert ![]() in Litchfield, R.G. (Ed.) Leading with hope.The Vocation of the Religious Educator. 2002 Proceedings of the Association of Professors and Researchers in Religious Education. (2002) Detailed reference viewed: 138 (1 UL)![]() Jacques Derrida’s religion with/out religion and the im/possibility of religious education.; Biesta, Gert ![]() in Murphy, M (Ed.) Social theory and educational research (2013) Detailed reference viewed: 146 (1 UL)![]() Jacques Derrida’s religion with/out religion and the im/possibility of religious education.; Biesta, Gert ![]() in Religious Education (2004), 99(1), 23-37 Detailed reference viewed: 135 (1 UL) Jacques Derrida. Deconstruction = JusticeBiesta, Gert ![]() in Peters, M.; Olssen, M.; Lankshear, C. (Eds.) Futures of critical theory: Dreams of difference (2003) Detailed reference viewed: 118 (0 UL) |
||