References of "Saint, Alexandre Fabian A 50026056"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detail3DBodyTex: Textured 3D Body Dataset
Saint, Alexandre Fabian A UL; Ahmed, Eman UL; Shabayek, Abd El Rahman UL et al

in 2018 Sixth International Conference on 3D Vision (3DV 2018) (2018)

In this paper, a dataset, named 3DBodyTex, of static 3D body scans with high-quality texture information is presented along with a fully automatic method for body model fitting to a 3D scan. 3D shape ... [more ▼]

In this paper, a dataset, named 3DBodyTex, of static 3D body scans with high-quality texture information is presented along with a fully automatic method for body model fitting to a 3D scan. 3D shape modelling is a fundamental area of computer vision that has a wide range of applications in the industry. It is becoming even more important as 3D sensing technologies are entering consumer devices such as smartphones. As the main output of these sensors is the 3D shape, many methods rely on this information alone. The 3D shape information is, however, very high dimensional and leads to models that must handle many degrees of freedom from limited information. Coupling texture and 3D shape alleviates this burden, as the texture of 3D objects is complementary to their shape. Unfortunately, high-quality texture content is lacking from commonly available datasets, and in particular in datasets of 3D body scans. The proposed 3DBodyTex dataset aims to fill this gap with hundreds of high-quality 3D body scans with high-resolution texture. Moreover, a novel fully automatic pipeline to fit a body model to a 3D scan is proposed. It includes a robust 3D landmark estimator that takes advantage of the high-resolution texture of 3DBodyTex. The pipeline is applied to the scans, and the results are reported and discussed, showcasing the diversity of the features in the dataset. [less ▲]

Detailed reference viewed: 524 (45 UL)
Full Text
Peer Reviewed
See detailTowards Automatic Human Body Model Fitting to a 3D Scan
Saint, Alexandre Fabian A UL; Shabayek, Abd El Rahman UL; Aouada, Djamila UL et al

in D'APUZZO, Nicola (Ed.) Proceedings of 3DBODY.TECH 2017 - 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal QC, Canada, 11-12 Oct. 2017 (2017, October)

This paper presents a method to automatically recover a realistic and accurate body shape of a person wearing clothing from a 3D scan. Indeed, in many practical situations, people are scanned wearing ... [more ▼]

This paper presents a method to automatically recover a realistic and accurate body shape of a person wearing clothing from a 3D scan. Indeed, in many practical situations, people are scanned wearing clothing. The underlying body shape is thus partially or completely occluded. Yet, it is very desirable to recover the shape of a covered body as it provides non-invasive means of measuring and analysing it. This is particularly convenient for patients in medical applications, customers in a retail shop, as well as in security applications where suspicious objects under clothing are to be detected. To recover the body shape from the 3D scan of a person in any pose, a human body model is usually fitted to the scan. Current methods rely on the manual placement of markers on the body to identify anatomical locations and guide the pose fitting. The markers are either physically placed on the body before scanning or placed in software as a postprocessing step. Some other methods detect key points on the scan using 3D feature descriptors to automate the placement of markers. They usually require a large database of 3D scans. We propose to automatically estimate the body pose of a person from a 3D mesh acquired by standard 3D body scanners, with or without texture. To fit a human model to the scan, we use joint locations as anchors. These are detected from multiple 2D views using a conventional body joint detector working on images. In contrast to existing approaches, the proposed method is fully automatic, and takes advantage of the robustness of state-of-art 2D joint detectors. The proposed approach is validated on scans of people in different poses wearing garments of various thicknesses and on scans of one person in multiple poses with known ground truth wearing close-fitting clothing. [less ▲]

Detailed reference viewed: 175 (33 UL)
Full Text
Peer Reviewed
See detailDEFORMATION TRANSFER OF 3D HUMAN SHAPES AND POSES ON MANIFOLDS
Shabayek, Abd El Rahman UL; Aouada, Djamila UL; Saint, Alexandre Fabian A UL et al

in IEEE International Conference on Image Processing, Beijing 17-20 Spetember 2017 (2017)

Detailed reference viewed: 278 (55 UL)