References of "Genç, Ziya Alper 50024603"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Cipher, the Random and the Ransom: A Survey on Current and Future Ransomware
Genç, Ziya Alper UL; Lenzini, Gabriele UL; Ryan, Peter UL

Scientific Conference (2017, November 17)

Although conceptually not new, ransomware recently regained attraction in the cybersecurity community: notorious attacks in fact have caused serious damage, proving their disruptive effect. This is likely ... [more ▼]

Although conceptually not new, ransomware recently regained attraction in the cybersecurity community: notorious attacks in fact have caused serious damage, proving their disruptive effect. This is likely just the beginning of a new era. According to a recent intelligence report by Cybersecurity Ventures, the total cost due to ransomware attacks is predicted to exceed $5 billion in 2017. How can this disruptive threat can be contained? Current anti-ransomware solutions are effective only against existing threats, and the worst is yet to come. Cyber criminals will design and deploy more sophisticated strategies, overcoming current defenses and, as it commonly happens in security, defenders and attackers will embrace a competition that will never end. In this arm race, anticipating how current ransomware will evolve may help at least being prepared for some future damage. In this paper, we describe existing techniques to mitigate ransomware and we discuss their limitations. Discussing how current ransomware could become even more disruptive and elusive is crucial to conceive more solid defense and systems that can mitigate zero-day ransomware, yielding higher security levels for information systems, including critical infrastructures such as intelligent transportation networks and health institutions. [less ▲]

Detailed reference viewed: 19 (3 UL)
Full Text
Peer Reviewed
See detailSecurity and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer
Kiraz, Mehmet Sabır; Genç, Ziya Alper UL; Kardaş, Süleyman

in Security and Communication Networks (2015), 8(18), 4123-4135

Bringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme ... [more ▼]

Bringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user’s input with at most O(n) complexity instead of O(2n), where n is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly. [less ▲]

Detailed reference viewed: 26 (6 UL)