References of "van Dam, Tonie 50003245"
     in
Bookmark and Share    
Full Text
See detailDerivation of angular velocities of the GRACE satellite formation from the star camera data
Bandikova, T.; Weigelt, Matthias UL; van Dam, Tonie UL et al

Scientific Conference (2013, June)

The presentation discusses possibilites to derive common frame angular velocities from the star cameras in the GRACE system. Generally the star cameras measure the rotation of each satellite independently ... [more ▼]

The presentation discusses possibilites to derive common frame angular velocities from the star cameras in the GRACE system. Generally the star cameras measure the rotation of each satellite independently from the other satellite. However, common frame rotations are also needed for various applications. Specifically in this presentation we discuss the application to a variant of the differential gravimetry approach. In this, angular rates around the crosstrack component of the so-called instantaneous relative reference frame are needed. The latter is a common reference frame formed by the inter-satellite connection of the two GRACE satellites. We will quantify the accuracy demands on the derivation of the angular velocities and discuss the possibilites to meet these demands with existing star camera observations. We will also give an outlook on new possibilites in the determination of the orientation and the derivation of angular velocities offered by the laser ranging instrument which will be used in the GRACE Follow-On mission. [less ▲]

Detailed reference viewed: 119 (2 UL)
Full Text
See detailA new variant of the differential gravimetry approach
Weigelt, Matthias UL; van Dam, Tonie UL; Bandikova, T.

Scientific Conference (2013, June)

Detailed reference viewed: 82 (1 UL)
Full Text
See detailOn the numerical stability in the derivation of Slepian base functions
Weigelt, Matthias UL; van Dam, Tonie UL; Wang, Lin UL

Scientific Conference (2013, June)

Detailed reference viewed: 107 (18 UL)
Full Text
Peer Reviewed
See detailMonthly Crustal Loading Corrections for Satellite Altimetry
Ray, Richard; Luthcke, Scott; van Dam, Tonie UL

in Journal of Atmospheric and Oceanic Technology (2013), 30(5), 999-1005

Satellite altimeter measurements of sea surface height include a small contribution from vertical motion of the seafloor caused by crustal loading. Loading by ocean tides is routinely allowed for in ... [more ▼]

Satellite altimeter measurements of sea surface height include a small contribution from vertical motion of the seafloor caused by crustal loading. Loading by ocean tides is routinely allowed for in altimeter data processing. Here, loading by nontidal fluids of the atmosphere, ocean, and terrestrial hydrosphere is examined. The crustal deformation can be computed from either geophysical models or from Gravity Recovery and Climate Experiment (GRACE) gravity inversions of mass variability. The loading corrections are found to be very small, rarely exceeding a few millimeters. Nonetheless, they form a significant correction to altimetric determinations of global mean sea level. The correction is most important at the annual cycle and should be accounted for when attempting to balance the global sea level budget. [less ▲]

Detailed reference viewed: 136 (4 UL)
Full Text
See detailHydrological mass changes inferred from high-low satellite-to-satellite tracking data
van Dam, Tonie UL; Weigelt, Matthias UL; Tourian, M. J. et al

Scientific Conference (2013, April)

The technique of deriving time variable gravity (TVG) field observations from high-low satellite-to-satellite tracking (hl-SST) is beginning to establish itself as a valuable and supplementary source for ... [more ▼]

The technique of deriving time variable gravity (TVG) field observations from high-low satellite-to-satellite tracking (hl-SST) is beginning to establish itself as a valuable and supplementary source for the determination and description of long wavelength geophysical phenomena. Recent developments in data processing techniques have pushed the limits of the accuracy of these types of observations and now allows for realistic determinations of long-term trends and annual amplitudes of hydrological signals. We use CHAMP data and a dedicated signal processing to derive annual and inter-annual variations in the largest catchments of the Earth system, e.g. Amazon, Ob and Lena. Results are validated by computing the correlation of aggregated water storage changes from CHAMP (and GRACE) with the hydro-meteorological storage changes. High noise levels demand a stronger filtering, e.g. larger filtering radius (1000-1400km), than usually applied in case of GRACE. We therefore also investigate the effect of filtering on the consistency with the hydrological mass changes and estimate the signal to noise ratio and the spatial and temporal dependency of the noise. We will show that hl-SST observations are a viable source of information for TVG which can even serve as a reliable substitute in the event of the impending end of GRACE's active lifetime. [less ▲]

Detailed reference viewed: 122 (7 UL)
Full Text
See detailLong-term mass changes over Greenland derived from high-low satellite-to-satellite tracking
Weigelt, Matthias UL; van Dam, Tonie UL; Jäggi, Adrian et al

Poster (2013, April)

In the last decade, temporal variations of the global gravity field have become an ubiquitous and invaluable source of information for geophysical and environmental studies. It is important that the time ... [more ▼]

In the last decade, temporal variations of the global gravity field have become an ubiquitous and invaluable source of information for geophysical and environmental studies. It is important that the time series of observations is not interrupted as some geophysical phenomena, e.g. postglacial rebound or long term ice mass trends, are only beginning to be observable. To date, the most valuable source for time variable gravity (TVG) is the GRACE mission which has already exceeded its nominal lifetime. It can cease operations any time now and then only high-low satellite-to-satellite (hl-SST) observations will be available. These observations have, however, only demonstrated limited application for TVG. In this presentation, we show that by using CHAMP data, a thorough reprocessing strategy and a dedicated Kalman filter it is possible to derive the very long wavelength features of the time variable gravity field. The results are validated against GRACE data and height coordinates from long-term GPS ground stations in Greenland. We find that the quality of the CHAMP solutions is sufficient to derive realistic long-term trends and annual amplitudes of mass changes of Greenland. We conclude that hl-SST would be a viable substitute (although at lower spatial resolution) for TVG in the event of a profund operational breakdown of GRACE. [less ▲]

Detailed reference viewed: 108 (5 UL)
Peer Reviewed
See detailMonthly crustal loading corrections for satellite altimetery
Ray, R.; Luthcke, S.B.; van Dam, Tonie UL

in Journal of Atmospheric and Oceanic Technology (2013)

Detailed reference viewed: 135 (4 UL)
Full Text
Peer Reviewed
See detailComparative analysis of different environmental loading methods and their impacts on the GPS height time series
Jiang, Weiping; Li, Zhao UL; van Dam, Tonie UL et al

in Journal of Geodesy (2013), 87(7), 687-703

Three different environmental loading methods are used to estimate surface displacements and correct nonlinear variations in a set of GPS weekly height time series. Loading data are provided by (1) Global ... [more ▼]

Three different environmental loading methods are used to estimate surface displacements and correct nonlinear variations in a set of GPS weekly height time series. Loading data are provided by (1) Global Geophysical Fluid Center (GGFC), (2) Loading Model of Quasi-Observation CombinationAnalysis software (QLM) and (3) our own daily loading time series (we call itOMDfor optimum model data). We find that OMD has the smallest scatter in height across the selected 233 globally distributed GPS reference stations, GGFC has the next smallest variability, and QLM has the largest scatter. By removing the load-induced height changes from the GPS height time series, we are able to reduce the scatter on 74, 64 and 41 % of the stations using the OMD models, the GGFC model and QLM model respectively. We demonstrate that the discrepancy between the center of earth (CE) and the center of figure (CF) reference frames can be ignored. The most important differences between the predicted models are caused by (1) differences in the hydrol- ogy data from the National Center for Atmospheric Research (NCEP) vs. those from the Global Land Data Assimilation System (GLDAS), (2) grid interpolation, and (3) whether the topographic effect is removed or not. Both QLM and GGFC are extremely convenient tools for non-specialists to use to calculate loading effects. Due to the limitation ofNCEP reanalysis hydrology data compared with theGLDAS model, theGGFCdataset is much more suitable thanQLMfor applying environmental loading corrections to GPS height time series. However, loading results for Greenland from GGFC should be discarded since hydrology data from GLDAS in this region are not accurate. The QLM model is equivalent to OMD in Greenland and, hence, could be used as a complement to the GGFC product to model the load in this region. We find that the predicted loading from all three models cannot reduce the scatter of the height coordinate for some stations in Europe. [less ▲]

Detailed reference viewed: 279 (14 UL)
Full Text
See detailEarth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space
Panet, I.; Flury, J.; Biancale, R. et al

in Surveys in Geophysics (2013), 34(2), 141-163

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of ... [more ▼]

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within andbetween the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions. [less ▲]

Detailed reference viewed: 184 (1 UL)
Full Text
Peer Reviewed
See detailAn estimate of the influence of loading effects on tectonic velocities in the Pyrenees
Ferenc, Marcell; Nicolas, Joelle; van Dam, Tonie UL et al

in Studia Geophysica and Geodaetica (2013)

Surface displacements due to temporal changes in environmental mass redistributions are observable in the coordinate time series of many Global Navigation Satellite System (GNSS) sites. In this study, we ... [more ▼]

Surface displacements due to temporal changes in environmental mass redistributions are observable in the coordinate time series of many Global Navigation Satellite System (GNSS) sites. In this study, we investigated the effect of loading on estimates of tectonic velocity computed from campaign-style GNSS observations. The study region is in the Pyrenees mountain range between France and Spain (ResPyr campaigns). In this area, seismic activity is continuous and moderate and the expected amplitude of the horizontal tectonic velocity is less than 0.5 mm/yr. In order to determine the velocity, 4 sparse GNSS campaigns were carried out from 1995 to 2010. Considering this small rate of deformation, loading phenomena can contribute a non-negligible artifact to the velocity computation that could affect our geodynamical interpretation. In this investigation, we specifically considered the atmospheric, hydrological, and non-tidal ocean loading phenomena. The computed loading deformations for this region show the horizontal displacements are dominated by the non-tidal ocean loading (maximum 4 mm for the North and 3.1 mm for the East components); the main vertical contributions are due to the atmospheric and continental water storage loading (maximum 14.3 for the atmosphere and 8.1 mm for the hydrology, respectively). We have found that the dominant loading effect on the horizontal velocity is the non-tidal ocean loading (mean of 0.11 mm/yr), whereas the vertical component is dominated by the hydrological loading (mean of 0.21 mm/yr). Since the study area is in a mountainous region, we also analyzed the difference between the atmospheric and the topography dependent atmospheric loading models at our GNSS campaign sites. We did not find any significant difference between the two atmospheric loading models in terms of horizontal velocity. Finally, we performed simulations to identify the optimum timing and frequency of future GNSS campaigns in this area that would minimize the loading effects on tectonic velocity estimates. [less ▲]

Detailed reference viewed: 210 (5 UL)
Full Text
Peer Reviewed
See detailThe use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland
Wahr, John; Khan, Shfaqat; van Dam, Tonie UL et al

in Journal of Geophysical Research. Solid Earth (2013), 118

We describe how GPS measurements of horizontal crustal motion can be used to augment vertical crustal motion measurements, to improve and extend GPS studies of surface loading. We show that the ratio of ... [more ▼]

We describe how GPS measurements of horizontal crustal motion can be used to augment vertical crustal motion measurements, to improve and extend GPS studies of surface loading. We show that the ratio of the vertical displacement to the horizontal displacement, combined with the direction of the horizontal motion, can help determine whether nearby loading is concentrated in a small region (for example, in a single lake or glacier), and where that region is. We illustrate this method by applying it to two specific cases: an analysis of GPS data from northern California to monitor the level of Lake Shasta, and the analysis of data from a single GPS site in southeast Greenland to determine mass variability of two large, nearby outlet glaciers: Helheim Glacier and Midgaard Glacier. The California example serves largely as a proof-of-concept, where the results can be assessed by comparing with independent observations (Lake Shasta tide gauge data, in this case). Our Greenland results show that both Helheim and Midgaard have experienced notable interannual variations in mass loss rate over the last decade. Helheim’s mass loss accelerated rapidly in mid-2003, decelerated in late 2005, and increased again in 2008–2009 before returning to about its pre-2003 rate in late 2010. Midgaard’s mass loss accelerated in mid-2004, and remained more-or-less constant before returning to its pre-2003 rate in late 2008. [less ▲]

Detailed reference viewed: 205 (10 UL)
Full Text
Peer Reviewed
See detailVertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss
Nielsen, Karina; Khan, Shfaqat A.; Spada, Giorgio et al

in Journal of Geophysical Research. Solid Earth (2013), 118(4), 1837--1844

We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ∼5 and ∼150 km from the front of ... [more ▼]

We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ∼5 and ∼150 km from the front of Jakobshavn Isbræ (JI) in west Greenland. Horizontal displacements during 2006–2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward north-west, suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006, 2009, and 2010. However, horizontal displacements during 2010–2012 at KAGA and ILUL are directed more towards the west suggesting a change in the spatial distribution of the ice mass loss. In addition, we observe an increase in the uplift rate during 2010–2012 as compared to 2006–2010. The sudden change in vertical and horizontal displacements is due to enhanced melt-induced ice loss in 2010 and 2012. [less ▲]

Detailed reference viewed: 233 (5 UL)
Full Text
Peer Reviewed
See detailObserving and understanding the Earth system variations from space geodesy
Jin, Shuanggen; van Dam, Tonie UL; Wdowinski, Shimon

in Journal of Geodynamics (2013), 72

The interaction and coupling of the Earth system components that include the atmosphere, hydrosphere, cryosphere, lithosphere, and other fluids in Earth's interior, influence the Earth's shape, gravity ... [more ▼]

The interaction and coupling of the Earth system components that include the atmosphere, hydrosphere, cryosphere, lithosphere, and other fluids in Earth's interior, influence the Earth's shape, gravity field and its rotation (the three pillars of geodesy). The effects of global climate change, such as sea level rise, glacier melting, and geoharzards, also affect these observables. However, observations and models of Earth's system change have large uncertainties due to the lack of direct high temporal–spatial measurements. Nowadays, space geodetic techniques, particularly GNSS, VLBI, SLR, DORIS, InSAR, satellite gravimetry and altimetry provide a unique opportunity to monitor and, therefore, understand the processes and feedback mechanisms of the Earth system with high resolution and precision. In this paper, the status of current space geodetic techniques, some recent observations, and interpretations of those observations in terms of the Earth system are presented. These results include the role of space geodetic techniques, atmospheric–ionospheric sounding, ocean monitoring, hydrologic sensing, cryosphere mapping, crustal deformation and loading displacements, gravity field, geocenter motion, Earth's oblateness variations, Earth rotation and atmospheric-solid earth coupling, etc. The remaining questions and challenges regarding observing and understanding the Earth system are discussed. [less ▲]

Detailed reference viewed: 287 (1 UL)
Full Text
See detailLarge scale time variability from high-low SST - filling the gap between GRACE and GFO
Weigelt, Matthias UL; van Dam, Tonie UL; Jäggi, A. et al

Scientific Conference (2012, September)

Detailed reference viewed: 62 (0 UL)
Full Text
Peer Reviewed
See detailStrategies to mitigate aliasing of loading signals while estimating GPS frame parameters
Collilieux, Xavier; van Dam, Tonie UL; Ray, Jim et al

in Journal of Geodesy (2012), 86(1), 1-14

Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they ... [more ▼]

Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series. [less ▲]

Detailed reference viewed: 322 (2 UL)
Full Text
Peer Reviewed
See detailBedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change
Bevis, Michael; Wahr, John; Khan, Shfaqat A. et al

in Proceedings of the National Academy of Sciences of the United States of America (2012), 109(30), 11944-11948

The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in ... [more ▼]

The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly. [less ▲]

Detailed reference viewed: 380 (18 UL)
Full Text
Peer Reviewed
See detailAssimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe
Li, B.; Rodell, M.; Zaitchik, B. F. et al

in Journal of Hydrology (2012), 446-447

A land surface model's ability to simulate states (e.g., soil moisture) and fluxes (e.g., runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as inadequacies in ... [more ▼]

A land surface model's ability to simulate states (e.g., soil moisture) and fluxes (e.g., runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as inadequacies in model physics. In this study, anomalies of terrestrial water storage (TWS) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission were assimilated into the NASA Catchment land surface model in western and central Europe for a 7-year period, using a previously developed ensemble Kalman smoother. GRACE data assimilation led to improved runoff estimates (in temporal correlation and root mean square error) in 17 out of 18 hydrological basins, even in basins smaller than the effective resolution of GRACE. Improvements in root zone soil moisture were less conclusive, partly due to the shortness of the in situ data record. GRACE data assimilation also had significant impacts in groundwater estimates including trend and seasonality. In addition to improving temporal correlations, GRACE data assimilation also reduced increasing trends in simulated monthly TWS and runoff associated with increasing rates of precipitation. The assimilation downscaled (in space and time) and disaggregated GRACE data into finer scale components of TWS which exhibited significant changes in their dryness rankings relative to those without data assimilation, suggesting that GRACE data assimilation could have a substantial impact on drought monitoring. Signals of drought in GRACE TWS correlated well with MODIS Normalized Difference Vegetation Index (NDVI) data in most areas. Although they detected the same droughts during warm seasons, drought signatures in GRACE derived TWS exhibited greater persistence than those in NDVI throughout all seasons, in part due to limitations associated with the seasonality of vegetation. Mass imbalances associated with GRACE data assimilation and challenges of using GRACE data for drought monitoring are discussed. © 2012 Elsevier B.V.. [less ▲]

Detailed reference viewed: 342 (11 UL)
Full Text
Peer Reviewed
See detailGeocenter motion and its geodetic and geophysical implications
Wu, X.; Ray, J.; van Dam, Tonie UL

in Journal of Geodynamics (2012), 58

The horizontal transport of water in Earth’s surface layer, including sea level change, deglaciation, and surface runoff, is a manifestation of many geophysical processes. These processes entail ocean and ... [more ▼]

The horizontal transport of water in Earth’s surface layer, including sea level change, deglaciation, and surface runoff, is a manifestation of many geophysical processes. These processes entail ocean and atmosphere circulation and tidal attraction, global climate change, and the hydrological cycle, all having a broad range of spatiotemporal scales. The largest atmospheric mass variations occur mostly at synoptic wavelengths and at seasonal time scales. The longest wavelength component of surface mass transport, the spherical harmonic degree-1, involves the exchange of mass between the northern and southern hemispheres. These degree-1 mass loads deform the solid Earth, including its surface, and induce geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure (CF) of the solid Earth surface. Because geocenter motion also depends on the mechanical properties of the solid Earth, monitoring geocenter motion thus provides an additional opportunity to probe deep into Earth’s interior. Most modern geodetic measurement systems rely on tracking data between ground stations and satellites that orbit around CM. Consequently, geocenter motion is intimately related to the realization of the International Terrestrial Reference Frame (ITRF) origin, and, in various ways, affects many of our measurement objectives for global change monitoring. In the last 15 years, there have been vast improvements in geophysical fluid modeling and in the global coverage, densification, and accuracy of geodetic observations. As a result of these developments, tremendous progress has been made in the study of geocenter motion over the same period. This paper reviews both the theoretical and measurement aspects of geocenter motion and its implications. [less ▲]

Detailed reference viewed: 243 (3 UL)