References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBinary Sequences set with small ISL for MIMO radar systems
Alaee-Kerahroodi, Mohammad; Modarres-Hashemi, Mahmoud; Naghsh, Mohammad Mahdi Naghsh et al

in 2018 26th European Signal Processing Conference (EUSIPCO) (2018)

In this paper, we aim at designing a set of binary sequences with good aperiodic auto- and crosscorrelation properties for Multiple-Input-Multiple-Output (MIMO) radar systems. We show such a set of ... [more ▼]

In this paper, we aim at designing a set of binary sequences with good aperiodic auto- and crosscorrelation properties for Multiple-Input-Multiple-Output (MIMO) radar systems. We show such a set of sequences can be obtained by minimizing the Integrated Side Lobe (ISL) with the binary requirement imposed as a design constraint. By using the block coordinate descent (BCD) framework, we propose an efficient monotonic algorithm based on Fast Fourier Transform (FFT), to minimize the objective function which is non-convex and NP-hard in general. Simulation results illustrate that the ISL of designed binary set of sequences is the neighborhood of the Welch bound, Indicating its superior performance. [less ▲]

Detailed reference viewed: 43 (2 UL)
Full Text
Peer Reviewed
See detailHybrid analog-digital transceiver designs for mmwave amplify-and-forward relaying systems
Tsinos, Christos UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (2018)

Hybrid Analog/Digital (A/D) pre-/post-coding solutions aim at the reduction of the hardware complexity and power consumption of a system employed with a large-scale antenna array functioning in the ... [more ▼]

Hybrid Analog/Digital (A/D) pre-/post-coding solutions aim at the reduction of the hardware complexity and power consumption of a system employed with a large-scale antenna array functioning in the millimeter (mmWave) band. This is achieved by enabling the transceiver design with fewer Radio Frequency (RF) chains than antennas. In this work, hybrid A/D transceiver designs are developed for a relay assisted mmWave system that aims at data transmission from a source to a destination node via the well-known amplify-and-forward cooperative protocol. To that end, hybrid solutions are proposed for the joint design of the source and relay nodes precoders and for the destination ones, as well. Contrariwise to existing literature approaches that develop codebook-based solutions and exhibit limitations on the performance, the proposed approaches are codebook-free and present significantly improved spectral efficiency, as it is verified via the presented simulations. [less ▲]

Detailed reference viewed: 33 (1 UL)
Full Text
Peer Reviewed
See detailGraph Similarity based on Graph Fourier Distances
Lagunas, Eva UL; Marques, Antonio G.; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), Rome, Italy, 3-7 September 2018 (2018)

Detailed reference viewed: 67 (4 UL)
Full Text
Peer Reviewed
See detailUser Selection for symbol-level multigroup multicasting precoding in the downlink of MISO channels
Alodeh, Maha UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 IEEE International Conference on Communications (ICC) (2018)

We consider the problem of user selection for symbol-level multigroup multicasting in the downlink of multiuser MISO systems. Symbol-level precoding is a new paradigm for multiuser multiple-antenna ... [more ▼]

We consider the problem of user selection for symbol-level multigroup multicasting in the downlink of multiuser MISO systems. Symbol-level precoding is a new paradigm for multiuser multiple-antenna downlink systems which aims at creating constructive interference among the simultaneous data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. This work proposes a user selection algorithm to facilitate serving multiple groups of users, by transmitting a stream of common symbols to each group on symbol-by-symbol basis if we have large number of users. We provide numerical results to validate the proposed algorithm. [less ▲]

Detailed reference viewed: 45 (9 UL)
Full Text
Peer Reviewed
See detailCross-Layer Forward Packet Scheduling for Emerging Precoded Broadband Multibeam Satellite System
Lagunas, Eva UL; Andrenacci, Stefano UL; Chatzinotas, Symeon UL et al

in 9th Advanced Satellite Multimedia Systems Conference (ASMS) and 15th Signal Processing for Space Communications Workshop (SPSC), Berlin, Germany, 10-12 September 2018 (2018)

Detailed reference viewed: 54 (7 UL)
Full Text
Peer Reviewed
See detail2018 25th International Conference on Telecommunications (ICT)
Lagunas, Eva UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 25th International Conference on Telecommunications (ICT) (2018)

The anticipated exponential growth in network traffic is posing significant challenges for the implementation of 5G networks. In this context, a major problem is the backhaul network which acts as a ... [more ▼]

The anticipated exponential growth in network traffic is posing significant challenges for the implementation of 5G networks. In this context, a major problem is the backhaul network which acts as a bottleneck preventing the efficient flow of ultra-dense and heavy traffic between the end users and the core network. Spectrum scarcity has emerged as the primary problem encountered when trying to accommodate the traffic upsurge. In this paper, we investigate the carrier allocation problem in the context of Integrated Satellite-Terrestrial Backhaul (ISTB) networks. In particular, we consider the satellite component to be integrated with the conventional terrestrial wireless backhaul network thus providing evident benefits in terms of data-offloading. To enhance the overall spectral efficiency of the proposed network, we consider that both terrestrial and satellite segments operate in the Ka band, where the sharing between terrestrial microwave links and satellite communications is already allowed. A novel carrier allocation algorithm based on fairness is proposed, which ensures that all backhaul links are continuously active to satisfy the operator's coverage needs. The problem is NP-hard by definition. As a consequence, we present a two-step sequential carrier allocation strategy specifically tailored to tackle the interference issues emerging from the spectral co-existence. Supporting results based on numerical simulations show that the proposed carrier allocation can provide a 2x improvement in terms of spectral efficiency when compared to benchmark terrestrial-only backhaul networks. [less ▲]

Detailed reference viewed: 26 (6 UL)
Full Text
Peer Reviewed
See detailSymbol-level precoding with low resolution DACs for large-scale array MU-MIMO systems
Tsinos, Christos UL; Kalantari, Ashkan UL; Chatzinotas, Symeon UL et al

in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2018)

While (Multiple Input-Multiple Output) MIMO systems based on large-scale antenna arrays are seen as the solution to the continuously increasing demands in modern wireless systems, they require high ... [more ▼]

While (Multiple Input-Multiple Output) MIMO systems based on large-scale antenna arrays are seen as the solution to the continuously increasing demands in modern wireless systems, they require high hardware complexity and power consumption. To tackle this, solutions based on low resolution Analog-to-Digital Converters (ADCs) / Digital-to-Analog Converters (DACs) have been developed in the literature where they mainly propose quantized versions of typical channel dependent linear precoding solutions. Alternatively, nonlinear Symbol level Precoding techniques have been recently proposed for downlink Multi User (MU)-MIMO systems with low resolution DACs that achieve significantly improved performance in several cases. The existing SLP approaches support only DACs of 1-bit resolution which result in significant performance degradations, especially when constellations with order greater than 4 are employed. To that end, in this work a novel SLP approach is developed that supports systems with DACs of any resolution and it is applicable for any type of constellation. As it is verified by the presented numerical results, the proposed approach exhibits significantly improved performance when constellations with order greater than 4 are employed and require reduced computational complexity, compared to the existing solutions for the 1-bit DAC case. [less ▲]

Detailed reference viewed: 32 (1 UL)
Full Text
Peer Reviewed
See detail2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)
Domouchtsidis, Stavros; Tsinos, Christos UL; Chatzinotas, Symeon UL et al

in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (2018)

Large-Scale Antenna Array Systems may be used to serve multiple users in the same time-frequency resource block which results to harmful multi-user interference (MUI). In the literature precoding ... [more ▼]

Large-Scale Antenna Array Systems may be used to serve multiple users in the same time-frequency resource block which results to harmful multi-user interference (MUI). In the literature precoding techniques have been proposed as a way to mitigate the induced MUI, by designing the transmitted signals using the knowledge of the Channel State Information (CSI), in block-level precoding (BLP) or both the CSI and the information-bearing symbols, in symbol-level precoding (SLP). However, the proposed SLP techniques require fully digital baseband processing which is infeasible in large-scale antenna array systems because of the high cost and power consumption of radio frequency (RF) components. In order to reduce the number of y-RF chains, we address an Antenna Selection Symbol-Level Precoding (AS-SLP) scheme, which minimizes the MUI by activating only a subset of the available antennas. For this scheme we develop an efficient algorithm, based on Coordinate Descent. Simulations provide an insight on the efficiency of the proposed approach and its improvement with respect to the fully digitally approaches. [less ▲]

Detailed reference viewed: 32 (1 UL)
Full Text
Peer Reviewed
See detailLearning-based rainfall estimation via communication satellite links
Gharanjik, Ahmad UL; Mishra, Kumar Vijay; Shankar, Bhavani UL et al

in 2018 IEEE Statistical Signal Processing Workshop (SSP) (2018)

We present a method for estimating rainfall by opportunistic use of Ka-band satellite communication network. Our approach is based on the attenuation of the satellite link signal in the rain medium and ... [more ▼]

We present a method for estimating rainfall by opportunistic use of Ka-band satellite communication network. Our approach is based on the attenuation of the satellite link signal in the rain medium and exploits the nearly linear relation between the rain rate and the specific attenuation at Ka-band frequencies. Although our experimental setup is not intended to achieve high resolutions as millimeter wavelength weather radars, it is instructive because of easy availability of millions of satellite ground terminals throughout the world. The received signal is obtained over a passive link. Therefore, traditional weather radar signal processing to derive parameters for rainfall estimation algorithms is not feasible here. We overcome this disadvantage by employing neural network learning algorithms to extract relevant information. Initial results reveal that rainfall accumulations obtained through our method are 85% closer to the in situ rain gauge estimates than the nearest C-band German weather service Deutscher Wetterdienst (DWD) radar. [less ▲]

Detailed reference viewed: 31 (0 UL)
Full Text
Peer Reviewed
See detailEnergy-Efficient and Secure Resource Allocation for Multiple-Antenna NOMA with Wireless Power Transfer
Chang, Zheng; Lei, Lei UL; Zhang, Huaqing et al

in IEEE Transactions on Green Communications and Networking (2018)

Detailed reference viewed: 74 (8 UL)
Full Text
Peer Reviewed
See detailMulticarrier phase modulated continuous waveform for automotive joint radar-communication system
Dokhanchi, Sayed Hossein; Shankar, Bhavani UL; Stifter, Thomas Stifter et al

in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2018)

Automotive radar implementation in the mm Wave band (79 G Hz) is being increasingly considered for the high bandwidths offered. While the radar systems and technology is maturing in mm Wave bands, the ... [more ▼]

Automotive radar implementation in the mm Wave band (79 G Hz) is being increasingly considered for the high bandwidths offered. While the radar systems and technology is maturing in mm Wave bands, the reuse of radar spectrum for low latency, limited throughput and safety critical communication has started to receive attention of late. Towards this, a joint radar-communication (JRC) system is proposed where the platform performs sensing and communication operations. The major challenge in JRC waveform design is the lack of degrees of freedom (DoF), due to need to estimate communication symbols in addition to the radar parameters. In this work, we propose a novel automotive JRC system based on multicarrier phase-modulated continuous waveform (MC-PMCW). MC-PMCW provides sufficient DoF to confine desired parameters, i.e., angles of arrival, Doppler shifts, ranges, and communication symbols in different dimensions. It can overcome the limitations of conventional PMCW and OFDM waveforms by leveraging the multicarrier feature of OFDM and the code sequence of PMCW to embed radar and communication. Further, the separation of parameters into different domains reduces complexity and enhances robustness; this is desirable in automotive scenarios characterized by dynamic scenes. Numerical results demonstrate the effectiveness of the proposed system. [less ▲]

Detailed reference viewed: 44 (1 UL)
Full Text
Peer Reviewed
See detailOFDM-based automotive joint radar-communication system
Dokhanchi, Sayed Hossein UL; Shankar, Bhavani UL; Stifter, Thomas et al

in 2018 IEEE Radar Conference (RadarConf18) (2018)

We propose a novel automotive joint radar-communication (JRC) system, where the system first transmits OFDM sub-carriers for radar processing followed by sub-carriers enabling radar and communication ... [more ▼]

We propose a novel automotive joint radar-communication (JRC) system, where the system first transmits OFDM sub-carriers for radar processing followed by sub-carriers enabling radar and communication functionalities. The receiver processing includes iterative estimation of parameters to alleviate the shortage of samples to estimate range. The receiver first estimates the target parameters from the sub-carriers dedicated to radar; these parameters then determine the channel for the communication link. The communication data is then extracted, thereby enabling the use of all the carriers for improving the range estimation. It is shown that the range estimation improves significantly after efficient use of all the sub-carriers. Furthermore, for radar parameter estimation, we propose an effective iterative method based on alternating least square (ALS) to recover the angle of arrival (AoA), Doppler and Range. Numerical results demonstrate the feasibility of our proposed system. [less ▲]

Detailed reference viewed: 56 (6 UL)
Full Text
Peer Reviewed
See detailConstrained bayesian active learning of linear classifier
Tsakmalis, Anestis UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)

In this paper, an on-line interactive method is proposed for learning a linear classifier. This problem is studied within the Active Learning (AL) framework where the learning algorithm sequentially ... [more ▼]

In this paper, an on-line interactive method is proposed for learning a linear classifier. This problem is studied within the Active Learning (AL) framework where the learning algorithm sequentially chooses unlabelled training samples and requests their class labels from an oracle in order to learn the classifier with the least queries to the oracle possible. Additionally' a constraint is introduced into this interactive learning process which limits the percentage of the samples from one “unwanted” class under a certain threshold. An optimal AL solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP) and its performance is demonstrated through numerical simulations. [less ▲]

Detailed reference viewed: 47 (3 UL)
Full Text
Peer Reviewed
See detailConstrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
Tsakmalis, Anestis UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Journal of Selected Topics in Signal Processing (2017)

In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an ... [more ▼]

In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work. [less ▲]

Detailed reference viewed: 101 (20 UL)
Full Text
Peer Reviewed
See detailCache-Assisted Hybrid Satellite-Terrestrial Backhauling for 5G Cellular Networks
Kalantari, Ashkan; Fittipaldi, Marilena; Chatzinotas, Symeon UL et al

in Proceedings of IEEE Global Communications Conference (2017, December)

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a ... [more ▼]

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a promising technique to off-load the network backhaul and reduce the content delivery delay. Satellite communications provides immense area coverage and high data rate, hence, it can be used for large-scale content placement in the caches. In this work, we propose using hybrid mono/multi-beam satellite-terrestrial backhaul network for off-line edge caching of cellular base stations in order to reduce the traffic of terrestrial network. The off-line caching approach is comprised of content placement and content delivery phases. The content placement phase is performed based on local and global content popularities assuming that the content popularity follows Zipf-like distribution. In addition, we propose an approach to generate local content popularities based on a reference Zipf-like distribution to keep the correlation of content popularity. Simulation results show that the hybrid satellite-terrestrial architecture considerably reduces the content placement time while sustaining the cache hit ratio quite close to the upper-bound compared to the satellite-only method. [less ▲]

Detailed reference viewed: 132 (4 UL)
Full Text
Peer Reviewed
See detailA Framework for Optimizing Multi-cell NOMA: Delivering Demand with Less Resource
You, Lei; Lei, Lei UL; Yuan, Di et al

in 2017 IEEE Global Communications Conference (GLOBECOM) (2017, December)

Non-orthogonal multiple access (NOMA) allows multiple users to simultaneously access the same time-frequency resource by using superposition coding and successive interference cancellation (SIC). Thus far ... [more ▼]

Non-orthogonal multiple access (NOMA) allows multiple users to simultaneously access the same time-frequency resource by using superposition coding and successive interference cancellation (SIC). Thus far, most papers on NOMA have focused on performance gain for one or sometimes two base stations. In this paper, we study multi-cell NOMA and provide a general framework for user clustering and power allocation, taking into account inter-cell interference, for optimizing resource allocation of NOMA in multi-cell networks of arbitrary topology. We provide a series of theoretical analysis, to algorithmically enable optimization approaches. The resulting algorithmic notion is very general. Namely, we prove that for any performance metric that monotonically increases in the cells’ resource consumption, we have convergence guarantee for global optimum. We apply the framework with its algorithmic concept to a multi-cell scenario to demonstrate the gain of NOMA in achieving significantly higher efficiency. [less ▲]

Detailed reference viewed: 147 (18 UL)
Full Text
Peer Reviewed
See detailSymbol-level Precoding for the Non-linear Multiuser MISO Downlink Channel
Spano, Danilo UL; Alodeh, Maha; Chatzinotas, Symeon UL et al

in IEEE Transactions on Signal Processing (2017)

This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered ... [more ▼]

This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered, in order to exploit the multi-user interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, this paper presents novel strategies which exploit the potential of symbol-level precoding to control the per-antenna instantaneous transmit power. In particular, the power peaks amongst the transmitting antennas and the instantaneous power imbalances across the different transmitted streams are minimized. These objectives are particularly relevant with respect to the non-linear amplitude and phase distortions induced by the per-antenna amplifiers, which are important sources of performance degradation in practical systems. More specifically, this work proposes two different symbol-level precoding approaches. A first approach performs a weighted per-antenna power minimization, under Quality-of-Service constraints and under a lower bound constraint on the per-antenna transmit power. A second strategy performs a minimization of the spatial peak-to-average power ratio, evaluated amongst the transmitting antennas. Numerical results are presented in a comparative fashion to show the effectiveness of the proposed techniques, which outperform the state of the art symbol-level precoding schemes in terms of spatial peak-to-average power ratio, spatial dynamic range, and symbol-error-rate over non-linear channels. [less ▲]

Detailed reference viewed: 126 (13 UL)
Full Text
Peer Reviewed
See detailEnergy Minimization for Cache-assisted Content Delivery Networks with Wireless Backhaul
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Ottersten, Björn UL et al

in IEEE Wireless Communications Letters (2017)

Content caching is an efficient technique to reduce delivery latency and system congestion during peak-traffic time by bringing data closer to end users. In this paper, we investigate energy-efficiency ... [more ▼]

Content caching is an efficient technique to reduce delivery latency and system congestion during peak-traffic time by bringing data closer to end users. In this paper, we investigate energy-efficiency performance of cache-assisted content delivery networks with wireless backhaul by taking into account cache capability when designing the signal transmission. We consider multi-layer caching and the performance in cases when both base station (BS) and users are capable of storing content data in their local cache. Specifically, we analyse energy consumption in both backhaul and access links under two uncoded and coded caching strategies. Then two optimization problems are formulated to minimize total energy cost for the two caching strategies while satisfying some given quality of service constraint. We demonstrate via numerical results that the uncoded caching achieves higher energy efficiency than the coded caching in the small user cache size regime. [less ▲]

Detailed reference viewed: 78 (4 UL)
Full Text
Peer Reviewed
See detailCoverage Extension via Side-Lobe Transmission in Multibeam Satellite System
Gharanjik, Ahmad UL; Kmieciak, Jarek; Shankar, Bhavani UL et al

in 23rd Ka and Broadband Communications Conference (2017, October 16)

In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO ... [more ▼]

In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO satellite network, and using realistic link budgets from O3b networks, we investigate the performance of both forward and return-links for terminals stationed in the side lobes of the main beams. Particularly, multi-carrier transmission for forward-link and single carrier transmission for return-link are examined and the resulting coverage and data rate for different setups are evaluated. Simulation results verifies that side-lobe transmission can extend the coverage area and provide considerable data rate, thereby providing a solution for enhancing capacity of existing networks. [less ▲]

Detailed reference viewed: 53 (7 UL)
Full Text
Peer Reviewed
See detailSecrecy Analysis of Random Wireless Networks with Multiple Eavesdroppers
Vuppala, Satyanarayana UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in Proceedings of IEEE Inter. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Montreal, Canada (2017)

Detailed reference viewed: 98 (4 UL)