Article (Scientific journals)
Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals
Liu, Wei; Maass, Friedrich; Willenbockel, Martin et al.
2015In PHYSICAL REVIEW LETTERS, 115 (3)
Peer reviewed
 

Files


Full Text
Quantitative prediction of molecular absorption.pdf
Publisher postprint (1.24 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] Interfaces between organic molecules and solid surfaces play a prominent role in heterogeneous catalysis, molecular sensors and switches light-emitting diodes, and photovoltaics. The properties and the ensuing function of such hybrid interfaces often depend exponentially on molecular adsorption heights and binding strengths, calling for well-established benchmarks of these two quantities. Here we present systematic measurements that enable us to quantify the interaction of benzene with the Ag(111) coinage metal substrate with unprecedented accuracy (0.02 angstrom in the vertical adsorption height and 0.05 eV in the binding strength) by means of normal-incidence x-ray standing waves and temperature-programed desorption techniques. Based on these accurate experimental benchmarks for a prototypical molecule-solid interface, we demonstrate that recently developed first-principles calculations that explicitly account for the nonlocality of electronic exchange and correlation effects are able to determine the structure and stability of benzene on the Ag(111) surface within experimental error bars. Remarkably, such precise experiments and calculations demonstrate that despite different electronic properties of copper, silver, and gold, the binding strength of benzene is equal on the (111) surface of these three coinage metals. Our results suggest the existence of universal binding energy trends for aromatic molecules on surfaces.
Disciplines :
Physics
Author, co-author :
Liu, Wei;  Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany ; Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology,
Maass, Friedrich;  Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Willenbockel, Martin;  Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
Christopher, Bronner;  Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Schulze, Michael;  Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Soubatch, Serguei;  Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
Tautz, F. Stefan;  Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany ; Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
Tegeder, Petra;  Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Tkatchenko, Alexandre ;  Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
External co-authors :
yes
Title :
Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals
Publication date :
2015
Journal title :
PHYSICAL REVIEW LETTERS
ISSN :
0031-9007
Publisher :
AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, Unknown/unspecified
Volume :
115
Issue :
3
Peer reviewed :
Peer reviewed
Commentary :
Article
Available on ORBilu :
since 26 February 2016

Statistics


Number of views
114 (2 by Unilu)
Number of downloads
478 (1 by Unilu)

Scopus citations®
 
92
Scopus citations®
without self-citations
71
WoS citations
 
93

Bibliography


Similar publications



Contact ORBilu