![]() Cesi, Giulia ![]() ![]() ![]() in Molecular Cancer (2017), 8(june), Background: Most melanoma patients with BRAFV600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of ... [more ▼] Background: Most melanoma patients with BRAFV600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAFV600E has been shown to affect the metabolism. Methods: Time course experiments and a series of western blots were performed in a panel of BRAFV600E and BRAFWT/ NRASmut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested. Results: We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate dehydrogenase PDH-E1α subunit in BRAFV600E and in BRAFWT/NRASmut harboring cells. Inhibition of BRAF, MEK1 and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced the upregulation of ROS, concomitantly with the induction of PDH phosphorylation. Suppression of ROS by MitoQ suppressed PDH-E1α phosphorylation, strongly suggesting that ROS mediate the activation of PDKs. Interestingly, the inhibition of PDK1 with AZD7545 specifically suppressed growth of BRAF-mutant and BRAF inhibitor resistant melanoma cells. Conclusions: In BRAFV600E and BRAFWT/NRASmut melanoma cells, the increased production of ROS upon inhibition of the RAS/RAF/MEK/ERK pathway, is responsible for activating PDKs, which in turn phosphorylate and inactivate PDH. As part of a possible salvage pathway, the tricarboxylic acid cycle is inhibited leading to reduced oxidative metabolism and reduced ROS levels. We show that inhibition of PDKs by AZD7545 leads to growth suppression of BRAF-mutated and -inhibitor resistant melanoma cells. Thus small molecule PDK inhibitors such as AZD7545, might be promising drugs for combination treatment in melanoma patients with activating RAS/RAF/MEK/ERK pathway mutations (50% BRAF, 25% NRASmut, 11.9% NF1mut). [less ▲] Detailed reference viewed: 173 (14 UL)![]() Cesi, Giulia ![]() ![]() ![]() in Cell Communication and Signaling (2016), 14(1), 13 Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and ... [more ▼] Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed. [less ▲] Detailed reference viewed: 143 (11 UL)![]() Zimmer, Andreas David ![]() ![]() ![]() in Hypoxia (2016), 4 Detailed reference viewed: 237 (40 UL)![]() Walbrecq, Geoffroy ![]() in Free Radical Biology and Medicine (2015), 84 Peroxiredoxin-5 (PRDX5) is a thioredoxin peroxidase that reduces hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This enzyme is present in the cytosol, mitochondria, peroxisomes, and nucleus ... [more ▼] Peroxiredoxin-5 (PRDX5) is a thioredoxin peroxidase that reduces hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This enzyme is present in the cytosol, mitochondria, peroxisomes, and nucleus in human cells. Antioxidant cytoprotective functions have been previously documented for cytosolic, mitochondrial, and nuclear mammalian PRDX5. However, the exact function of PRDX5 in peroxisomes is still not clear. The aim of this work was to determine the function of peroxisomal PRDX5 in mammalian cells and, more specifically, in glial cells. To study the role of PRDX5 in peroxisomes, the endogenous expression of PRDX5 in murine oligodendrocyte 158N cells was silenced by RNA interference. In addition, human PRDX5 was also overexpressed in peroxisomes using a vector coding for human PRDX5, whose unconventional peroxisomal targeting sequence 1 (PTS1; SQL) was replaced by the prototypical PTS1 SKL. Stable 158N clones were obtained. The antioxidant cytoprotective function of peroxisomal PRDX5 against peroxisomal and mitochondrial KillerRed-mediated reactive oxygen species production as well as H2O2 was examined using MTT viability assays, roGFP2, and C11-BOBIPY probes. Altogether our results show that peroxisomal PRDX5 protects 158N oligodendrocytes against peroxisomal and mitochondrial KillerRed- and H2O2-induced oxidative stress. [less ▲] Detailed reference viewed: 157 (5 UL)![]() ; ; et al in PloS one (2013), 8(9), 72844 In human, the subcellular targeting of peroxiredoxin-5 (PRDX5), a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation ... [more ▼] In human, the subcellular targeting of peroxiredoxin-5 (PRDX5), a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation initiation sites, which determine whether or not the region encoding a mitochondrial targeting sequence (MTS) is translated. In the present study, the abolition of PRDX5 mitochondrial targeting in dog is highlighted and the molecular mechanism underlying the loss of mitochondrial PRDX5 during evolution is examined. Here, we show that the absence of mitochondrial PRDX5 is generalized among the extant canids and that the first events leading to PRDX5 MTS abolition in canids involve a mutation in the more 5' translation initiation codon as well as the appearance of a STOP codon. Furthermore, we found that PRDX5 MTS functionality is maintained in giant panda and northern elephant seal, which are phylogenetically closely related to canids. Also, the functional consequences of the restoration of mitochondrial PRDX5 in dog Madin-Darby canine kidney (MDCK) cells were investigated. The restoration of PRDX5 mitochondrial targeting in MDCK cells, instead of protecting, provokes deleterious effects following peroxide exposure independently of its peroxidase activity, indicating that mitochondrial PRDX5 gains cytotoxic properties under acute oxidative stress in MDCK cells. Altogether our results show that, although mitochondrial PRDX5 cytoprotective function against oxidative stress has been clearly demonstrated in human and rodents, PRDX5 targeting to mitochondria has been evolutionary lost in canids. Moreover, restoration of mitochondrial PRDX5 in dog MDCK cells, instead of conferring protection against peroxide exposure, makes them more vulnerable. [less ▲] Detailed reference viewed: 91 (0 UL) |
||