References of "De Wild, Jessica 50001548"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOptoelectronic and Spectroscopic Characterization of Vapour-Transport Grown Cu2ZnSnS4 Single Crystals
Tat Ming Ng; Weller, Mark T.; Kissling, Gabriela P. et al

in Journal of Materials Chemistry A (2017)

Detailed reference viewed: 47 (2 UL)
Full Text
See detailCrystallographic and optoelectronic properties of the novel thin film absorber Cu2GeS3
Robert, Erika UL; De Wild, Jessica UL; Colombara, Diego UL et al

in Proceedings of SPIE (2016, September)

Detailed reference viewed: 44 (6 UL)
See detailChemical stability of the Cu2SnS3/Mo interface
De Wild, Jessica UL; Robert, Erika UL; Dale, Phillip UL

Poster (2016, June)

Detailed reference viewed: 84 (7 UL)
Full Text
Peer Reviewed
See detailSecondary phase formation during monoclinic Cu2SnS3 growth for solar cell application
De Wild, Jessica UL; Robert, Erika UL; El Adib, Brahime et al

in Solar Energy Materials and Solar Cells (2016)

Detailed reference viewed: 88 (7 UL)
Full Text
Peer Reviewed
See detail13.3% efficient solution deposited Cu(In,Ga)Se 2 solar cells processed with different sodium salt sources
Berner, Ulrich; Colombara, Diego UL; De Wild, Jessica UL et al

in Progress in Photovoltaics Research and Applications (2015)

Detailed reference viewed: 132 (15 UL)
Full Text
See detailCu2SnS3-based thin film solar cell from electrodeposition-annealing route
Robert, Erika UL; De Wild, Jessica UL; Dale, Phillip UL

in IEEE Proceedings (2015, June)

Cu2SnS3 is a new emerging material for thin film photovoltaics, composed of three abundant and non toxic elements. Its p-type conductivity, bandgap of 0.93 eV and absorption coefficient above 104 cm-1 ... [more ▼]

Cu2SnS3 is a new emerging material for thin film photovoltaics, composed of three abundant and non toxic elements. Its p-type conductivity, bandgap of 0.93 eV and absorption coefficient above 104 cm-1 make it a promising absorber layer for p-n heterojunction devices. In this study, the Cu2SnS3 absorber is synthesized from electroplated stacked Cu-Sn precursors further annealed in chalcogen atmosphere (S and SnS). The electroplating has been processed on upscaled 45 x 50 mm2 Mo-coated soda-lime glass substrates on which the metallic layers seem to delaminate easily from the substrate due to increased stress between them. To reduce this stress the precursors are subjected to pre-alloying treatments. The effects of pre-alloying are investigated in terms of final absorber morphology, composition and crystal structure. Precursors are annealed at 250°C and 350°C. The prealloying at 350°C is far above the melting point of Sn around 230°C and these samples show de-wetting. The as-deposited and 250°C pre-alloyed samples are processed further into absorber layers and solar cells. The finished absorber layers show mainly monoclinic Cu2SnS3. Absorbers completed into devices show a device power conversion efficiency of 0.64%. The spectral response suggests the existence of two bandgaps, consistent with previous results. [less ▲]

Detailed reference viewed: 83 (13 UL)