References of "Boussaad, Ibrahim 50001019"
     in
Bookmark and Share    
Full Text
See detailPolygenic risk scores validated in patient-derived cells stratify for mitochondrial subtypes of Parkinson\textquoterights disease 2023.05.12.23289877
Arena, Giuseppe UL; Landoulsi, Zied UL; Grossmann, Dajana et al

E-print/Working paper (2023)

Background Parkinson's disease (PD) is the fastest growing neurodegenerative disorder, with affected individuals expected to double during the next 20 years. This raises the urgent need to better ... [more ▼]

Background Parkinson's disease (PD) is the fastest growing neurodegenerative disorder, with affected individuals expected to double during the next 20 years. This raises the urgent need to better understand the genetic architecture and downstream cellular alterations underlying PD pathogenesis, in order to identify more focused therapeutic targets. While only ~10\% of PD cases can be clearly attributed to monogenic causes, there is mounting evidence that additional genetic factors could play a role in idiopathic PD (iPD). In particular, common variants with low to moderate effect size in multiple genes regulating key neuroprotective activities may act as risk factors for PD. In light of the well-established involvement of mitochondrial dysfunction in PD, we hypothesized that a fraction of iPD cases may harbour a pathogenic combination of common variants in nuclear-encoded mitochondrial genes, ultimately resulting in neurodegeneration.Methods: To capture this mitochondria-related 'missing heritability', we leveraged on existing data from previous genome-wide association studies (GWAS) i.e., the large PD GWAS from Nalls and colleagues. We then used computational approaches based on mitochondria-specific polygenic risk scores (mitoPRSs) for imputing the genotype data obtained from different iPD case-control datasets worldwide, including the Luxembourg Parkinson\textquoterights Study (412 iPD patients and 576 healthy controls) and the COURAGE-PD cohorts (7270 iPD cases and 6819 healthy controls).Results: Applying this approach to gene sets controlling mitochondrial pathways potentially relevant for neurodegeneration in PD, we demonstrated that common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk both in the Luxembourg Parkinson\textquoterights Study (odds ratio, OR=1.31[1.14-1.50], p=5.4e-04) and in COURAGE-PD (OR=1.23[1.18-1.27], p=1.5e-29). Functional analyses in primary skin fibroblasts and in the corresponding induced pluripotent stem cells-derived neuronal progenitor cells from Luxembourg Parkinson's Study iPD patients stratified according to the OXPHOS-PRS, revealed significant differences in mitochondrial respiration between high and low risk groups (p < 0.05). Finally, we also demonstrated that iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients.Conclusions: Our findings suggest that OXPHOS-PRS may represent a promising strategy to stratify iPD patients into pathogenic subgroups in which the underlying neurodegeneration is due to a genetically defined mitochondrial burden potentially eligible for future, more tailored mitochondrially targeted treatments. [less ▲]

Detailed reference viewed: 147 (6 UL)
Full Text
Peer Reviewed
See detailAlpha synuclein determines ferroptosis sensitivity in dopaminergic neurons via modulation of ether-phospholipid membrane composition.
Mahoney-Sanchez, Laura; Bouchaoui, Hind; Boussaad, Ibrahim UL et al

in Cell reports (2022), 40(8), 111231

There is a continued unmet need for treatments that can slow Parkinson's disease progression due to the lack of understanding behind the molecular mechanisms underlying neurodegeneration. Since its ... [more ▼]

There is a continued unmet need for treatments that can slow Parkinson's disease progression due to the lack of understanding behind the molecular mechanisms underlying neurodegeneration. Since its discovery, ferroptosis has been implicated in several diseases and represents a therapeutic target in Parkinson's disease. Here, we use two highly relevant human dopaminergic neuronal models to show that endogenous levels of α-synuclein can determine the sensitivity of dopaminergic neurons to ferroptosis. We show that reducing α-synuclein expression in dopaminergic neurons leads to ferroptosis evasion, while elevated α-synuclein expression in patients' small-molecule-derived neuronal precursor cells with SNCA triplication causes an increased vulnerability to lipid peroxidation and ferroptosis. Lipid profiling reveals that ferroptosis resistance is due to a reduction in ether-linked phospholipids, required for ferroptosis, in neurons depleted of α-synuclein (α-syn). These results provide a molecular mechanism linking α-syn levels to the sensitivity of dopaminergic neurons to ferroptosis, suggesting potential therapeutic relevance. [less ▲]

Detailed reference viewed: 72 (1 UL)
Full Text
Peer Reviewed
See detailParkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation.
Wasner, Kobi; Smajic, Semra UL; Ghelfi, Jenny UL et al

in Movement disorders : official journal of the Movement Disorder Society (2022)

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional ... [more ▼]

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 158 (10 UL)
Full Text
See detailGDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton 2021.03.04.433895
Wolf, Christina; Pouya, Alireza; Bitar, Sara et al

E-print/Working paper (2021)

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase ... [more ▼]

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 in a redoxdependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. Changes in the actin cytoskeleton also disrupt mitochondria-ER contact sites. This results in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, these findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology. [less ▲]

Detailed reference viewed: 215 (3 UL)
Full Text
Peer Reviewed
See detailPINK1 deficiency impairs adult neurogenesis of dopaminergic neurons
Brown, Sarah J; Boussaad, Ibrahim UL; Jarazo, Javier UL et al

in Scientific Reports (2021)

Detailed reference viewed: 159 (5 UL)
Full Text
Peer Reviewed
See detailBidirectional Relation Between Parkinson’s Disease and Glioblastoma Multiforme
Mencke, Pauline UL; Hanss, Zoé; Boussaad, Ibrahim UL et al

in Frontiers in Neurology (2020)

Detailed reference viewed: 248 (7 UL)
Full Text
Peer Reviewed
See detailA patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease.
Boussaad, Ibrahim UL; Obermaier, Carolin D.; Hanss, Zoé et al

in Science translational medicine (2020), 12(560),

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic ... [more ▼]

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD. [less ▲]

Detailed reference viewed: 274 (29 UL)