
System Design and Implementation Decisions for
ParaMoise Organisational Model

Mateusz Guzek
Interdisciplinary Centre for Security,

Reliability and Trust

University of Luxembourg

6, rue R. Coudenhove-Kalergi

Luxembourg, Luxembourg

Email: mateusz.guzek@uni.lu

Grégoire Danoy
Computer Science and Communications

Research Unit

University of Luxembourg

6, rue R. Coudenhove-Kalergi

Luxembourg, Luxembourg

Email: gregoire.danoy@uni.lu

Pascal Bouvry
Computer Science and Communications

Research Unit

University of Luxembourg

6, rue R. Coudenhove-Kalergi

Luxembourg, Luxembourg

Email: pascal.bouvry@uni.lu

Abstract—ParaMoise is a novel organisational model that
permits to specify parallel and concurrent systems’ organisation
and reorganisation. Workflows, locks and multiple organisation
managers are the entities that differentiate this model from it
antecedent, the Moise+ framework. All these entities must be
efficiently designed and implemented to ensure the practical
usage of the theoretically formulated model. The main challenge
here is the distributed synchronisation of workflows and locks,
that will maximise the performance of the system. This paper
presents and analyses different workflows and locks manage-
ment approaches that can be used to achieve this goal: from
basic centralised or middleware based solutions, towards truly
decentralised coordination mechanisms.

I. INTRODUCTION

O
RGANISATIONAL models are used in Multi-Agent

Systems (MAS) to facilitate the teamwork between

agents. They define the coordination and cooperation mecha-

nisms between agents, resulting in a model that can be reused

in various systems and environments, without need to create

a custom solution for each of them. Additionally, a model of

organisation enables to explicitly represent the social aspects

of a MAS, which can be useful for both agents and external

observers of the MAS.

Multiple organisational models were introduced [1]–[3],

each of them with its own properties and assumptions about

MAS architecture. The cited frameworks are notable, as they

are general purpose and can fit into multiple domains that

benefit from the MAS paradigm.

In this study, we further extend the MOISE [1] organisa-

tional model, which relies on a three dimensional description

of the Organisation Specification (OS). The OS consists of a

Structural Specification (SS) that describes roles together with

their hierarchy and possible interactions, groups, and links

between roles and groups, a Functional Specification (FS) that

describes the schemas, further divided into goals, which are in

turn grouped into missions, and a Deontic Specification (DS)

that binds the SS and FS by a set of deontic modalities, which

enforce or allow agents playing specific roles to commit to

missions.

Moreover, MOISE clearly divides the general description of

the organisation (OS) from the instantiation of that description,

called Organisational Entity (OE). An OE consists of an OS,

a set of agents, and the elements that create a valid instance of

the OS using this set of agents, e.g. functions that determine

the current assignment of agents to roles, groups, and missions,

the set of currently existing groups, the set of applied deontic

modalities.

The next step in the development of organisational models

is considering the benefit and the cost of running an explicit

organisation infrastructure in a system. The rationale for

running an organisation is to facilitate reaching the desired

states by the system. In case of a dynamic environment, it is

likely that the organisation may decrease its efficiency due to

changes in its environment. As a result, the reorganisation

may be necessary to adapt the system [4]. The urge for

the reorganisation can be especially important for large scale

distributed systems, that may trigger reorganisation not only

because of external environmental changes, but also due to

internal events in MAS. Additionally, the concept of artifact,

a general and abstract representation of object that can be

perceived and used by agents, may be applied to represent

organisation [5].

The state-of-the-art development in the field of modelling

is ParaMoise [6], that enhances its predecessors by introduc-

ing novel concepts coming from the distributed and parallel

computing field: workflows, locks, alternative or redundant ex-

ecution paths, transactions, and failure handling mechanisms,

as well as multiple managers of organisation. In effect, the

resulting model offers more possibilities to execute parallel

and concurrently, without removing or diminishing any of the

properties of the antecedent models. The final goal of this de-

velopment is improving the distribution properties of a MAS,

which shall result in an increased performance and reliability,

which are essential for dynamic, large scale systems.

However, ParaMoise is a theoretical approach, which appli-

cation and performance will depend on a proper design and

implementation of the proposed mechanisms. In this work,

we aim to address this issue by discussing possible alternative

designs. In this context, our contributions are the proposals

of various design and implementation possibilities for the

ParaMoise model divided into two groups:

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 999–1005

978-83-60810-53-8/$25.00 c© 2013, IEEE 999

a) Centralised: classical tools such as databases that

supports transactions, which can be possibly seen as artifacts

by MAS.

b) Decentralised: artifacts distributed among agents. In

this context we consider that the responsible Organisation

Manager (OrgManager) could host the organisational artifacts,

which can be also delegated to a new auxiliary Organisation

Carrier (OrgCarrier) role that sole purpose is to host the

organisational artifacts. We also present the possible solutions

for preventing deadlocks that can occur in case of multiple

locks, followed by some further refinements of organisation

to minimise the resulting synchronisation overheads. Finally,

we highlight the impact of using distributed algorithms, as

they give agents the possibility to choose the organisational

artifact type according to their needs.

The rest of the article is organised as follows. Section II

provides a state-of-the-art on ParaMoise, artifacts and dis-

tributed synchronisation. Section III presents a centralised

solution approach that fulfils the basic requirements for the

implementation, while section IV discusses the organisation

distributions possibilities. Finally, section V describes the

advantages of distributed artifacts and section VI concludes

the paper.

II. STATE OF THE ART

This section is divided into three parts. Section II-A de-

scribes in more details the ParaMoise model, then section II-B

presents the artifact-based approaches that are important in the

discussed design concepts, and finally section II-C describes

the basic algorithms that can be used for the distributed

concurrency control.

A. ParaMoise

This section describes the main concepts introduced in the

ParaMoise [6] organisational model. ParaMoise is a novel

organisational model based on the MOISE [1] and Moise+

[7] models. One of the assumptions of Moise models is the

full autonomy of agents, i.e. the agents decide by themselves

what to do and when, given their current deontic situation,

which in turn defines possible rewards or penalties for some

performed actions. As a result, the system does not need any

central scheduler that will assign tasks to agents, contrary to

other state-of-the-art solutions such as GPGP/STÆM [3].

The ParaMoise model is based on the state-of-the-art defi-

nitions of organisational models [7], [8], and defines an OE as

a tuple [6]: 〈OS,A,GI,SI,O, sg, ar, am〉, where OS is the

organisational specification; A is the set of agents; GI is the

set of group instances; SI is the set of social schemes; O is the

set of current deontic modalities; sg : GI → P(GI) maps each

group to its subgroups; ar : A 7→ P(R× GI) maps agents to

the roles they are playing in the groups; am : A 7→ P(M×SI)
maps agents to the missions they are committed to in the social

schemes.

The first major contribution of the ParaMoise model is the

Workflow Specification (WFS), which is a way to present goals

and dependencies between them as a workflow. WFS is defined

6

7 8

16 17 18 19

21 22

24 25

Alternative

precedences

Precedence

Primitive

Goal

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Key

Fig. 1. An example of ParaMoise WFS.

as [6]: 〈G, E ,M,mo, nm, alt, fh〉, where G is the set of global

goals; E is the set of precedence relations; M is the set of

mission labels; mo : M → P(G) is the function that specifies

the mission set of goals ; nm : M 7→ N × N specifies the

boundaries (min,max) of number of agents committed to the

mission in well formed WFS; alt : E → P(E) is the function

specifies the precedence relations alternatives; fh : Gp 7→ N

specifies the failure handling mechanism for a primitive goal in

terms of maximum number of allowed repetitions. An example

of WFS is presented in Figure 1.

An instantiation of a WFS by some agents is referred

to as a Workflow (WF). The latter is defined as a tuple

[6] 〈WFS, es, gs, exe, gf〉, where WFS is the workflow

specification, es : E → {active, inactive, discarded} is the

function that maps edges to their activity status label; gs :
Gp → {waiting, possible, executing, suspended, achieved,
discarded} is the function that specifies statuses of primitive

goals; exe : Gp 7→ P(A) is the function that specifies the set

of agents executing a goal; gf : Gp → N specifies numbers

of repetitions of primitive goals. The status of the goals in

the system changes according to the state transition diagram

presented in Figure 2. The final example of a workflow usage

is presented in Figure 3, which presents the capability of

tracking the execution status.

The WFS and WF enable more parallelism, since they

permit to represent an arbitrary structure of dependencies

between goals. They are combined with locks to ensure mutual

exclusion during reorganisation. The locks are defined as

〈ROE, type〉, where ROE is the reduced organisational entity

(the elements of the OE on which the lock applies) and

type ∈ {read, write} specifies the type of the lock. Before a

reorganisation, a lock must be created for all modified (write

lock) or accessed (read lock) elements of the organisation. To

minimise the scope of locks, they can be applied to a subset of

1000 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Waiting

Possible

Executing

Achieved Discarded

Suspended

No active incoming edges

and at least one inactive

Start
Alt. started

Fail

Alt. failed

Alt. finished Finish

All incoming edges

discarded

Fig. 2. State transition diagram of goals status in ParaMoise model [6].

6

7 8

16 17 18 19

21 22

24 25

Alternative
edges

Active
Edge

Waiting
Goal

Possible
Goal

Executing
Goal

Achieved
Goal

Discarded
Goal

Discarded
Edge

m1

m1 m1

m2
m3 m4

m5

m2 m3

m4 m5

Suspended
Goal

Inactive
Edge

Fig. 3. An example of WF during execution

a set, or for a subdomain of a function. ParaMoise also intro-

duces multiple managers of the organisation (OrgManagers),

which fulfil the requirement for an effectively concurrent

system.

An efficient access to the workflows and locks is crucial

to achieve a high performance of concurrent and parallel exe-

cution and reorganisation in a system that applies ParaMoise.

Therefore, it is important to find a design appropriate for a

considered scenario. In this article we present two approaches:

a basic centralised one, applicable for small scale systems,

which is interesting as it underlines the basic requirements

of the implementation of the model, and the decentralised

approach with various possible design choices and their antic-

ipated consequences.

The essential requirements for any implementation of the

organisational model are:

1) the existence of all elements of the defined organisation,

2) the accessibility of all the existing elements by the

agents with appropriate permissions,

3) the execution of workflow that ensures their correct state

transitions,

4) the effective lock and reorganisation mechanisms.

The concept of artifacts can directly meet these requirements.

B. Artifact-Based Frameworks

ORA4MAS (Organisational Artifacts for Multi-Agent Sys-

tems) [5] is an approach that describes organisational entities

as artifacts, based on the Agents and Artifacts (A&A) frame-

work [9]. Artifacts are abstraction of interactive objects that

can be perceived and used by agents. An artifact is defined by

observable properties that represent its state, operations that

determine its functionality, links that describe its relations with

other artifacts, events that can be emitted in certain conditions,

and corresponding manual that instructs the agents how to

use artifacts. In this context we can see the artifacts as tools

that can be used to achieve the goals of agents. ORA4MAS

describes the theoretical foundations for using artifacts as

the basis of reorganisation, but neglects some system designs

aspects. It is a centralised solution based on the paradigms of

the A&A framework.

Another drawback of ORA4MAS is the absence of reorgan-

isation. It is partially covered by the JaCaMo [8] framework,

which uses a central artifact to perform reorganisation by a

single OrgManager that requires halting the whole organisa-

tion.

In this context, ParaMoise offers parallel and concurrent

reorganisation at runtime, performed by multiple OrgMan-

agers. In the same way ParaMoise enhances standard execution

mechanisms, enabling arbitrary precedences between goals,

novel possibilities of alternative goals, and a failure handling

mechanism. However, the ParaMoise model does not propose

any exact design and implementation, but only mentions

the usage of artifacts as a perspective. This work proposes

to answer to this need. In the remainder of the paper we

discuss alternative scenarios, arguing that using well-known

and established solutions results in an abundance of choices in

which artifacts are one of the basic concepts, being an interface

between agents and organisation support systems.

C. Decentralised Synchronisation

Decentralised synchronisation problems are crucial for dis-

tributed computing and distributed systems. In contrast to

easier case of centralised systems synchronisation, they must

be solved taking into account such properties as lack of the

global knowledge or communication delays. As a result, a

number of solutions to the problem were proposed to solve

some main issues for ParaMoise: mutual exclusion (locks) and

transactions [10].

1) Mutual Exclusion: Exemplary mutual exclusion algo-

rithms are the Ricart and Agrawala algorithm [11] and token-

based algorithms. We focus here on the basic algorithms,

despite further refinements were proposed (e.g. Maekawa [12]

or Sigma [13]) as they underline the common characteristics

of this type of algorithms.

MATEUSZ GUZEK, ET AL: SYSTEM DESIGN AND IMPLEMENTATION DECISIONS FOR PARAMOISE ORGANIZATIONAL MODEL 1001

The Ricart and Agrawala algorithm requires communica-

tions between all agents, that have the possibility to access

the critical section. As a result, the cost of synchronisation is

2(n − 1), where n is the number of agents. Additionally, in

the basic forms, the failure of any of the agents disturbs the

proper work of the algorithm. These limitations prohibit usage

of such algorithms in a large groups of agents. On the other

hand, the algorithm is fair and in optimistic case leads to a

fast resolution of the problem.

The token-based algorithms [10] ensure mutual exclusion

by using a unique token for a critical section. These can be

applicable for a set of distinct critical sections or resources.

The token can be passed according to various strategies, e.g.

continuously moving in the ring or using more sophisticated

hierarchical structures.

2) Transactions: Another aspect of concurrency control is

proper transaction handling, which is required for an effective

WF management. Three main approaches can be distinguished

[10].

Two phase locking (2PL) [14] is based on the standard lock

mechanism. The locks are created in the two phases: in the

first phase the locks are consecutively acquired according to

the needs of a transaction and then in the following phase they

are released.

The optimistic concurrency control [15] assumes that vi-

olations of mutual exclusion are rare, and it is possible to

repair the potential damages done by such violation. As a

consequence, there must exist an efficient repair mechanism

and the collisions cannot be destructive. This is most effective

in the case of relatively rare occurrence of conflicting write

operations in a system [16].

The pessimistic timestamp ordering [10] is the last ap-

proach presented here. It associates the demands to access

elements being part of a critical section with additional read

and write timestamps. During the evaluation of the incoming

transactions, the timestamps are used to check if the incoming

transactions conflict with the ongoing ones. The approach is

safer than the optimistic concurrency control, as it avoids the

potential problems instead of resolving them.

III. CENTRALISED DESIGN

The centralised solution for synchronisation can be achieved

with classical tools used for mutual exclusion and transactions.

A central entity is responsible for keeping all the information

about the state of the organisation. In case any agent needs to

acquire knowledge about any part of the organisation, e.g. the

agent’s roles, obligations or known agents, it can query this

entity.

The concurrent access control is performed centrally and in

result does not pose a major challenge. A system of role-based

access can effectively enforce that only the entitled agents can

access specific elements of the organisation. The transaction

mechanism can be straightforwardly applied to the execution

of workflows, ensuring the correct state transitions of goals.

Finally, lock creation and checking is done by a single entity

that can prohibit any forbidden overlaps.

As a result, we can see this entity as a database which stores

all elements of the organisation and grants access to them only

to the roles that have the required permission. The workflows

are stored inside the database and their status can be changed

using the mechanism of transactions. The database routines

ensure that the created lock does not overlap with other locks.

For an agent in the system, the database is seen as an

artifact that stores the information about the organisation with

well-defined interfaces to perform organisational actions. It

can return information about the organisation or be exploited

as a synchronisation tool used for efficient teamwork, as it

holds the workflow state. Finally, the artifact has interfaces that

enable OrgManagers to change the shape of the organisation

by modifying the current state of the organisation in a safe

way.

IV. DECENTRALISED DESIGN

This section presents the variety of possible design choices

for the ParaMoise model and discusses their properties. Firstly,

it describes the basic decentralisation capabilities and concepts

in section IV-A, which introduces the decentralised artifacts

described in section IV-B. Artifacts management problems and

the corresponding organisational challenges are presented in

section IV-C, while the solving of possible deadlock problems

is discussed in section IV-D.

A. Decentralised Middleware

The most straightforward way to decentralise the system

is to use an existing solution to distribute the centralised

middleware, e.g. a database. This involves correct replication

schema together with synchronisation of replicas. From the

MAS design perspective these problems of distributed comput-

ing are out of the scope of this paper, as logically there is still

one entity that is distributed, possibly with multiple equivalent

interfaces. Therefore, the following paragraphs describes the

applicability of decentralised synchronisation algorithms for

the ParaMoise model. Following the structure of Section

II-C, we describe two main issues: Mutual Exclusion and

Transactions.

1) Mutual Exclusion: Solving the mutual exclusion prob-

lem is an essential design decision for ParaMoise, as it

effectively determines the locks mechanism, its performance

and properties. The Ricart and Agrawala algorithm is ap-

plicable for the ParaMoise model. The need for broadcast

communication may rise scalability issues, however proper

division schemas may result in more applicable solutions,

which are discussed further in Section IV-D. The other

discussed solution, token-based algorithms, seems to have

limited applicability in the ParaMoise model. The lock in

ParaMoise could have an arbitrary form, which makes the

token impractical. There could be either a large number

of tokens that could create significant overhead, or in the

opposite case a small amount of token responsible for major

organisational elements would decrease the possible number

of concurrent reorganisations. Additionally, gathering multiple

1002 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

tokens to perform reorganisation may lead to increased waiting

time and deadlocks.

2) Transactions: The transactions mechanism is necessary

to properly modify the status of goals during progress of WF,

which is the core issue for the efficiency of the parallel and

concurrent execution in a ParaMoise system. A WF is also

used to express all the schemas in the organisation, including

reorganisation processes. 2PL conceptually fits the ParaMoise

locks and could be directly applied. In the case of using

optimistic concurrency control for reorganisation, there is a

need to ensure that the occurrence of a conflict will not result

in breaking the consistency, by applying an effective rollback

mechanism. The property of allowing the conflicts to happen is

not acceptable in MAS organisations, as achieving some of the

goals by agents can be impossible to undo, making the rollback

impossible. Additionally, the changes of reorganisation shall

be directly mapped into the behaviour of agents, which could

lead to an inconsistent state in an organisation. Pessimistic

timestamp ordering is applicable thanks to its more cautious

nature. As it ensures that the organisation will be unique at any

moment in time, it is applicable for usage in ParaMoise. The

specifics of the solution require a mechanism for comparing

the timestamps, which could be directly performed by an

artifact created for each WF. We discuss more generally the

usage of decentralised artifacts in the following section.

B. Decentralised Artifacts

The next step toward decentralised system is a logical dis-

tribution of artifacts among the distributed system. In this way,

the agents are no longer using the monolithic organisational

artifact, but they access a set of distinct artifacts. An example

of such a division may be a system that stores the definition

of each role as a separate artifact.

The logical division can lead to practical consequences:

as the elements of the organisation are separated among

artifacts, locks are distributed among the artifacts, therefore

decreasing the complexity of checking for possible conflicts.

Additionally, this approach eliminates performance bottleneck,

and decreases the risk of single point of failure. On the

other hand, larger reorganisations can require interactions with

several artifacts, increasing therefore the complexity of the

operation, leading to the possibility of deadlocks, and in case

of lack of redundancy failure of any of the artifacts can lead

to breaking down the whole organisation.

C. Role-Based Synchronisation

The concept of decentralised artifacts can be further ad-

vanced by merging it with the concept of roles. Agents of spe-

cific roles would be responsible for maintaing organisational

artifacts. The responsibility may hold for the whole system, or

for a specific group. A natural choice for the role responsible

for artifacts is the OrgManager, however this solution would

add another functionality to this role. As OrgManagers are

already responsible for coordinating organisation and execut-

ing reorganisation, we propose a new role in the structural

specification: Organisation Carrier (OrgCarrier).

The OrgCarrier responsibility is to maintain the organ-

isational artifacts. To keep the control over parts of the

organisation, OrgManagers have authority over OrgCarriers,

i.e. the latter should follow the orders of the former. We

present the novel structural specification in Figure 4. The

authority link of the OrgManager pointing to the root role soc

is transitively propagated to the OrgCarrier role. However, this

is the only connection of OrgCarrier, since none of Org roles,

except OrgManager, has knowledge about the OrgCarrier. This

structure can fulfil its goals, being transparent for the rest of

the system.

Org

OrgManager

Monitor

Monitored

SelectorDesigner

Reorg

Communication link

Compatibility link

role

Inheritance
Authority link

Group

soc

Composition

Key

abstract role

ReorgGr

OrgCarrier

Fig. 4. Organization group structure with OrgCarrier role.

D. Resolving Deadlocks

As previously mentioned, introducing multiple locks dis-

tributed among artifacts leads to the possibility of deadlocks.

An example leading to a deadlock is an attempt to create locks

on two organisational elements by two OrgManagers. If they

actions are synchronised, but they create locks in reverse order,

a deadlock occurs. Such behaviour may be simply overcome

by adding a timeout for each of the locks, however this

may lead to poor system performance (waiting for timeout)

or aborting lock for a valid operation that lasts longer than

expected [16].

Another approach to solve the problem of deadlock could

be the coordination between OrgManagers, using an algorithm

such as Ricart and Agrawala. Each OrgManager broadcasts

the description of the lock it wants to create together with

a timestamp. Other OrgManagers must reply that they allow

to create the lock. In case of conflict, the OrgManager that

detects it takes a decision based on the timestamps. The

lock with earlier timestamp has priority. Tie braking may

be implemented, e.g. favouring the lowest agent ID number.

The inherent drawback of this solution is its scalability: each

agent must receive and send a message coming from the

initiator of the procedure. Additionally, unreliable channels or

agents that occur in dynamic systems may break this schema,

MATEUSZ GUZEK, ET AL: SYSTEM DESIGN AND IMPLEMENTATION DECISIONS FOR PARAMOISE ORGANIZATIONAL MODEL 1003

with the probability of failure growing with the number of

OrgManagers.

The organisational model properties can be used to mitigate

such negative behaviours. The responsibility of a subset of

OrgManagers can be restricted to specific elements of the

organisation. As an example, OrgManagers could form groups

associated with a role. Additionally, to ensure that major

reorganisation spanning across multiple roles can be executed,

there must exist a subset of OrgManagers responsible for

the whole organisation. As a result, each lock concerning an

element of the organisation must be checked by the subset

of agents (i.e. in a group) that contain the OrgManagers

responsible for this element as well as the globally responsible

OrgManagers. The effectivity of such solution is based on

the assumption that the major reorganisations are relatively

rare. Additionally, the division of elements of the organisation

must be done with a granularity that ensures correct system

behaviours.

V. DISCUSSION

A. Advantages of Artifact Driven Organisation

Representing organisations with artifacts has an additional

added value: agents are controlling the artifacts, thus they have

the power to alter even the organisation implementation. For

example, agents may initially choose to use the centralised

monolithic artifact while the system is of small scale. However,

together with the growth of the system agents may decide

that this solution has reached its limits and shall be changed

to better scale with the new situation. Then, by correct

mapping of the existing organisation to new artifacts agents

can replicate the existing OE and start to use the new type of

artifacts.

Agents can learn how to use different organisational arti-

facts, what are their strong and weak points in terms of perfor-

mance, reliability, recoverability, etc. Moreover, this solution

can be used to perform updates, maintenance or archive the

organisational artifacts. In case one type of artifacts starts to

present erroneous behaviour, agents have possibility to choose

another one.

VI. CONCLUSION

The ParaMoise model can be used using various designs

and implementations. From the discussed alternatives, we

see the Ricart and Agrawala family of algorithms, 2PL, and

pessimistic timestamp ordering as the most fitting low-level

primitives. We consider that artifacts could play a major role

as interfaces between agents and systems that agents use.

Artifacts are easy to distribute, can embed specific access

control and synchronisation mechanisms, and they enhance the

autonomy of agents. The paper also introduces the OrgCarrier

role that can facilitate the management of the organisation.

The properties of decentralised algorithms may require addi-

tional structure of the OrgManagers, for example by adding

managers responsibility zones.

The future work includes experimental testing of the dis-

cussed solutions as well as implementing ParaMoise as a

general purpose framework. We intend to use ParaMoise in a

system optimising and managing Cloud Computing infrastruc-

tures, which could validate the approach. In this context, the

optimisation of an organisation model to achieve the system

objectives is a prospective research direction.

ACKNOWLEDGMENT

M. Guzek acknowledges the support of the National Re-

search Fund of Luxembourg (FNR) and Tri-ICT, with the

AFR contract no. 1315254. This work was completed with

the support of the FNR INTER-CNRS-11-03 Green@cloud.

REFERENCES

[1] J. Hübner, J. Sichman, and O. Boissier, “A model for the structural,
functional, and deontic specification of organizations in multiagent
systems,” in Advances in Artificial Intelligence, ser. Lecture Notes in
Computer Science, G. Bittencourt and G. Ramalho, Eds. Springer
Berlin / Heidelberg, 2002, vol. 2507, pp. 439–448.

[2] V. Dignum, “A model for organizational interaction: based on agents,
founded in logic,” Ph.D. dissertation, Proefschrift Universiteit Utrecht,
2003.

[3] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. N. Prasad, A. Raja, R. Vincent, P. Xuan,
and X. Q. Zhang, “Evolution of the gpgp/tæms domain-independent
coordination framework,” Autonomous Agents and Multi-Agent Systems,
vol. 9, pp. 87–143, 2004.

[4] J. Hübner, J. Sichman, and O. Boissier, “Using the Moise+ model
for a cooperative framework of mas reorganisation,” in Advances in

Artificial Intelligence, SBIA 2004, ser. Lecture Notes in Computer
Science, A. Bazzan and S. Labidi, Eds. Springer Berlin / Heidelberg,
2004, vol. 3171, pp. 481–517.

[5] J. Hübner, O. Boissier, R. Kitio, and A. Ricci, “Instrumenting multi-
agent organisations with organisational artifacts and agents,” Au-

tonomous Agents and Multi-Agent Systems, vol. 20, pp. 369–400, 2010.

[6] M. Guzek, G. Danoy, and P. Bouvry, “Paramoise: Increasing capabilities
of parallel execution and reorganization in an organizational model,” in
Proceedings of the 12th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS’13. IFAAMAS, May 2013, pp. 1029–
1036.

[7] J. F. Hübner, J. S. Sichman, and O. Boissier, “Developing organised
multi-agent systems using the Moise+ model: Programming issues at
the system and agent levels,” International Journal of Agent-Oriented

Software Engineering, vol. 1, no. 3/4, pp. 370–395, 2007.

[8] A. Sorici, G. Picard, O. Boissier, A. Santi, and J. F. Hübner, “Multi-
Agent Oriented Reorganisation within the JaCaMo infrastructure,” in
Proceedings of The Third International Workshop on Iinfraestructures

and tools for multiagent systems: ITMAS 2012, Valencia, Espagne, 2012,
pp. 135–148.

[9] A. Ricci, M. Viroli, and A. Omicini, “The A&A programming
model and technology for developing agent environments in MAS,”
in Programming Multi-Agent Systems, ser. LNCS, M. Dastani,
A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, Eds.
Springer, Apr. 2008, vol. 4908, pp. 89–106, 5th InternationalWorkshop
(ProMAS 2007), Honolulu, HI, USA, 15 May 2007. Revised
and Invited Papers. [Online]. Available: http://www.springerlink.com/
content/92370q174328841j/

[10] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and

Paradigms, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2001.

[11] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1,
pp. 9–17, Jan. 1981. [Online]. Available: http://doi.acm.org/10.1145/
358527.358537

[12] M. Maekawa, “A n algorithm for mutual exclusion in decentralized
systems,” ACM Trans. Comput. Syst., vol. 3, no. 2, pp. 145–159,
May 1985. [Online]. Available: http://doi.acm.org.proxy.bnl.lu/10.1145/
214438.214445

1004 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

[13] W. Chen, S. Lin, Q. Lian, and Z. Zhang, “Sigma: A fault-tolerant
mutual exclusion algorithm in dynamic distributed systems subject to
process crashes and memory losses,” in Proceedings of the 11th Pacific

Rim International Symposium on Dependable Computing, ser. PRDC
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 7–14.
[Online]. Available: http://dx.doi.org/10.1109/PRDC.2005.57

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems. Addison-Wesley, 1987.

[15] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, Jun.
1981. [Online]. Available: http://doi.acm.org/10.1145/319566.319567

[16] Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts

and Design (4th Edition) (International Computer Science). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

MATEUSZ GUZEK, ET AL: SYSTEM DESIGN AND IMPLEMENTATION DECISIONS FOR PARAMOISE ORGANIZATIONAL MODEL 1005

