References of "Wilmes, Paul 50003335"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFirst draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ
Muller, Emilie UL; Narayanasamy, Shaman UL; Zeimes, Myriam et al

in Standards in Genomic Sciences (2017), 12(64),

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome ... [more ▼]

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. [less ▲]

Detailed reference viewed: 23 (1 UL)
Full Text
Peer Reviewed
See detailColonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life
Wampach, Linda UL; Heintz, Anna UL; Hogan, Angela et al

in Frontiers in Microbiology (2017)

Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial ... [more ▼]

Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract. [less ▲]

Detailed reference viewed: 83 (9 UL)
Full Text
Peer Reviewed
See detailThe nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder.
Heintz-Buschart, Anna UL; Pandey, Urvashi; Wicke, Tamara et al

in Movement disorders : official journal of the Movement Disorder Society (2017)

BACKGROUND: Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD ... [more ▼]

BACKGROUND: Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD patients. It is, however, unknown whether these differences can be observed in individuals at high risk, for example, with idiopathic rapid eye movement sleep behavior disorder, a prodromal condition of alpha-synuclein aggregation disorders including PD. OBJECTIVES: To compare microbiota in carefully preserved nasal wash and stool samples of subjects with idiopathic rapid eye movement sleep behavior disorder, manifest PD, and healthy individuals. METHODS: Microbiota of flash-frozen stool and nasal wash samples from 76 PD patients, 21 idiopathic rapid eye movement sleep behavior disorder patients, and 78 healthy controls were assessed by 16S and 18S ribosomal RNA amplicon sequencing. Seventy variables, related to demographics, clinical parameters including nonmotor symptoms, and sample processing, were analyzed in relation to microbiome variability and controlled differential analyses were performed. RESULTS: Differentially abundant gut microbes, such as Akkermansia, were observed in PD, but no strong differences in nasal microbiota. Eighty percent of the differential gut microbes in PD versus healthy controls showed similar trends in idiopathic rapid eye movement sleep behavior disorder, for example, Anaerotruncus and several Bacteroides spp., and correlated with nonmotor symptoms. Metagenomic sequencing of select samples enabled the reconstruction of genomes of so far uncharacterized differentially abundant organisms. CONCLUSION: Our study reveals differential abundances of gut microbial taxa in PD and its prodrome idiopathic rapid eye movement sleep behavior disorder in comparison to the healthy controls, and highlights the potential of metagenomics to identify and characterize microbial taxa, which are enriched or depleted in PD and/or idiopathic rapid eye movement sleep behavior disorder. (c) 2017 International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 30 (4 UL)
Full Text
Peer Reviewed
See detailIntegrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation.
Kaysen, Anne UL; Heintz-Buschart, Anna UL; Muller, Emilie UL et al

in Translational research : the journal of laboratory and clinical medicine (2017)

In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most ... [more ▼]

In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most notably graft-versus-host disease (GvHD). However, it is presently unknown whether this relationship is causal or consequential. Here, we performed an integrated meta-omic analysis to probe deeper into the GIT microbiome changes during allo-HSCT and its accompanying treatments. We used 16S and 18S rRNA gene amplicon sequencing to resolve archaea, bacteria, and eukaryotes within the GIT microbiomes of 16 patients undergoing allo-HSCT for the treatment of hematologic malignancies. These results revealed a major shift in the GIT microbiome after allo-HSCT including a marked reduction in bacterial diversity, accompanied by only limited changes in eukaryotes and archaea. An integrated analysis of metagenomic and metatranscriptomic data was performed on samples collected from a patient before and after allo-HSCT for acute myeloid leukemia. This patient developed severe GvHD, leading to death 9 months after allo-HSCT. In addition to drastically decreased bacterial diversity, the post-treatment microbiome showed a higher overall number and higher expression levels of antibiotic resistance genes (ARGs). One specific Escherichia coli strain causing a paravertebral abscess was linked to GIT dysbiosis, suggesting loss of intestinal barrier integrity. The apparent selection for bacteria expressing ARGs suggests that prophylactic antibiotic administration may adversely affect the overall treatment outcome. We therefore assert that such analyses including information about the selection of pathogenic bacteria expressing ARGs may assist clinicians in "personalizing" regimens for individual patients to improve overall outcomes. [less ▲]

Detailed reference viewed: 42 (4 UL)
Full Text
Peer Reviewed
See detailIMP: a pipeline for reproducible referenceindependent integrated metagenomic and metatranscriptomic analyses
Narayanasamy, Shaman UL; Jarosz, Yohan UL; Muller, Emilie UL et al

in Genome Biology (2016), 17

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the ... [more ▼]

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume, and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license). [less ▲]

Detailed reference viewed: 98 (13 UL)
Full Text
Peer Reviewed
See detailGeneration of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
Magnusdottir, Stefania UL; Heinken, Almut Katrin UL; Kutt, Laura et al

in Nature Biotechnology (2016)

Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of ... [more ▼]

Genome-scale metabolic models derived from human gut metagenomic data can be used as a framework to elucidate how microbial communities modulate human metabolism and health. We present AGORA (assembly of gut organisms through reconstruction and analysis), a resource of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut bacteria. Using this resource, we identified a defined growth medium for Bacteroides caccae ATCC 34185. We also showed that interactions among modeled species depend on both the metabolic potential of each species and the nutrients available. AGORA reconstructions can integrate either metagenomic or 16S rRNA sequencing data sets to infer the metabolic diversity of microbial communities. AGORA reconstructions could provide a starting point for the generation of high-quality, manually curated metabolic reconstructions. AGORA is fully compatible with Recon 2, a comprehensive metabolic reconstruction of human metabolism, which will facilitate studies of host–microbiome interactions. [less ▲]

Detailed reference viewed: 325 (25 UL)
Full Text
Peer Reviewed
See detailIntegrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.
Heintz-Buschart, Anna UL; May, Patrick UL; Laczny, Cedric C. et al

in Nature microbiology (2016), 2

The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease ... [more ▼]

The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease. [less ▲]

Detailed reference viewed: 291 (19 UL)
Full Text
Peer Reviewed
See detailErratum: Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.
Heintz-Buschart, Anna UL; May, Patrick UL; Laczny, Cedric C. et al

in Nature microbiology (2016), 2

Detailed reference viewed: 138 (17 UL)
Full Text
Peer Reviewed
See detailA microfluidics-based in vitro model of the gastrointestinal human-microbe interface.
Shah, Pranjul UL; Fritz, Joëlle UL; Glaab, Enrico UL et al

in Nature communications (2016), 7

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit ... [more ▼]

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease. [less ▲]

Detailed reference viewed: 574 (68 UL)
Full Text
Peer Reviewed
See detailSources and Functions of Extracellular Small RNAs in Human Circulation.
Fritz, Joëlle UL; Heintz-Buschart, Anna UL; Ghosal, Anubrata et al

in Annual review of nutrition (2016)

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are ... [more ▼]

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review. Expected final online publication date for the Annual Review of Nutrition Volume 36 is July 17, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates. [less ▲]

Detailed reference viewed: 75 (4 UL)
Full Text
Peer Reviewed
See detailIdentification, recovery, and refinement of hitherto undescribed population-level genomes from the human gastrointestinal tract
Laczny, Cedric C.; Muller, Emilie UL; Heintz-Buschart, Anna UL et al

in Frontiers in Microbiology (2016), 7(884),

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference ... [more ▼]

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference genomes. While the culture-independent recovery of population-level genomes from environmental samples using the binning of metagenomic data has expanded available reference genome catalogs, several microbial lineages remain underrepresented. Here, we present two reference-independent approaches for the identification, recovery, and refinement of hitherto undescribed population-level genomes. The first approach is aimed at genome recovery of varied taxa and involves multi-sample automated binning using CANOPY CLUSTERING complemented by visualization and human-augmented binning using VIZBINpost hoc. The second approach is particularly well-suited for the study of specific taxa and employs VIZBINde novo. Using these approaches, we reconstructed a total of six population-level genomes of distinct and divergent representatives of the Alphaproteobacteria class, the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while automated binning approaches provide great potential for large-scale studies of mixed microbial communities, these approaches should be complemented with informative visualizations because expert-driven inspection and refinements are critical for the recovery of high-quality population-level genomes. [less ▲]

Detailed reference viewed: 89 (5 UL)
Full Text
Peer Reviewed
See detailIntegrated omics for the identification of key functionalities in biological wastewater treatment microbial communities
Narayanasamy, Shaman UL; Muller, Emilie UL; Sheik, Abdul UL et al

in Microbial Biotechnology (2015)

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated ... [more ▼]

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single ‘omes’. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure–function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. [less ▲]

Detailed reference viewed: 299 (17 UL)
Full Text
Peer Reviewed
See detailThe extracellular RNA complement of Escherichia coli
Ghosal, Anubrata UL; Upadhyaya, Bimal Babu UL; Fritz, Joëlle UL et al

in MicrobiologyOpen (2015)

he secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but ... [more ▼]

he secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacte- ria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA comple- ment. Our results demonstrate that a large part of the extracellular RNA com- plement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV- free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA- fimL and ves-spy intergenic regions. Our study provides the first detailed char- acterization of the extracellular RNA complement of the enteric model bacte- rium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. [less ▲]

Detailed reference viewed: 154 (12 UL)
Full Text
Peer Reviewed
See detailVizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data
Laczny, Cédric UL; Sternal, Tomasz; Plugaru, Valentin UL et al

in Microbiome (2015)

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent ... [more ▼]

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent approaches, which exploit for example inherent genomic signatures for the clustering of metagenomic fragments (binning), offer the prospect to resolve and reconstruct population-level genomic complements without the need for prior knowledge. Results We present VizBin, a Java™-based application which offers efficient and intuitive reference-independent visualization of metagenomic datasets from single samples for subsequent human-in-the-loop inspection and binning. The method is based on nonlinear dimension reduction of genomic signatures and exploits the superior pattern recognition capabilities of the human eye-brain system for cluster identification and delineation. We demonstrate the general applicability of VizBin for the analysis of metagenomic sequence data by presenting results from two cellulolytic microbial communities and one human-borne microbial consortium. The superior performance of our application compared to other analogous metagenomic visualization and binning methods is also presented. Conclusions VizBin can be applied de novo for the visualization and subsequent binning of metagenomic datasets from single samples, and it can be used for the post hoc inspection and refinement of automatically generated bins. Due to its computational efficiency, it can be run on common desktop machines and enables the analysis of complex metagenomic datasets in a matter of minutes. The software implementation is available at https://claczny.github.io/VizBin under the BSD License (four-clause) and runs under Microsoft Windows™, Apple Mac OS X™ (10.7 to 10.10), and Linux. [less ▲]

Detailed reference viewed: 192 (14 UL)
Full Text
Peer Reviewed
See detailPhenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires
Bauer, Eugen UL; Laczny, Cédric UL; Magnusdottir, Stefania UL et al

in Microbiome (2015), 3(55), 1-13

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to ... [more ▼]

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to unravel metabolic roles of microbes by linking genotypic and phenotypic characteristics. This connection, however, still remains poorly understood with respect to its evolutionary and ecological context. Results: We generated automatically refined draft genome-scale metabolic models of 301 representative intestinal microbes in silico. We applied a combination of unsupervised machine-learning and systems biology techniques to study individual and global differences in genomic content and inferred metabolic capabilities. Based on the global metabolic differences, we found that energy metabolism and membrane synthesis play important roles in delineating different taxonomic groups. Furthermore, we found an exponential relationship between phylogeny and the reaction composition, meaning that closely related microbes of the same genus can exhibit pronounced differences with respect to their metabolic capabilities while at the family level only marginal metabolic differences can be observed. This finding was further substantiated by the metabolic divergence within different genera. In particular, we could distinguish three sub-type clusters based on membrane and energy metabolism within the Lactobacilli as well as two clusters within the Bifidobacteria and Bacteroides. Conclusions: We demonstrate that phenotypic differentiation within closely related species could be explained by their metabolic repertoire rather than their phylogenetic relationships. These results have important implications in our understanding of the ecological and evolutionary complexity of the human gastrointestinal microbiome. [less ▲]

Detailed reference viewed: 138 (10 UL)
Full Text
Peer Reviewed
See detailMethod optimization for fecal sample collection and fecal DNA extraction.
Mathay, Conny; Hamot, Gael; Henry, Estelle et al

in Biopreservation and biobanking (2015), 13(2), 79-93

BACKGROUND: This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here ... [more ▼]

BACKGROUND: This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here optimization of a stool processing protocol validated for fitness-for-purpose in terms of downstream DNA-based analyses. METHODS: Stool collection was initially optimized in terms of sample input quantity and supernatant volume using canine stool. Three DNA extraction methods (PerkinElmer MSM I(R), Norgen Biotek All-In-One(R), MoBio PowerMag(R)) and six collection container types were evaluated with human stool in terms of DNA quantity and quality, DNA yield, and its reproducibility by spectrophotometry, spectrofluorometry, and quantitative PCR, DNA purity, SPUD assay, and 16S rRNA gene sequence-based taxonomic signatures. RESULTS: The optimal MSM I protocol involves a 0.2 g stool sample and 1000 muL supernatant. The MSM I extraction was superior in terms of DNA quantity and quality when compared to the other two methods tested. Optimal results were obtained with plain Sarstedt tubes (without stabilizer, requiring immediate freezing and storage at -20 degrees C or -80 degrees C) and Genotek tubes (with stabilizer and RT storage) in terms of DNA yields (total, human, bacterial, and double-stranded) according to spectrophotometry and spectrofluorometry, with low yield variability and good DNA purity. No inhibitors were identified at 25 ng/muL. The protocol was reproducible in terms of DNA yield among different stool aliquots. CONCLUSIONS: We validated a stool collection method suitable for downstream DNA metagenomic analysis. DNA extraction with the MSM I method using Genotek tubes was considered optimal, with simple logistics in terms of collection and shipment and offers the possibility of automation. Laboratories and biobanks should ensure protocol conditions are systematically recorded in the scope of accreditation. [less ▲]

Detailed reference viewed: 93 (6 UL)
Full Text
Peer Reviewed
See detailIn situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella
Sheik, Abdul UL; Muller, Emilie UL; Audinot, Jean-Nicolas et al

in ISME Journal (The) (2015)

Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium ... [more ▼]

Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium Candidatus Microthrix parvicella (Ca. M. parvicella) has been found to fine-tune its gene expression for optimized substrate assimilation. Here we investigated in situ substrate assimilation by single cells of Ca. M. parvicella using nano-scale secondary-ion mass spectrometry (nanoSIMS). NanoSIMS imaging highlighted phenotypic heterogeneity among Ca. M. parvicella cells of the same filament, whereby 13C-oleic acid and 13C-glycerol-3-phosphate assimilation occurred in ≈21–55% of cells, despite non-assimilating cells being intact and alive. In response to alternating aerobic–anoxic regimes, 13C-oleic acid assimilation occurred among subpopulations of Ca. M. parvicella cells (≈3–28% of cells). Furthermore, Ca. M. parvicella cells exhibited two temperature optima for 13C-oleic acid assimilation and associated growth rates. These results suggest that phenotypic heterogeneity among Ca. M. parvicella cells allows the population to adapt rapidly to fluctuating environmental conditions facilitating its widespread occurrence in biological wastewater treatment plants. [less ▲]

Detailed reference viewed: 89 (13 UL)
Full Text
Peer Reviewed
See detailComparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks
Roume, Hugo UL; Buschart, Anna UL; Muller, Emilie UL et al

in Biofilms and Microbiomes (2015), 1(15007),

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships ... [more ▼]

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT. METHODS: A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs) sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy, transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and network topological features, respectively. RESULTS: Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism, particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as ‘keystone genes’ as they are likely to be encoded by keystone species. CONCLUSION: The linking of key functionalities to community members through integrated omics opens up exciting possibilities for devising prediction and control strategies for microbial communities in the future. [less ▲]

Detailed reference viewed: 233 (19 UL)
Full Text
Peer Reviewed
See detailA decade of metaproteomics: where we stand and what the future holds
Wilmes, Paul UL; Heintz-Buschart, Anna UL; Bond, Philip

in Proteomics (2015)

We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high-resolution “meta-omics”. Metaproteomics offers the ... [more ▼]

We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high-resolution “meta-omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here we highlight several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution. [less ▲]

Detailed reference viewed: 54 (0 UL)
Full Text
Peer Reviewed
See detailCommunity-integrated omics links dominance of a microbial generalist to fine-tuned resource usage
Muller, Emilie UL; Pinel, Nicolas; Laczny, Cédric UL et al

in Nature Communications (2014)

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle ... [more ▼]

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ. [less ▲]

Detailed reference viewed: 221 (27 UL)