Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

J'accuse, oder die Wahrheit über den Sprachenunterricht in Luxemburg Weber, Jean-Jacques ; in Praxis des Neusprachlichen Unterrichts (2002), 49 Detailed reference viewed: 64 (11 UL)« J’éduque, tu éduques, nous CO-éduquons ». Famille-Ecole : des relations à construire pour les enfants Poncelet, Débora ; Dierendonck, Christophe ; Mancuso, Giovanna et al Article for general public (2014) Detailed reference viewed: 46 (2 UL)J-NERD: Joint Named Entity Recognition and Disambiguation with Rich Linguistic Features ; Theobald, Martin ; in TACL (2016), 4 Detailed reference viewed: 70 (9 UL)J-REED: Joint Relation Extraction and Entity Disambiguation ; Theobald, Martin ; in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017 (2017) Detailed reference viewed: 82 (10 UL)Jacky Antoine: une âme de pédagogue Goedert, Maly ; Weber, Jean-Marie in Transfert (2008) Detailed reference viewed: 153 (0 UL)Jacobian varieties of genus 3 and the inverse Galois problem Arias De Reyna Dominguez, Sara Presentation (2015, September 11) The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q. This question is encompassed in the general problem ... [more ▼] The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q. This question is encompassed in the general problem of understanding the structure of the absolute Galois group G_Q of the rational numbers. A deep fact in arithmetic geometry is that one can attach compatible systems of Galois representations of GQ to certain arithmetic-geometric objects, (e.g. abelian varieties). These representations can be used to realise classical linear groups as Galois groups over Q. In this talk we will discuss the case of Galois representations attached to Jacobian varieties of genus n curves. For n = 3, we provide an explicit construction of curves C defined over Q such that the action of G_Q on the group of l-torsion points of the Jacobian of C provides a Galois realisation of GSp(6, l) for a prefixed prime l. This construction is a joint work with Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas and Núria Vila, and was initiated as a working group in the Conference Women in Numbers Europe (CIRM, 2013). [less ▲] Detailed reference viewed: 30 (0 UL)Jacobian varieties of genus 3 and the inverse Galois problem Arias De Reyna Dominguez, Sara Presentation (2015, October 28) The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q$. This question is encompassed in the general problem ... [more ▼] The inverse Galois problem, first addressed by D. Hilbert in 1892, asks which finite groups occur as the Galois group of a finite Galois extension K/Q$. This question is encompassed in the general problem of understanding the structure of the absolute Galois group G_Q of the rational numbers. A deep fact in arithmetic geometry is that one can attach compatible systems of Galois representations of G_Q to certain arithmetic-geometric objects, (e.g. abelian varieties). These representations can be used to realise classical linear groups as Galois groups over Q. In this talk we will discuss the case of Galois representations attached to Jacobian varieties of genus n curves. For n=3, we provide an explicit construction of curves C defined over Q such that the action of G_Q on the group of l-torsion points of the Jacobian of C provides a Galois realisation of GSp(6, l) for a prefixed prime l. This construction is a joint work with Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas and Núria Vila, and was initiated as a working group in the Conference Women in Numbers Europe (CIRM, 2013). [less ▲] Detailed reference viewed: 26 (0 UL)Jacobians of genus 2 curves with a rational point of order 11 Leprévost, Franck ; Bernard, Nicolas ; in Experimental Mathematics (2009), 18(1), 65-70 On the one hand, it is well-known that Jacobians of (hyper)elliptic curves defined over $\Q$ having a rational point of order $l$ can be used in many applications, for instance in the construction of ... [more ▼] On the one hand, it is well-known that Jacobians of (hyper)elliptic curves defined over $\Q$ having a rational point of order $l$ can be used in many applications, for instance in the construction of class groups of quadratic fields with a non-trivial $l$-rank. On the other hand, it is also well-known that $11$ is the least prime number which is not the order of a rational point of an elliptic curve defined over $\Q$. It is therefore interesting to look for curves of higher genus, whose Jacobians have a rational point of order $11$. This problem has already been addressed, and Flynn found such a family $\Fl_t$ of genus $2$ curves. Now, it turns out, that the Jacobian $J_0(23)$ of the modular genus $2$ curve $X_0(23)$ has the required property, but does not belong to $\Fl_t$. The study of $X_0(23)$ leads to a method to partially solving the considered problem. Our approach allows us to recover $X_0(23)$, and to construct another $18$ distinct explicit curves of genus $2$ defined over $\Q$ and whose Jacobians have a rational point of order $11$. Of these $19$ curves, $10$ do not have any rational Weierstrass point, and $9$ have a rational Weierstrass point. None of these curves are $\Qb$-isomorphic to each other, nor $\Qb$-isomorphic to an element of Flynn's family $\Fl_t$. Finally, the Jacobians of these new curves are absolutely simple. [less ▲] Detailed reference viewed: 80 (11 UL)Jacobiennes de certaines courbes de genre 2 : torsion et simplicité Leprévost, Franck in Journal de Théorie des Nombres de Bordeaux (1995), 7 Detailed reference viewed: 36 (1 UL)Jacques Derrida et l’esthétique Roelens, Nathalie Book published by L'Harmattan (2000) Detailed reference viewed: 70 (1 UL)Jacques Derrida's religion with/out religion and the im/possibility of religious education ; Biesta, Gert in Litchfield, R.G. (Ed.) Leading with hope.The Vocation of the Religious Educator. 2002 Proceedings of the Association of Professors and Researchers in Religious Education. (2002) Detailed reference viewed: 21 (1 UL)Jacques Derrida’s religion with/out religion and the im/possibility of religious education. ; Biesta, Gert in Religious Education (2004), 99(1), 23-37 Detailed reference viewed: 23 (1 UL)Jacques Derrida’s religion with/out religion and the im/possibility of religious education. ; Biesta, Gert in Murphy, M (Ed.) Social theory and educational research (2013) Detailed reference viewed: 26 (1 UL)Jacques Derrida. Deconstruction = Justice Biesta, Gert in Peters, M.; Olssen, M.; Lankshear, C. (Eds.) Futures of critical theory: Dreams of difference (2003) Detailed reference viewed: 34 (0 UL)Jacques Fontanille, Soma et Séma, 2004 Tore, Gian Maria in RSSI : Recherches Sémiotiques = RSSI: Semiotic Inquiry (2004), 24(1-3), 299-317 Detailed reference viewed: 28 (1 UL)Jacques Rancière: Education, truth, emancipation ; Biesta, Gert Book published by Continuum (2010) Detailed reference viewed: 38 (0 UL)Jahn-Teller, Polarity, and Insulator-to-Metal Transition in BiMnO3 at High Pressure ; ; et al in Physical Review Letters (2014), 112 The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained ... [more ▼] The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained thin films. Here we investigate the multiferroic BiMnO3 with its peculiar 6s2 electrons and four interacting mechanisms: electric polarity, octahedra tilts, magnetism, and cooperative Jahn-Teller distortion. We have probed structural transitions under high pressure by synchrotron x-ray diffraction and Raman spectroscopy up to 60 GPa. We show that BiMnO3 displays under pressure a rich sequence of five phases with a great variety of structures and properties, including a metallic phase above 53 GPa and, between 37 and 53 GPa, a strongly elongated monoclinic phase that allows ferroelectricity, which contradicts the traditional expectation that ferroelectricity vanishes under pressure. Between 7 and 37 GPa, the Pnma structure remains remarkably stable but shows a reduction of the Jahn-Teller distortion in a way that differs from the behavior observed in the archetypal orthorhombic Jahn-Teller distorted perovskite LaMnO3. [less ▲] Detailed reference viewed: 40 (4 UL)Jahrestagung des Sozialwissenschftlichen Ausschusses Neugebauer, Tibor Presentation (2015) Detailed reference viewed: 15 (0 UL)Jahrmärkte in Europa im 14.-16. Jahrhundert. Regionale Untersuchungen und der Versuch einer Typologie Pauly, Michel in Irsigler, Franz; Pauly, Michel (Eds.) Messen, Jahrmärkte und Stadtentwicklung in Europa (2007) Detailed reference viewed: 31 (0 UL) |
||