References of "Ashrafi, Amer 50000480"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAbsence of regulator of G-protein signaling 4 does not protect against dopamine neuron dysfunction and injury in the mouse 6-hydroxydopamine lesion model of Parkinson's disease
Ashrafi, Amer UL; Garcia, Pierre UL; Kollmus, Heike et al

in Neurobiology of Aging (in press)

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy ... [more ▼]

Regulator of G-Protein Signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson’s disease (PD). In the case of PD, the main current option for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects, and reduced effectiveness over the long term. Research on new non-dopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection endpoints has not yet been demonstrated. Here, we use the 6-Hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA induced injury, and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a non-dopaminergic target for PD should be approached with caution. [less ▲]

Detailed reference viewed: 38 (6 UL)