References of "Baniasadi, Maryam 50000578"
     in
Bookmark and Share    
See detailInvestigating Multiphase flow Behavior in Trickle Bed Reactors using eXtended Discrete Element Method (XDEM)
Baniasadi, Maryam UL; Peters, Bernhard UL

Scientific Conference (2017, May 08)

The existence of multiphase flows through packed bed of solid particles in broad spectrum of engineering disciplines such as chemical industries, petroleum engineering, wastewater treatment is undeniable ... [more ▼]

The existence of multiphase flows through packed bed of solid particles in broad spectrum of engineering disciplines such as chemical industries, petroleum engineering, wastewater treatment is undeniable. One frequently used reactor of this type is a trickle bed reactor that usually contains particulate phase of which the interstitial space is filled with gas and liquid phases. Based on the direction of the fluid flow they can be classified as cocurrent downflow trickle bed reactors, counter-current trickle bed reactors and cocurrent upflow packed bubble reactors. In these kind of problems numerical simulations can help to gain a better process understanding. In the current distribution, a numerical method so called Extended Discrete Element Method (XDEM) was applied to model multiphase flow through packed bed of solid particles which has the ability to be coupled to Computational Fluid Dynamics (CFD) through interphase momentum transfer. In this coupled solver the fluid phases are treated by CFD while the position and orientation of the particles in each CFD cell and the porosity distribution through packed bed are provided by XDEM. In order to validate the code, two important hydrodynamic parameters such as pressure drop and liquid hold up were investigated and satisfactory agreement between predicted and experimental data was achieved. The model results demonstrate enormous effect of solid particles on the deviation of fluid phases while passing through packed bed by investigating parameters such as velocity and drag force. [less ▲]

Detailed reference viewed: 14 (1 UL)
See detailApplication of the extended discrete element method (XDEM) in the melting of a single particle
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Baniasadi, Mehdi (Ed.) Application of the extended discrete element method (XDEM) in the melting of a single particle (2016, July 19)

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is ... [more ▼]

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is the extension of Discrete Element Method (DEM) by considering thermodynamic state such as temperature distribution and is able to link with Computational Fluid Dynamics (CFD) for fluid phase. In order to provide more accurate results, multiscale method was used. The model is validated by comparing predicted results with existing experimental data for melting of a single ice particle in a water bath. In addition, the model has the capability to be extended to the packed bed of particles with different size and properties to produce different liquid phases. [less ▲]

Detailed reference viewed: 18 (7 UL)
See detailCFD-XDEM FOR PREDICTING MULTIPHASE FLOW BEHAVIOR THROUGH POROUS MEDIA
Baniasadi, Maryam UL; Peters, Bernhard UL

Scientific Conference (2016, June 05)

An accurate description of fluid flow through porous media is very important to predict, design and optimize many industrial phenomena principally in condition where experimental studies are difficult to ... [more ▼]

An accurate description of fluid flow through porous media is very important to predict, design and optimize many industrial phenomena principally in condition where experimental studies are difficult to perform. In these kind of problems numerical simulations can help to gain a better process understanding. During last decades many numerical approaches mainly Finite Volume Method (FVM) were applied to model different multiphase flows containing gas, liquid and solid phases. The solid phase may treat by continuous or discrete frameworks. In the former method which is based on Eulerian framework the solid phase is considered as a continuous phase like other fluid phases while in the second method which is based on Lagrangian framework, the solid phase is considered as separate particles. In this study, the flow behavior of several incompressible isotherm phases through solid particles was modelled. The model describes the motion of fluid flows such as gas and liquid phases using continuum approach by applying Computational Fluid Dynamics (CFD) as a numerical method and the solid particles by Lagrangian framework using so-called eXtended Discrete Element Method (XDEM). XDEM is a numerical simulation framework based on classical Discrete Element Methods (DEM) extended by consideration of thermophysical states. A combination of the two numerical methods was performed through momentum and mass exchange between fluid and solid phases which is called combined continuum discrete approach. The solid phase is considered as packed solid particles. The model results demonstrate enormous effect of solid particles on deviation of fluid phases while passing through particles by testing different drag force models. This model was applied to the dripping zone of blast furnace where the liquid phases of liquid iron and slag flow downward through coke particles and gas phase ascends upwards through the shaft which is classified as a counter-current multiphase packed bed reactor. The main goal of this project is to provide a solver which is able to treat several fluid phases through porous media using combined Eulerian-Lagrangian framework by exchanging data between this two approaches. [less ▲]

Detailed reference viewed: 10 (1 UL)