References of "Narayanasamy, Shaman 50002737"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFirst draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ
Muller, Emilie UL; Narayanasamy, Shaman UL; Zeimes, Myriam et al

in Standards in Genomic Sciences (2017), 12(64),

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome ... [more ▼]

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. [less ▲]

Detailed reference viewed: 23 (1 UL)
Full Text
Peer Reviewed
See detailColonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life
Wampach, Linda UL; Heintz, Anna UL; Hogan, Angela et al

in Frontiers in Microbiology (2017)

Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial ... [more ▼]

Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract. [less ▲]

Detailed reference viewed: 83 (9 UL)
Full Text
See detailDevelopment of an integrated omics in silico workflow and its application for studying bacteria-phage interactions in a model microbial community
Narayanasamy, Shaman UL

Doctoral thesis (2017)

Microbial communities are ubiquitous and dynamic systems that inhabit a multitude of environments. They underpin natural as well as biotechnological processes, and are also implicated in human health. The ... [more ▼]

Microbial communities are ubiquitous and dynamic systems that inhabit a multitude of environments. They underpin natural as well as biotechnological processes, and are also implicated in human health. The elucidation and understanding of these structurally and functionally complex microbial systems using a broad spectrum of toolkits ranging from in situ sampling, high-throughput data generation ("omics"), bioinformatic analyses, computational modelling and laboratory experiments is the aim of the emerging discipline of Eco-Systems Biology. Integrated workflows which allow the systematic investigation of microbial consortia are being developed. However, in silico methods for analysing multi-omic data sets are so far typically lab-specific, applied ad hoc, limited in terms of their reproducibility by different research groups and suboptimal in the amount of data actually being exploited. To address these limitations, the present work initially focused on the development of the Integrated Meta-omic Pipeline (IMP), a large-scale reference-independent bioinformatic analyses pipeline for the integrated analysis of coupled metagenomic and metatranscriptomic data. IMP is an elaborate pipeline that incorporates robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function, automated binning as well as genomic signature-based visualizations. The IMP-based data integration strategy greatly enhances overall data usage, output volume and quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly implementation using Python while relying on Docker for reproducibility. The IMP pipeline was then applied to a longitudinal multi-omic dataset derived from a model microbial community from an activated sludge biological wastewater treatment plant with the explicit aim of following bacteria-phage interaction dynamics using information from the CRISPR-Cas system. This work provides a multi-omic perspective of community-level CRISPR dynamics, namely changes in CRISPR repeat and spacer complements over time, demonstrating that these are heterogeneous, dynamic and transcribed genomic regions. Population-level analysis of two lipid accumulating bacterial species associated with 158 putative bacteriophage sequences enabled the observation of phage-host population dynamics. Several putatively identified bacteriophages were found to occur at much higher abundances compared to other phages and these specific peaks usually do not overlap with other putative phages. In addition, there were several RNA-based CRISPR targets that were found to occur in high abundances. In summary, the present work describes the development of a new bioinformatic pipeline for the analysis of coupled metagenomic and metatranscriptomic datasets derived from microbial communities and its application to a study focused on the dynamics of bacteria-virus interactions. Finally, this work demonstrates the power of integrated multi-omic investigation of microbial consortia towards the conversion of high-throughput next-generation sequencing data into new insights. [less ▲]

Detailed reference viewed: 151 (23 UL)
Full Text
Peer Reviewed
See detailIntegrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation.
Kaysen, Anne UL; Heintz-Buschart, Anna UL; Muller, Emilie UL et al

in Translational research : the journal of laboratory and clinical medicine (2017)

In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most ... [more ▼]

In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most notably graft-versus-host disease (GvHD). However, it is presently unknown whether this relationship is causal or consequential. Here, we performed an integrated meta-omic analysis to probe deeper into the GIT microbiome changes during allo-HSCT and its accompanying treatments. We used 16S and 18S rRNA gene amplicon sequencing to resolve archaea, bacteria, and eukaryotes within the GIT microbiomes of 16 patients undergoing allo-HSCT for the treatment of hematologic malignancies. These results revealed a major shift in the GIT microbiome after allo-HSCT including a marked reduction in bacterial diversity, accompanied by only limited changes in eukaryotes and archaea. An integrated analysis of metagenomic and metatranscriptomic data was performed on samples collected from a patient before and after allo-HSCT for acute myeloid leukemia. This patient developed severe GvHD, leading to death 9 months after allo-HSCT. In addition to drastically decreased bacterial diversity, the post-treatment microbiome showed a higher overall number and higher expression levels of antibiotic resistance genes (ARGs). One specific Escherichia coli strain causing a paravertebral abscess was linked to GIT dysbiosis, suggesting loss of intestinal barrier integrity. The apparent selection for bacteria expressing ARGs suggests that prophylactic antibiotic administration may adversely affect the overall treatment outcome. We therefore assert that such analyses including information about the selection of pathogenic bacteria expressing ARGs may assist clinicians in "personalizing" regimens for individual patients to improve overall outcomes. [less ▲]

Detailed reference viewed: 42 (4 UL)
Full Text
Peer Reviewed
See detailIMP: a pipeline for reproducible referenceindependent integrated metagenomic and metatranscriptomic analyses
Narayanasamy, Shaman UL; Jarosz, Yohan UL; Muller, Emilie UL et al

in Genome Biology (2016), 17

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the ... [more ▼]

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume, and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license). [less ▲]

Detailed reference viewed: 98 (13 UL)
Full Text
Peer Reviewed
See detailIntegrated omics for the identification of key functionalities in biological wastewater treatment microbial communities
Narayanasamy, Shaman UL; Muller, Emilie UL; Sheik, Abdul UL et al

in Microbial Biotechnology (2015)

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated ... [more ▼]

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single ‘omes’. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure–function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. [less ▲]

Detailed reference viewed: 299 (17 UL)
Full Text
Peer Reviewed
See detailComparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks
Roume, Hugo UL; Buschart, Anna UL; Muller, Emilie UL et al

in Biofilms and Microbiomes (2015), 1(15007),

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships ... [more ▼]

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT. METHODS: A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs) sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy, transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and network topological features, respectively. RESULTS: Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism, particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as ‘keystone genes’ as they are likely to be encoded by keystone species. CONCLUSION: The linking of key functionalities to community members through integrated omics opens up exciting possibilities for devising prediction and control strategies for microbial communities in the future. [less ▲]

Detailed reference viewed: 233 (19 UL)
Full Text
Peer Reviewed
See detailCommunity-integrated omics links dominance of a microbial generalist to fine-tuned resource usage
Muller, Emilie UL; Pinel, Nicolas; Laczny, Cédric UL et al

in Nature Communications (2014)

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle ... [more ▼]

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ. [less ▲]

Detailed reference viewed: 221 (27 UL)