References of "Buch, Mamta H."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex.
Williams, Judith C.; Armesilla, Angel L.; Mohamed, Tamer M. A. et al

in The Journal of biological chemistry (2006), 281(33), 23341-8

The main role of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA) is in the removal of Ca2+ from the cytosol. Recently, we and others have suggested a new function for PMCA as a modulator of ... [more ▼]

The main role of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA) is in the removal of Ca2+ from the cytosol. Recently, we and others have suggested a new function for PMCA as a modulator of signal transduction pathways. This paper shows the physical interaction between PMCA (isoforms 1 and 4) and alpha-1 syntrophin and proposes a ternary complex of interaction between endogenous PMCA, alpha-1 syntrophin, and NOS-1 in cardiac cells. We have identified that the linker region between the pleckstrin homology 2 (PH2) and the syntrophin unique (SU) domains, corresponding to amino acids 399-447 of alpha-1 syntrophin, is crucial for interaction with PMCA1 and -4. The PH2 and the SU domains alone failed to interact with PMCA. The functionality of the interaction was demonstrated by investigating the inhibition of neuronal nitric-oxide synthase-1 (NOS-1); PMCA is a negative regulator of NOS-1-dependent NO production, and overexpression of alpha-1 syntrophin and PMCA4 resulted in strongly increased inhibition of NO production. Analysis of the expression levels of alpha-1 syntrophin protein in the heart, skeletal muscle, brain, uterus, kidney, or liver of PMCA4-/- mice, did not reveal any differences when compared with those found in the same tissues of wild-type mice. These results suggest that PMCA4 is tethered to the syntrophin complex as a regulator of NOS-1, but its absence does not cause collapse of the complex, contrary to what has been reported for other proteins within the complex, such as dystrophin. In conclusion, the present data demonstrate for the first time the localization of PMCA1b and -4b to the syntrophin.dystrophin complex in the heart and provide a specific molecular mechanism of interaction as well as functionality. [less ▲]

Detailed reference viewed: 126 (2 UL)
Peer Reviewed
See detailThe emergence of plasma membrane calcium pump as a novel therapeutic target for heart disease.
Oceandy, Delvac; Buch, Mamta H.; Cartwright, Elizabeth J. et al

in Mini reviews in medicinal chemistry (2006), 6(5), 583-8

The plasma membrane calcium/calmodulin dependent ATPase (PMCA) is a calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. PMCA is the only system for calcium ... [more ▼]

The plasma membrane calcium/calmodulin dependent ATPase (PMCA) is a calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. PMCA is the only system for calcium extrusion in the majority of cells. In excitable cells such as cardiomyocytes however, PMCA has been shown to play only a minor role in calcium homeostasis. In these cells the main mechanism of calcium extrusion is the sodium calcium exchanger. However, increasing evidence points to an important role for PMCA in signal transduction; in particular in the nitric oxide signalling pathway. In this review we will discuss recent advances that support a key role for PMCA in signal transduction and the potential for therapeutic targeting of this molecule in the treatment of cardiac diseases. [less ▲]

Detailed reference viewed: 133 (0 UL)
Full Text
Peer Reviewed
See detailInhibition of nuclear import of calcineurin prevents myocardial hypertrophy.
Hallhuber, Matthias; Burkard, Natalie; Wu, Rongxue et al

in Circulation Research (2006), 99(6), 626-35

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus ... [more ▼]

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus with the transcription factor nuclear factor of activated T cells (NF-AT). This study identifies a nuclear localization sequence (NLS) and a nuclear export signal (NES) in the sequence of calcineurin. Furthermore we identified the nuclear cargo protein importinbeta(1) to be responsible for nuclear translocation of calcineurin. Inhibition of the calcineurin/importin interaction by a competitive peptide (KQECKIKYSERV), which mimicked the calcineurin NLS, prevented nuclear entry of calcineurin. A noninhibitory control peptide did not interfere with the calcineurin/importin binding. Using this approach, we were able to prevent the development of myocardial hypertrophy. In angiotensin II-stimulated cardiomyocytes, [(3)H]-leucine incorporation (159%+/-9 versus 111%+/-11; P<0.01) and cell size were suppressed significantly by the NLS peptide compared with a control peptide. The NLS peptide inhibited calcineurin/NF-AT transcriptional activity (227%+/-11 versus 133%+/-8; P<0.01), whereas calcineurin phosphatase activity was unaffected (298%+/-9 versus 270%+/-11; P=NS). We conclude that calcineurin is not only capable of dephosphorylating NF-AT, thus enabling its nuclear import, but the presence of calcineurin in the nucleus is also important for full NF-AT transcriptional activity. [less ▲]

Detailed reference viewed: 132 (1 UL)
Full Text
Peer Reviewed
See detailThe sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit.
Buch, Mamta H.; Pickard, Adam; Rodriguez, Antonio et al

in The Journal of biological chemistry (2005), 280(33), 29479-87

The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma ... [more ▼]

The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways. [less ▲]

Detailed reference viewed: 149 (0 UL)
Full Text
Peer Reviewed
See detailNovel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1).
Armesilla, Angel L.; Williams, Judith C.; Buch, Mamta H. et al

in The Journal of biological chemistry (2004), 279(30), 31318-28

Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions ... [more ▼]

Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling. [less ▲]

Detailed reference viewed: 156 (0 UL)