References of "Paczia, Nicole 50002801"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFailure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency
Veiga-da-Cunha, Maria; Chevalier, Nathalie; Stephenne, Xavier et al

in Proceedings of the National Academy of Sciences of the United States of America (2019), 116(4), 1241-1250

Neutropenia presents an important clinical problem in patients with G6PC3 or G6PT deficiency, yet why neutropenia occurs is unclear. We discovered that G6PC3 and G6PT collaborate to dephosphorylate a ... [more ▼]

Neutropenia presents an important clinical problem in patients with G6PC3 or G6PT deficiency, yet why neutropenia occurs is unclear. We discovered that G6PC3 and G6PT collaborate to dephosphorylate a noncanonical metabolite (1,5anhydroglucitol-6-phosphate; 1,5AG6P) which is produced when glucose-phosphorylating enzymes erroneously act on 1,5-anhydroglucitol, a food-derived polyol present in blood. In patients or mice with G6PC3 or G6PT deficiency, 1,5AG6P accumulates and inhibits the first step of glycolysis. This is particularly detrimental in neutrophils, since their energy metabolism depends almost entirely on glycolysis. Consistent with our findings, we observed that treatment with a 1,5anhydroglucitol-lowering drug treats neutropenia in G6PC3deficient mice. Our findings highlight that the elimination of noncanonical side products by metabolite-repair enzymes makes an important contribution to mammalian physiology. [less ▲]

Detailed reference viewed: 63 (3 UL)
Full Text
Peer Reviewed
See detailNAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses
Van Bergen, Nicole; Guo, Yiran; Rankin, Julia et al

in Brain: a Journal of Neurology (2019), 142(1), 50-58

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX ... [more ▼]

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death. [less ▲]

Detailed reference viewed: 58 (7 UL)
Full Text
Peer Reviewed
See detail3‑Phosphoglycerate Transhydrogenation Instead of Dehydrogenation Alleviates the Redox State Dependency of Yeast de Novo L‑Serine Synthesis
Paczia, Nicole UL; Becker, Julia UL; Conrotte, Jean-François UL et al

in Biochemistry (2019)

The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in ... [more ▼]

The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence−structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism. [less ▲]

Detailed reference viewed: 47 (4 UL)
Full Text
Peer Reviewed
See detailNAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells
Becker-Kettern, Julia UL; Paczia, Nicole UL; Conrotte, Jean-François UL et al

in FEBS Journal (2018)

NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of ... [more ▼]

NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of life and that comprises the two enzymes NAD(P)HX dehydratase and NAD(P)HX epimerase, allows reconversion of both the S- and R-epimers of NADHX and NADPHX to the normal cofactors. An inherited deficiency in this system has recently been shown to cause severe neurometabolic disease in children. Although evidence for the presence of NAD(P)HX has been obtained in plant and human cells, little is known about the mechanism of formation of these derivatives in vivo and their potential effects on cell metabolism. Here, we show that NAD(P)HX dehydratase deficiency in yeast leads to an important, temperature-dependent NADHX accumulation in quiescent cells with a concomitant depletion of intracellular NAD+ and serine pools. We demonstrate that NADHX potently inhibits the first step of the serine synthesis pathway in yeast. Human cells deficient in the NAD(P)HX dehydratase also accumulated NADHX and showed decreased viability. In addition, those cells consumed more glucose and produced more lactate, potentially indicating impaired mitochondrial function. Our results provide first insights into how NADHX accumulation affects cellular functions and pave the way for a better understanding of the mechanism(s) underlying the rapid and severe neurodegeneration leading to early death in NADHX repair deficient children. [less ▲]

Detailed reference viewed: 48 (4 UL)
Full Text
Peer Reviewed
See detailNatural variation of chronological aging in the Saccharomyces cerevisiae species reveals diet-dependent mechanisms of life span control
Jung, Paul UL; Zhang, Zhi UL; Paczia, Nicole UL et al

in npj Aging and Mechanisms of Disease (2018), 4(3),

Aging is a complex trait of broad scientific interest, especially because of its intrinsic link with common human diseases. Pioneering work on aging-related mechanisms has been made in Saccharomyces ... [more ▼]

Aging is a complex trait of broad scientific interest, especially because of its intrinsic link with common human diseases. Pioneering work on aging-related mechanisms has been made in Saccharomyces cerevisiae, mainly through the use of deletion collections isogenic to the S288c reference strain. In this study, using a recently published high-throughput approach, we quantified chronological life span (CLS) within a collection of 58 natural strains across seven different conditions. We observed a broad aging variability suggesting the implication of diverse genetic and environmental factors in chronological aging control. Two major Quantitative Trait Loci (QTLs) were identified within a biparental population obtained by crossing two natural isolates with contrasting aging behavior. Detection of these QTLs was dependent upon the nature and concentration of the carbon sources available for growth. In the first QTL, the RIM15 gene was identified as major regulator of aging under low glucose condition, lending further support to the importance of nutrient-sensing pathways in longevity control under calorie restriction. In the second QTL, we could show that the SER1 gene, encoding a conserved aminotransferase of the serine synthesis pathway not previously linked to aging, is causally associated with CLS regulation, especially under high glucose condition. These findings hint toward a new mechanism of life span control involving a trade-off between serine synthesis and aging, most likely through modulation of acetate and trehalose metabolism. More generally it shows that genetic linkage studies across natural strains represent a promising strategy to further unravel the molecular basis of aging. [less ▲]

Detailed reference viewed: 184 (17 UL)
Full Text
Peer Reviewed
See detailMillifluidic culture improves human midbrain organoid vitality and differentiation
Berger, Emanuel UL; Magliaro, Chiara; Paczia, Nicole UL et al

in Lab on a Chip - Miniaturisation for Chemistry and Biology (2018)

Detailed reference viewed: 140 (10 UL)
Full Text
Peer Reviewed
See detailNit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione
Peracchi, Alessio; Veiga-da-Cunha, Maria; Kuhara, Tomiko et al

in Proceedings of the National Academy of Sciences of the United States of America (2017), 1613736114

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase ... [more ▼]

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable “repair enzyme” to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria. [less ▲]

Detailed reference viewed: 46 (0 UL)
Full Text
Peer Reviewed
See detailSaccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.
Becker-Kettern, Julia UL; Paczia, Nicole UL; Conrotte, Jean-Francois et al

in The Journal of Biological Chemistry (2016)

The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders and high D-2HG levels are also found in several types of cancer. Although 2HG has been detected in ... [more ▼]

The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders and high D-2HG levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Delta knockout strain accumulates millimolar levels of D-2HG, while a dld2Delta knockout strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to alpha-ketoglutarate. Depletion of D-lactate levels in the dld3Delta, but not in the dld2Delta mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to alpha-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce alpha-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1. [less ▲]

Detailed reference viewed: 206 (15 UL)