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Abstract— In modern data centers, energy consumption accounts 
for a considerably large slice of operational expenses. The state of 
the art in data center energy optimization is focusing only on job 
distribution between computing servers based on workload or 
thermal profiles. This paper underlines the role of 
communication fabric in data center energy consumption and 
presents a scheduling approach that combines energy efficiency 
and network awareness, termed DENS. The DENS methodology 
balances the energy consumption of a data center, individual job 
performance, and traffic demands. The proposed approach 
optimizes the tradeoff between job consolidation (to minimize the 
amount of computing servers) and distribution of traffic patterns 
(to avoid hotspots in the data center network). 
 

Keywords-network-aware scheduling, energy-efficient, data 
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I.  INTRODUCTION 
Data centers are becoming increasingly popular for the 

provisioning of computing resources. The cost and operational 
expenses of data centers have skyrocketed with the increase in 
computing capacity [24]. 

Energy consumption is a growing concern for data centers 
operators.  It  is  becoming  one  of  the  main  entries  on  a  data  
center operational expenses (OPEX) bill [1, 2]. The Gartner 
Group estimates energy consumptions to account for up to 10% 
of the current OPEX, and this estimate is projected to rise to 
50% in the next few years [3]. 

The slice of roughly 40% is related to the energy consumed 
by information technology (IT) equipment [24], which includes 
energy consumed by the computing servers as well as data 
center network hardware used for interconnection. In fact, 
about one-third of the total IT energy is consumed by 
communication links, switching, and aggregation elements, 
while the remaining two-thirds are allocated to computing 
servers [6]. Other systems contributing to the data center 
energy consumption are cooling and power distribution 
systems that account for 45% and 15% of total energy 
consumption, respectively. 

The first data center energy saving solutions [25] operated 
on a distributed basis and focused on making the data center 
hardware energy efficient. There are two popular techniques 
for power savings in computing systems. The Dynamic 
Voltage and Frequency Scaling (DVFS) technology, adjusts 

hardware power consumption according to the applied 
computing load and the Dynamic Power Management (DPM), 
achieves most of energy savings by powering down devices at 
runtime. To make DPM scheme efficient, a scheduler must 
consolidate data center jobs on a minimum set of computing 
resources to maximize the amount of unloaded servers that can 
be powered down (or put to sleep) [5]. Because the average 
data center workload often stays around 30%, the portion of 
unloaded servers can be as high as 70% [4]. 

Most of the existing approaches for job scheduling in data 
centers focus exclusively on the job distribution between 
computing servers [7] targeting energy-efficient [8] or thermal-
aware scheduling [9]. To the best of our knowledge, only a few 
approaches have considered data center network and traffic 
characteristics for developing energy-efficient data center 
schedulers [10-12]. 

Ref. [10] identifies the problem associated with existing 
multi-path routing protocols in typical fat tree network 
topologies. Two large traffic flows may be assigned to share 
the same path if their hash values collide leaving other paths 
under-loaded. The problem is solved with the introduction of a 
complex central scheduler that performs flow differentiation 
and analysis of flow traffic demands across the data center 
network. Traffic-aware virtual machine placement is proposed 
in [12]. Relying on the knowledge about network topology, 
virtual machines are placed to optimize traffic flows inside a 
data center network. The approach presented in [11], also 
allows job migration control during runtime with a specifically 
designed network-aware scheduler. The migration scheduler is 
aware of the migration delays and bandwidth resources 
required. As we may see, most of the existing solutions leave 
the networking aspect unaccounted for in an energy-efficient 
optimization setting. 

This paper presents a data center scheduling methodology 
that combines energy efficiency and network awareness. The 
methodology is termed DENS, which is an acronym for data 
center energy-efficient network-aware scheduling. The DENS 
methodology aims to achieve the balance between individual 
job performances, job QoS requirements, traffic demands, and 
energy consumed by the data center. Data intensive jobs 
require low computational load, but produce heavy data 
streams directed out of the data center as well as to the 
neighboring nodes. Such data intensive jobs are typically 



produced by popular video sharing or geographical information 
services. The scheduling approach presented in this paper is 
designed to avoid hotspots within a data center while 
minimizing the number of computing servers required for job 
execution. In the proposed methodology, the network 
awareness is achieved with the introduction of feedback 
channels from the main network switches. Moreover, the 
proposed methodology reduces computational and memory 
overhead compared to previous approaches, such as flow 
differentiation, which makes the proposed methodology easy to 
implement and port to existing data center schedulers. 

The rest of the paper is organized as follows. Section II 
summarizes the background knowledge on a typical data center 
architecture, energy consumption models, and data center 
network congestion. Section III presents the core of the 
scheduling approach and defines the necessary components of 
the proposed methodology. In Section IV, we will present and 
discuss experimental results. Finally, Section V will conclude 
the paper and outline directions for future work on the topic. 

II. BACKGROUND 

A. Data Center Topology 
Three-tier trees of hosts and switches form the most widely 

used data center architecture [26]. It (see Fig. 1) consists of the 
core tier at the root of the tree, the aggregation tier that is 
responsible for routing, and the access tier that holds the pool 
of computing servers (or hosts). Early data centers used two-
tier architectures with no aggregation tier. However, such data 
centers, depending on the type of switches used and per-host 
bandwidth requirements, could typically support not more than 
5,000 hosts. Given the pool of servers in today’s data centers 
that are of the order of 100,000 hosts [13] and the requirement 
to keep layer-2 switches in the access network, a three-tiered 
design becomes the most appropriate option. 

 
Figure 1.  Three-tier data center architecture. 

Although 10 Gigabit Ethernet (GE) transceivers are 
commercially available, in a three-tiered architecture the 
computing servers (grouped in racks) are interconnected using 
1 GE links. This is due to the fact that 10 GE transceivers: (a) 
are too expensive and (b) probably offer more capacity than 
needed for connecting computing servers. In current data 
centers, rack connectivity is achieved with inexpensive Top-of-
Rack (ToR) switches. A typical ToR switch shares two 10 GE 
uplinks with 48 GE links that interconnect computing servers 
within a rack. The difference between the downlink and the 
uplink capacities of a switch defines its oversubscription ratio, 
which in the aforementioned case is equal to 48/20 = 2.4:1. 
Therefore, under full load, only 416 Mb/s will remain available 
to each of the individual servers out of their 1 GE links. 

At the higher layers of hierarchy, the racks are arranged in 
modules (see Fig. 1) with a pair of aggregation switches 
servicing the module connectivity. Typical oversubscription 
ratios for these aggregation switches are around 1.5:1, which 
further reduces the available bandwidth for the individual 
computing servers to 277 Mb/s. 

The bandwidth between the core and aggregation networks 
is distributed using a multi-path routing technology, such as the 
Equal Cost Multi-Path (ECMP) routing [14]. The ECMP 
technique performs a per-flow load balancing, which 
differentiates the flows by computing a hash function on the 
incoming packet headers. For a three-tiered architecture, the 
maximum number of allowable ECMP paths bounds the total 
number of core switches to eight. Such a bound also limits the 
deliverable bandwidth to the aggregation switches. This 
limitation will be waved with the (commercial) availability of 
100 GE links, standardized in June 2010 [15]. 

Designing data center topologies is an extremely important 
research topic. Fat-tree successors are constantly proposed for 
large-scale data centers [16, 17]. However, the fact that not 
even a single data center has been built (to this date) based on 
such proposals, we constrict the scope of this paper to the 
three-tiered architecture. Nevertheless, we must note that all of 
the findings of this research will remain valid for any or all 
types of data center topologies. 

B. Energy Models 
Computing servers account for a major portion of data 

center energy consumption. The power consumption of a 
computing server is proportional to the CPU utilization. An 
idle server consumes around two-thirds of its peak-load 
consumption to keep memory, disks, and I/O resources running 
[18]. The remaining one-third changes almost linearly with the 
increase in the level of CPU load. 

There are two main approaches for reducing energy 
consumption in computing servers: (a) DVFS [27] and (b) 
DPM [28]. The DVFS scheme adjusts the CPU power 
(consequently the performance level) according to the offered 
load. The aforementioned is based on the fact that power in a 
chip decreases proportionally to V2·f, where V is a voltage, and 
f is  the  operating  frequency.  The  scope  of  the  DVFS  
optimization is limited to CPUs. Therefore, computing server 
components, such as buses, memory, and disks remain 
functioning at the original operating frequency. On the 
contrary, the DPM scheme can power down computing servers 
(that includes all components), which makes such a technique 
very energy efficient. However, if there occurs a need to power 
up (powered down) the server, a considerable amount of 
energy must be consumed compared to the DVFS scheme. 

Switches form the basis of the interconnection fabric that 
delivers job requests to the computing servers for execution. 
Energy consumption of a switch depends on the: (a) type of 
switch, (b) number of ports, (c) port transmission rates, and (d) 
employed cabling solutions. The energy consumed by a switch 
can be generalized by the following [29]: 

+



where  is the power consumed by the switch base 
hardware,  is the power consumed by an active 
linecard, and  corresponds to the power consumed by an 
active port (transmitter) running at the rate . In Eq. (1), only 
the last component, , scales with a switch’s transmission rate. 
This fact limits the benefits of any rate adaptive scheme as the 
combined consumption of switch transceivers accounts for just 
3-15% of switch’s total energy consumption [29]. Both  
and  do not scale with the transmission rate and can 
only be avoided when the switch hardware is powered down 
(given that there is no traffic to be handled by the switch). 

Obviously, not all of the switches can dynamically be put to 
sleep. Each core switch consumes a considerable amount of 
energy to service large switching capacity. Because of their 
location within the communication fabric and proper ECMP 
forwarding functionality, it is advisable to keep the core 
network switches running continuously at their maximum 
transmission rates. On the contrary, the aggregation switches 
service modules, which can be powered down when the 
module racks are inactive. The fact that on average most of the 
data centers are utilized around 30% of their compute capacity 
[4], it makes perfect sense to power down unused aggregation 
servers. However, such an operation must be performed 
carefully by considering possible fluctuations in job arrival 
rates. Typically, it is enough to keep a few computing servers 
running idle on top of the necessary computing servers as a 
buffer to account for possible data center load fluctuation [18]. 

C. Data Center Network Congestion 
Utilizing a communication fabric in data centers entails the 

concept of running multiple types of traffic (LAN, SAN, or 
IPC) on a single Ethernet-based medium [30]. On one side, the 
Ethernet technology is cheap, easy to deploy, and relatively 
simple to manage, on the other side, the Ethernet hardware is 
less powerful and provisions for small buffering capacity. A 
typical buffer size in an Ethernet network is in the order of 
100s of KB. However, a typical buffer size of an Internet router 
is in the order of 100s of MB [19]. Small buffers and the mix 
of high-bandwidth traffic are the main reasons for network 
congestion. 

Any of the data center switches may become congested 
either in the uplink direction or the downlink direction or both. 
In the downlink direction, the congestion occurs when 
individual ingress link capacities overcome individual egress 
link capacities. In the uplink direction, the mismatch in 
bandwidth is primarily due to the bandwidth oversubscription 
ratio, which occurs when the combined capacity of server ports 
overcomes a switch’s aggregate uplink capacity. 

Congestion (or hotspots) may severely affect the ability of a 
data center network to transport data. Currently, the Data 
Center Bridging Task Group (IEEE 802.1) [31] is specifying 
layer-2 solutions for congestion control, termed IEEE 
802.1Qau specifications. The IEEE 802.1Qau specifications 
introduce a feedback loop between data center switches for 
signaling congestion. Such a feedback allows overloaded 
switches to backpressure heavy senders with the congestion 
notification signal. Such a technique may avoid congestion-
related losses and keep the data center network utilization high. 
However, it does not address the root of the problem as it is 

much more efficient to assign data-intensive jobs to different 
computing servers in the way that jobs avoid sharing common 
communication paths. To benefit from such spatial separation 
in the three-tiered architecture (see Fig. 1), the jobs must be 
distributed among the computing servers in proportion to the 
job communication requirements. Data-intensive jobs, like 
ones generated by video sharing applications, produce a 
constant bit-stream directed to the end-user as well as 
communicate with other jobs running in the data center. 
However, such a methodology contradicts the objectives of 
energy-efficient scheduling, which tries to concentrate all of 
the active workloads on a minimum set of servers and involve 
minimum number of communication resources. This tradeoff 
between energy-efficiency, data center network congestion, 
and performance of individual jobs is resolved using a unified 
scheduling metric presented in the subsequent section. 

III. THE DENS METHODOLOGY 
The DENS methodology minimizes the total energy 

consumption of a data center by selecting the best-fit 
computing resources for job execution based on the load level 
and communication potential of data center components. The 
communicational potential is defined as the amount of end-to-
end bandwidth provided to individual servers or group of 
servers by the data center architecture. Contrary to traditional 
scheduling solutions [7] that model data centers as a 
homogeneous pool of computing servers, the DENS 
methodology develops a hierarchical model consistent with the 
state of the art data center topologies. For a three-tier data 
center, the DENS metric M is defined as a weighted 
combination of server-level , rack-level , and module-level 

 functions: 

where , , and  are weighted coefficients that define the 
impact of the corresponding components (servers, racks, and/or 
modules) on the metric behavior. Higher  values favor the 
selection of overloaded servers in under-utilized racks. Higher 
 values will prioritize computationally loaded racks with low 

network traffic activity. Higher  values favor selection of 
loaded modules. The  parameter is an important design 
variable for job consolidation in data centers. Taking into 
account that  +  +  must equal unity, the values of = 0.7, 

= 0.2, and = 0.1 are selected experimentally (see Section 
IV for details) to provide a good balance in the evaluated three-
tier data center topology. 

The factor related to the choice of computing servers 
combines the server load ) and its communication potential 

) that corresponds to the fair share of the uplink resources 
on the ToR switch. This relationship is given as: 

) = )

where ) is a factor depending on the load of the individual 
servers , )  defines the load at the rack uplink by 
analyzing the congestion level in the switch’s outgoing queue 

,  is a bandwidth over provisioning factor at the rack 



switch, and  is a coefficient defining the proportion between 
) and ) in the metric. Given that both ) and ) 

must be within the range [0, 1] higher  values will decrease 
the importance of the traffic-related component ). Similar 
to the case of computing servers, which was encapsulated in 
Eq. (3), the factors affecting racks and modules can be 
formulated as: 

( ) ( ) ( ) = ( ) )

( ) ( ) = )

where ) is a rack load obtained as a normalized sum of all 
individual server loads in the rack, )  is a module load 
obtained as a normalized sum of all of the rack loads in this 
module,  and  are the number of servers in a rack and the 
number of racks in a module respectively, )  is 
proportional to the traffic load at the module ingress switches, 
and  stands for the bandwidth overprovisioning factor at the 
module switches. It should be noted that the module-level 
factor  includes only a load-related component . This is due 
to the fact that all the modules are connected to the same core 
switches and share the same bandwidth using ECMP multi-
path balancing technology. 

The fact that an idle server consumes energy that is almost 
two-thirds of its peak consumption [18], suggests that an 
energy-efficient scheduler must consolidate data center jobs on 
a minimum possible set of computing servers. On the other 
hand, keeping servers constantly running at peak loads may 
decrease hardware reliability and consequently affect the job 
execution deadlines [20]. To address the aforementioned 
issues,  we  define  the  DENS  load  factor  as  a  sum  of  two  
sigmoid functions: 

( ) =
)

.

The  first  component  in  Eq.  (6)  defines  the  shape  of  the  
main sigmoid, while the second component servers as a 
penalizing function aimed at the convergence towards the 
maximum server load value (see Fig. 2). The parameter  
defines the size and the incline of this falling slope. The server 
load  is within the range [0, 1] . For the tasks having 
deterministic computing load,  the server load can be 
computed as the sum of computing loads of all of the running 
tasks. Alternatively, for the tasks with predefined completion 
deadline, the server load  can be expressed as the minimum 
amount of computational resource required from the server to 
complete all the tasks right-in-time. 

Being assigned into racks, the servers share the ToR switch 
uplink channels for their communication demands. However, 
defining a portion of this bandwidth used by a given server or a 
flow at the gigabit speeds during runtime is a computationally 
expensive task. To circumvent the aforementioned undesirable 
characteristic, both Eqs. (3) and (4) include a component, 
which is dependent on the occupancy level of the outgoing 
queue ) at the switch and scales with the bandwidth over 
provisioning factor . 

 
Figure 2.  Computing server selection by DENS metric. 

Instead of relying on the absolute size of the queue, the 
occupancy level  is scaled with the total size of the queue 

 within the range[0, 1]. The range corresponds to none 
and full buffer occupancy. By relying on buffer occupancy, the 
DENS metric reacts to the growing congestion in racks or 
modules rather than transmission rate variations. To satisfy the 
aforementioned behavior, )  is defined using inverse 
Weibull cumulative distribution function: 

( ) ( ) .

The obtained function, illustrated in Fig. 3, favors empty 
queues and penalizes fully loaded queues. Being scaled with 
the bandwidth over provisioning factor  in Eq. (3) and Eq. (4) 
it favors the symmetry in the combined uplink and downlink 
bandwidth capacities for switches when congestion level is 
low. However, as congestion grows and buffers overflow, the 
bandwidth mismatch becomes irrelevant and immeasurable. 
The Eq. (7) is inspired by the Random Early Detection (RED) 
[22] and Backward Congestion Notification (BCN) [23] 
technologies. 

 
Figure 3.  Queue selection by DENS metric. 
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Fig. 4 presents the combined ) as defined in Eq. (3). 
The obtained bell-shaped function favors selection of servers 
with the load level above average located in racks with the 
minimum or no congestion. 

 
Figure 4.  Server selection by DENS metric according to its load and 

communicational potential. 

IV. PERFORMANCE EVALUATION 
For performance evaluation purposes, the proposed DENS 

methodology was implemented in the GreenCloud simulator 
[21, 32]. The GreenCloud is a cloud computing simulator 
designed to capture data center communication processes at the 
packet level. It implements a set of energy-efficient 
optimization techniques, such as DVFS [27] and DPM [28], 
and offers tools to monitor energy consumption in data center 
servers, switches, and other components. 

A three-tier tree data center topology comprised of 1536 
servers arranged into 32 racks each holding 48 servers, served 
by 4 core and 8 aggregation switches (see Fig. 1), was used in 
all simulation experiments. We used 1 GE links for 
interconnecting servers in the inside racks while 10 GE links 
were used to form a fat-tree topology interconnecting access, 
aggregation, and core switches. The propagation delay on all of 
the links was set to 10 ns. 

The workload generation events are exponentially 
distributed in time to mimic typical process of user arrival. As 
soon as a scheduling decision is taken for a newly arrived 
workload it is sent over the data center network to the selected 
server for execution. The size of the workload is equal to 15 
KB. Being fragmented, it occupies 10 Ethernet packets. During 
execution, the workloads produce a constant bitrate stream of 1 
Mb/s directed out of the data center. Such a stream is designed 
to mimic the behavior of the most common video sharing 
applications. To add uncertainties, during the execution, each 
workload communicates with another randomly chosen 
workload by sending a 75 KB message internally. The message 
of  the  same  size  is  also  sent  out  of  the  data  center  at  the  
moment of task completion as an external communication. 

The average load of the data center is kept at 30% that is 
distributed among the servers using one of the three evaluated 
schedulers: (a) DENS scheduler proposed in Section III of this 

paper, (b) Green scheduler performing the best-effort workload 
consolidation on a minimum set of servers, and (c) a round-
robin scheduler which distributes the workloads equally. 

The servers left by the schedulers idle are powered down 
using DPM technique to reduce power consumption. A similar 
technique is applied to the unused network switches in 
aggregation and access networks. The core network switches 
remain always operational at the full rate due to their crucial 
importance in communications. 

Fig. 5 presents the server load distribution for all three of 
the evaluated schedulers. Fig. 6 reports a combined uplink load 
at the corresponding rack switches. The Green scheduler 
consolidates the workload leaving the most (around 1016 on 
average) servers idle in the evaluated data center. These servers 
are then powered down. However, the load of the loaded 
servers (left part of the chart) is kept close to the maximum and 
no consideration of network congestion levels and 
communication delays is performed. As a consequence, a 
number of workloads scheduled by the Green scheduler 
produces a combined load exceeding ToR switch forwarding 
capacity and causes network congestion. The round-robin 
scheduler follows a completely opposite policy. It distributes 
computing and communicational loads equally among servers 
and switches; thereby the network traffic is balanced and no 
server is overloaded. However, the drawback is that no server 
or network switch is left idle for powering down, making the 
round-robin scheduler as the least energy-efficient. 

The DENS methodology achieves the workload 
consolidation for power efficiency while preventing computing 
servers and network switches from overloading. In fact, the 
average load of an operating server is around 0.9 and the 
average load of the rack switch uplink is around 0.95. Such 
load levels ensure that no additional delays in job 
communications are caused by network congestion. However, 
this advantage comes at a price of a slight increase in the 
number of running servers. On average, DENS scheduler left 
956 servers as opposed to 1016 servers left idle by the Green 
scheduler. 

To explore the uplink load in detail, we measured the traffic 
statistics at the most loaded switch ToR switch (the leftmost in 
Fig. 6). Fig. 7 presents a combined ToR switch uplink load 
evolution, while Fig. 8 presents the uplink queue evolution at 
the same switch for the first 15 seconds of simulation time. 
Under the Green scheduler, the link is constantly overloaded 
and the queue remains almost constantly full, which causes 
multiple congestion losses. All queues were limited to 1000 
Ethernet packets in our simulations. Under the DNS scheduler, 
the buffer occupancy is mostly below the half of its size with 
an average of 213 packets, displayed with a dashed line in Fig. 
8. At certain instances of time the queue even remains empty 
having no packets to send. This fact results in a slightly 
reduced uplink utilization level of 0.95. 

Table I compares the impact of different scheduling 
policies on the level of data center energy consumption. The 
data is collected for an average data center load of 30%. The 
most energy inefficient is a round-robin scheduler. It does not 
allow any of the servers or network switches to be powered 
down for the whole duration of data center operation. 
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Figure 5.  Server workload distribution performed by DENS, Green, and 

round-robin schedulers. 

 
Figure 6.  Combined uplink traffic load at the rack switches. 

The Green scheduler is the most efficient. It releases around 
two-thirds of servers and network switches, which considerably 
reduces the energy consumption levels. With the Green 
scheduler, the data center energy consumption is slashed in half 
compared to when a round-robin scheduler is utilized. The 
DENS methodology when compared to the Green scheduler 
adds around: (a) 4% to the total data center consumption, (b) 
3% in servers’ energy consumption, and (c) 1% in switches’ 
energy consumption. This slight increase in energy 
consumption is justified by the need of additional computing 
and communicational resources, detected by DENS 
methodology, and required for keeping the quality of job 
execution at the desired level. In contrast to the Green 
scheduler, DENS methodology uses network awareness to 
detect congestion hotspots in the data center network and 
adjust its job consolidation methodology accordingly. It 
becomes particularly relevant for data intensive jobs which are 
constrained more by the availability of communication 
resources rather than by the available computing capacities. 

 
Figure 7.  ToR switch uplink load. 

 

 
Figure 8.  ToR switch uplink buffer occupancy. 

TABLE I.  DATA CENTER ENERGY CONSUMPTION 

Parameter 
Power Consumption (kW·h) 

Round Robin 
scheduler 

Green 
Scheduler 

DENS 
scheduler 

Data center 
Servers 
Network switches 

417.5K 
353.7K 
63.8K 

203.3K (48%) 
161.8K (45%) 
41.5K (65%) 

212.1K (50%) 
168.2K (47%) 
43.9K (68%) 

V. CONCLUSIONS 
This paper underlines the role of communication fabric in 

data center energy consumption and presents a methodology, 
termed DENS, that combines energy-efficient scheduling with 
network awareness. The DENS methodology balances the 
energy consumption of a data center, individual job 
performance, and traffic demands. The proposed approach 
optimizes the tradeoff between job consolidation (to minimize 
the amount of computing servers) and distribution of traffic 
patterns (to avoid hotspots in the data center network).DENS 
methodology is particularly relevant in data centers running 
data-intensive jobs which require low computational load, but 
produce heavy data streams directed to the end-users. 
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The simulation results obtained for a three-tier data center 
architecture underline DENS operation details and its ability to 
maintain the required level of QoS for the end-user at the 
expense of the minor increase in energy consumption. Future 
work will focus on the implementation and testing of DENS 
methodology in realistic setups using testbeds. 
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