ELSEVIER

Available qnline at www.sciencedirect.com
=,“ ScienceDirect

Ad Hoc Networks 4 (2006) 687-708

m\d Hoc

etworks

www.elsevier.com/locate/adhoc

Cross-layer congestion control in ad hoc wireless networks

Dzmitry Kliazovich, Fabrizio Granelli *

Department of Information and Communication Technologies, University of Trento, Via Sommarive 14, 1-38050 Trento, Italy

Received 18 February 2005; received in revised form 18 July 2005; accepted 5 August 2005
Available online 31 August 2005

Abstract

The paper presents the problem of performance degradation of transport layer protocols due to congestion of wire-
less local area networks. Following the analysis of available solutions to this problem, a cross-layer congestion avoid-
ance scheme (C°TCP) is presented, able to obtain higher performance by gathering capacity information such as
bandwidth and delay at the link layer. The method requires the introduction of an additional module within the pro-
tocol stack of the mobile node, able to adjust the outgoing data stream based on capacity measurements. Moreover, a
proposal to provide optional field support to existing IEEE 802.11 protocol, in order to support the presented conges-
tion control solution as well as many other similar approaches, is presented. Achieved results underline good agreement
with design considerations and high utilization of the available resources.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Congestion control; TCP-over-wireless; Multi-hop wireless networks

1. Introduction

The TEEE 802.11 standard [1] represents the
leading solution providing communications over
wireless local area networks. A section of the stan-
dard specifies a network architecture, called ad
hoc, which is capable to operate without the
requirement for a fixed infrastructure. For such
reason, in the remainder of the paper, IEEE

* Corresponding author. Tel.: +39 0461882062.
E-mail addresses: klezovic@dit.unitn.it (D. Kliazovich),
granelli@dit.unitn.it (F. Granelli).

802.11 will be considered as the reference MAC/
PHY protocol stack.

The main limitation present in the standard is
the restriction of the ad hoc network to the case
when all the stations are located in range of each
other. However, ongoing research overcame such
limitations, allowing data delivery over an end-
to-end path which can consist of several wireless
hops. For that reason, the paper considers the
general case of data transport over an ad hoc
multi-hop wireless network.

Moreover, for the purpose of the paper, the
problem of network congestion is considered as

1570-8705/$ - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.adhoc.2005.08.001

mailto:klezovic@dit.unitn.it
mailto:granelli@dit.unitn.it

688 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

the main reason for potential performance degra-
dation, while aspects related to the nature of wire-
less links, such as limited bandwidth, increased
latency, channel losses, mobility, etc., which intro-
duce performance degradation are neglected.

Congestion occurs when the amount of data
sent to the network exceeds the available capacity.
Such situation leads to increased buffer space
usage in intermediate nodes over the data path,
leading to data losses in case of shortage of re-
sources. Transmitted data start to be dropped
when available buffer resources, which are physi-
cally limited, are exhausted.

Such situation decreases network reliability in
the sense of service provisioning for data communi-
cations. Transport-level protocols improve reliabil-
ity by implementation of different error recovery
schemes. However, they could lead to excessive
data retransmissions, reducing an important
parameter such as network utilization, while at
the same time increasing latency in data delivery.

This paper targets the core reason for network
congestion—the amount of traffic emitted to the
network. For such reason, the proposed solution
for congestion avoidance is to control (and possi-
bly optimize) the amount of traffic being sent onto
the network, considering limited availability of
network resources.

The rest of the paper is organized as follows:
Section 2 presents an insight related to the nature
of congestion, while Section 3 outlines the state-of-
the-art in the field of TCP adaptation to wireless
links. The proposed approach is detailed in Section
4, and experimental evaluation of its performance
is presented in Section 5. Finally, Section 6 draws
some conclusions and outlines of future work on
the topic.

2. Nature of congestion

TCP/IP reference model defines a set of proto-
cols that enable communication over the Internet.
No layer has complete and real-time information
about available network resources over the
multi-hop path where the communication is per-
formed. For that reason, the sources can avoid
network congestion based on network feedback,

which is obtained as a reaction to a certain amount
of data being sent on the network.

The dominant transport protocol in the Inter-
net is the Transmission Control Protocol (TCP)
[2], used by a variety of applications [3,4]. TCP is
a reliable connection-oriented byte-stream proto-
col which performs congestion control dynami-
cally during the data communication process.

TCP congestion control is performed on an end-
to-end basis. The receiver provides an acknowl-
edgement (ACK) feedback back to the sender.
Relying on the information provided by ACKs,
the sender can detect which packets are lost during
transmission over the communication path.

The congestion control algorithm employed by
TCP is window-based [5]. Congestion window
(cwnd) controls the amount of data the sender is
allowed to output to the network without
acknowledgement. The congestion window evolu-
tion is the key mechanism for TCP congestion con-
trol. TCP uses additive increase and multiplicative
decrease strategy for its window adjustment
according to network conditions. The main phases
of TCP window evolution are presented in Fig. 1.

The connection is initiated with window size
equal to one packet (1 MSS—Maximum Segment
Size). Then, cwnd is increased exponentially for
every non-duplicate ACK reception until the Slow
Start Threshold (ssthresh) is reached. Prior the
connection establishment, ssthresh is set to an ini-
tial value, which depends on the implementation of
the protocol stack, and then adjusted on the basis
of the estimate of the network capacity. This tech-
nique is called slow start phase.

When the ssthreshold is reached, TCP enters
congestion avoidance phase. The window is in-
creased linearly by one packet for each received
ACK. The window growth in this phase is limited
to a maximum window size, negotiated between
sender and receiver during connection estab-
lishment and then updated on the fly during the
communication process (the receiver’s advertised
window).

There are two ways for TCP sender to detect
data loss occurred on the communication link:
reception of duplicate ACKs (dupacks) and timeout
occurrence. In the first case, a dupack is generated
by the receiver upon reception of an out-of-order

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

Congestion

Slow Start Avoidance

ssthresh

Congestion Window

689

timeout
occurance

ssthresh

7

8 9 10 11 12 13 14 15 16

Number of ACKs received

Fig. 1. TCP congestion window (cwnd) evolution.

packet, detected through the analysis of sequence
numbers of incoming packets. Duplicate ACK
reception triggers congestion window reduction
to the half of its current size. In the second case,
upon the timeout occurrence, TCP reduces the size
of cwnd to its initial value (equal to 1) entering
slow start phase.

In summary, TCP increases congestion window
until the amount of traffic present in the network
exceeds the available bandwidth capacity. Upon
congestion loss, it reduces the window to the half
or to its minimum initial value.

Moreover, TCP was originally designed for
wired networks where packet losses occur
mostly due to congestion; for that reason, conges-
tion avoidance/recovery is the only reaction of
TCP to losses [6]. In fact, while the Bit Error
Rate (BER) varies from 107 to 10~® for wired
networks, it varies from 107> to 107! for wireless
ones—several orders of magnitude higher [7]. As
a consequence, in wireless networks, TCP reaction
to frequent packet losses severely limits the con-
gestion window and thus underestimates the
capacity of the networks, leading to non-optimal
performance.

The performance of TCP directly depends on
the window size, which optimal value should be
proportional to bandwidth * delay product of the
entire path of the data flow [8]. The excess of this
threshold does not bring any additional perfor-
mance enhancement, but only leads to increased
buffer requirements in intermediate nodes along
the data connection.

The rest of the paper, being focused on a wire-
less multi-hop IEEE 802.11-based network, as-
sumes that the reader is familiar with general
aspects of IEEE 802.11 standard [1] as well as
multi-hop routing for wireless LANs [9], which is
not covered by the standard. The reader should
note that most achieved results and considerations
remain valid also in more generic scenarios.

At this point, it is necessary to underline the
problems which arise in TCP communications
over IEEE 802.11 networks.

The authors of [10] produced an evaluation of
TCP performance in wireless multi-hop network,
underlining two major problems: instability and
unfairness. The observed instability in the perfor-
mance is present even in the simplest scenario with
only one data flow over a multi-hop connection.
The main reason for that is touching TCP timeouts,
which forces TCP to follow the slow start period
greatly degrading the performance through conges-
tion window reduction. The second phenomenon
observed in [10] is unfairness, which happens be-
tween two TCP data flows that occupy the same
number of hops on the same path: the flow started
later in time will gain full bandwidth advantages,
degrading the performance of previous flow down
to zero. The unfairness phenomenon mentioned
above is mainly caused by improper tuning of
TCP and link layer retransmission timeouts, multi-
ple collisions present on the link layer as well as
well-known IEEE 802.11 MAC unfairness (i.e.
the last station is always favored in link access
due to the employed exponential backoff scheme).

690 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

A new metric, called expected throughput, is
introduced in [11] and used as a bound for com-
parison of the achieved performance for existing
TCP implementations in wireless multi-hop sce-
narios. The simulations show that the performance
of TCP, being far from the desired level, is unac-
ceptable in several applications. Similar results
are also presented in [12].

The problem of network congestion exists
almost from the early beginning of the Internet
[13]. Nowadays, many researchers underline that
the problem of congestion is even more critical
now rather than in 1980s. A relevant theoretical
work on the topic presented in literature is [14],
where Sally Floyd and Kevin Fall highly motivate
the usage of end-to-end congestion control algo-
rithms for the design of future protocols, in order
to avoid network collapse due to congestion. Sim-
ilar results are obtained by the authors of [39]
using a game-theoretic approach.

3. Available solutions

During the past years, a relatively strong effort
of the research community was devoted to TCP
adaptation to the wireless multi-hop network sce-
nario, with the main focus on performance optimi-
zation, aimed at enabling uninterrupted network
service provisioning.

The majority of the available solutions which
modify congestion control algorithm of TCP can
be logically classified into the three following cate-
gories: (1) modifications of TCP based only on the
information available at the sender node; (2) solu-
tions which enhance the previous category by
allowing network feedback; and (3) approaches
which obtain bandwidth * delay information by
introducing measurement techniques at the trans-
port layer.

3.1. TCP modifications

One of the first approaches to perform precise
RTT (Round Trip Time) estimation is TCP Vegas
[15]. First, TCP Vegas reads and stores inside TCP
header the system clock every time a segment is
transmitted. Receiver echoes it back without

performing any modification. Then, upon ACK
arrival, the sender uses the stored timestamp for
RTT calculation. The congestion avoidance algo-
rithm is based on the analysis of the actual
throughput achieved by the flow through its com-
parison with expected throughput. The expected
throughput is calculated using measured RTT
value and current size of the congestion window.
In case the actual throughput is much less than the
expected value, TCP Vegas decreases the size of
the congestion window assuming that it is sending
more data than the available network bandwidth.

Another approach presented by authors of [16]
introduces congestion window adjustment based
on an end-to-end bandwidth estimation technique.
The key idea is in continuous measurements of the
rate of returning ACKs at the TCP sender side.
After congestion occurrence, the source running
TCP Westwood attempts to set a slow start thresh-
old and a congestion window on the basis of the
effective bandwidth estimation.

A set of protocols designed for congestion
avoidance form the adaptive transport layer
(ATL), presented in [17]. ATL consists of two
adaptive transport layer protocols: ATL-TCP for
reliable communications and ATL-UDP which is
used for multimedia data delivery. The main idea
of this approach is to allow more freedom in
congestion window evolution. The dynamic
adjustment algorithm assumes to obtain the infor-
mation on bandwidth and RTT from the link
layer. However, it is not mentioned in the paper
the way such information could be obtained by
the link layer.

In summary, the solutions within this cate-
gory attempt to conquer the roots of the prob-
lem. The main problem associated with poor
performance of transport protocols over wireless
networks lies in the fact that they are designed
for wired networks—without taking into account
limitations of the wireless scenario. In order to
solve this problem, the presented solutions redefine
transport protocols, replacing them with versions
which are designed considering the different char-
acteristics of the wired and wireless scenarios.

Obviously, the solutions within this category
provide reasonable performance improvement if
compared with traditional wired implementations

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 691

of transport layer protocols. However, the main
disadvantage—which prevents wide deployment
of the proposed approaches—Ilies exactly in the
requirement for modification of a standardized
and widely deployed transport protocol such as
TCP. Thus, a huge effort from joined cooperation
of industry and standardization committees is re-
quired to bring the proposed modification to the
end-user.

3.2. Explicit feedback solutions

Data communication over wireless networks is
far from being identified by a simple two-hop sce-
nario. The path of data delivery in most cases con-
sists of several hops with different capacity
characteristics. These characteristics include not
only communicational parameters such as avail-
able bandwidth and delay, but also parameters
associated with nodes on the data path—their
memory and computational resources.

Solutions of this category allow network to be
aware of pending data transmission between any
pair of nodes. The main idea is to allow intermedi-
ate nodes on the data path to dynamically inform
the sender about the amount of resources available
through the entire path. Relying on such feedback,
the sender can adjust the amount of data sent on
the network in order to avoid congestion
occurrence.

Random Early Detection (RED) [18] is a
scheme which is proposed to deal with network
congestion through explicit signaling to the source
about growing probability of congestion occur-
rence. RED is designed to be implemented in inter-
mediate routers, where congestion notification is
based on queue monitoring. RED defines two buf-
fer occupancy thresholds: low threshold and high
threshold. When the average size of the queue
length exceeds the low threshold, the packets start
to be dropped with linear probability, propor-
tional to the current average queue length. In case
the average length exceeds the high threshold, all
incoming packets are dropped.

Congestion is detected by RED through the
analysis of the actual queue length, comparing it
to the predefined low and high threshold values.
While operating with a queue size between these

two thresholds, RED informs the sender node
about growing probability of congestion occur-
rence by marking the incoming packets using a
specially defined bit in the packet header. Being
notified of the network congestion, TCP sender
can perform congestion avoidance through con-
gestion window reduction.

Packet drops performed by RED are designed
to the purpose of compliance in operation
with TCP sources which do not support RED
framework.

The specification of the way for Explicit Con-
gestion Notification (ECN) is presented in [19].
The IP layer packets are considered for ECN noti-
fication delivery through the ECN bit set. TCP
header is modified as well, in order to support fol-
lowing indication of ECN-enabled support of TCP
implementation as well as for ECN communica-
tion between TCP sender and receiver.

Another approach which targets the reduction
of the mismatch between TCP window and the
available bandwidth—delay product, called Explicit
Window Adaptation (EWA), is presented in [20].
Similar to RED congestion detection, it is based
on the analysis of available buffer size in edge
routers. EWA attempts to adjust the size of the
congestion window explicitly on the data path
through modification of receiver’s advertised win-
dow field of the packet. This scheme generalizes
window advertising technique allowing the specifi-
cation of available buffer space not only by the
receiver but also by intermediate routers.

Summarizing, solutions presented in this cate-
gory implement different explicit feedback tech-
niques. All of them rely on the available buffer
space at intermediate nodes, which forces them
to depend more on the size of allocated memory
rather than on the available capacity of the com-
munication links. Such a tradeoff leads to an in-
creased response time to the congestion.

The main reason for congestion occurrence is
the production of more traffic than the available
resources for its delivery over the network. In case
of a connection covering multiple hops of the net-
work, data transmission is performed on an hop-
by-hop basis: data is stored in the buffer, waiting,
while node obtains access to the physical medium.
In case the amount of incoming data overcomes

692 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

the node’s forwarding capacity, input buffer size
would grow with a rate which is approximately
equal to the difference between incoming and out-
going data rates. When the buffer is full, the node
starts to drop incoming packets and congestion is
detected.

For that reason, solutions based on the analysis
of buffer free space react to congestion later if
compared with solutions which analyze the differ-
ence between capacities of the incoming and out-
going communication links.

3.3. Transport layer capacity measurement

The ideal case for the source node is to have
capacity information of the entire data communi-
cation path for the entire duration of the connec-
tion. In order to approach to this ideal case,
many proposals are targeting an enhancement of
transport layer protocols through capacity prob-
ing techniques.

The entire capacity of communication path is
represented by two parameters: bandwidth and
delay.

Delay associated with an end-to-end connection
can be easily obtained by TCP through the calcu-
lation of the time difference between packet trans-
mission and reception of the acknowledgement
generated by the receiver for such packet. The ob-
tained value corresponds to the cumulative delay
experienced in forward and backward directions
of the connection path. However, it is shown that
acknowledgement-based RTT estimation could
perform poor under specific circumstances [21].
More accurate RTT estimation is performed when
sender includes timestamps into outgoing packets,
which are echoed back without any modification
by the receiver. The recommendation for high per-
formance extension and finer RTT estimation for
TCP protocol is presented in [21].

The second parameter is bandwidth. Different
bandwidth estimation solutions available in litera-
ture can be logically divided into passive measure-
ments and active probing groups, according to the
algorithm they employ [22]. Passive solutions build
their measurements based on the trace history of
an existing data transmission. Such solutions are
limited to the network paths that have recently

been used for communication. On the other hand,
active probing provides faster and more accurate
estimations, while having the potentiality for
exploration of the whole network.

The packet pair mechanism is a reliable tech-
nique for bandwidth measurement. The key idea
of the approach is based on the measurement of in-
ter-arrival time between two back-to-head packets
transmitted through the entire connection path. A
simple calculation based on inter-arrival delay and
packet size gives the bandwidth of the link. A de-
tailed description of packet pair measurement
technique is presented in [23,24].

The main drawback of packet pair technique is
the dramatic reduction of the estimation accuracy
in presence of cross-traffic. CapProbe [25]1s a tech-
nique which improves packet pair measurements
by filtering only those pairs of the packets which
have minimal end-to-end delays. This method ex-
cludes those packet pairs which are influenced by
cross-traffic in intermediate queues.

Summarizing, capacity measurement techniques
presented within this section have obvious draw-
backs which prevent their successful deployment:

e They simply do not work under certain circum-
stances, such as under presence of cross-traffic
which is both intensive and non-reactive [25].

¢ Probing network bandwidth requires an inser-
tion of additional traffic, which reduces the
already limited network resources.

e The bandwidth information becomes available
to sender after the time required for a roundtrip
propagation of the probe sequence over the net-
work path.

e Additional computation resources are required
from the sender for statistical processing of
the measured data.

4. Cross-layer congestion control over multi-hop
wireless networks

This section presents a novel scheme (Cross-
layer Congestion Control for TCP: C*TCP) for
congestion control over wireless local area net-
works where data delivery is performed over mul-
tiple wireless hops. To the purpose of explanation

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 693

N1 N2
<> >
2 £ g Z
53 5% & 39

Wireless Medium

Fig. 2. String topology for a multi-hop wireless network.

of the proposed congestion control ideas, we con-
sider a string network topology as the simplest
topology which approximates the multi-hop
scenario [26]. A four-node example of the string
topology is presented in Fig. 2.

In our string topology, only neighboring nodes
can communicate with each other due to the limi-
tations in transmission range. It is assumed that
every node has an appropriate output FIFO buf-
fer, where the link layer packets are queued while
the wireless medium is busy due to transmissions
of other nodes. Input queuing is omitted for sim-
plicity of presentation without any influence on
the results.

The second assumption consists in the availabil-
ity of a routing path to every node of the multi-
hop network: details related to route discovery
are out of the scope of current paper.

4.1. Bandwidth measurement

Basic medium access mechanism specified by
IEEE 802.11 standard is the Carrier Sense Multi-
ple Access with Collision Avoidance (CSMA/
CA) with binary exponential backoff. The node
is not allowed to transmit until the medium be-
comes free (i.e. no pending transmissions of other
nodes). As a result, the whole bandwidth is divided
among nodes which share the same (wireless)
medium.

An optional part of the standard specifies RTS/
CTS (Request-To-Send/Clear-To-Send) exchange,
which takes place prior transmission at the link
layer of a data frame and its acknowledgement.

This scheme is designed as a solution to the hidden
terminal problem. Consequently, it considerably
reduces data losses caused by collisions.

From the considerations described above, one
can conclude that finally the bandwidth is shared
among the nodes which are located in the range
of the sender as well as the receiver nodes.

The available bandwidth B for transmission of
a certain amount of data can be obtained knowing
the size of data D and time T taken for transmis-
sion of such data over a specific link:

B= T (1)

The detailed framework for single data packet
transmission is presented in Fig. 3. Having data
to send at time T;,, the source node initiates the
medium access procedure: it senses that medium
is already occupied by another transmission and
falls into exponential backoff with the initial size
of the backoff window; during the next time of
sensing the medium appears to be free, which
means that the source node is allowed to initiate
the transmission with RTS frame for medium res-
ervation. Then, after Short Inter-Frame Space
(SIFS) the destination node replies with CTS
updating the Network Allocation Vector (NAV)
of the nodes which are located within the range
of the receiver.

At time T, the sender initiates data frame
transmission onto the physical medium. Upon
the successful reception of the data frame, the
destination node replies with positive acknow-
ledgement.

694 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687708

DIFS SIFS SIFS SIFS DIFS
- > - - < >
Source ! andpm Backoff

Node K |

|
| |
| |

Destination | CTsS ! m

Node T t
| |
|
|
Other |
Node 1

|
T,
hi Queuing Delay + Medium Access

T,

out

=!= T >

tr

Fig. 3. IEEE 802.11 basic medium access mechanism and data delivery procedure.

Taking into account the described data delivery
framework, the time required for the transmission
of a single data packet using CSMA/CA can be
obtained as follows:

T:Tin_Tout+Ttr7 (2)

where the difference T3, — T, includes data queu-
ing delay corresponding to the time the node was
waiting for all other nodes to finalize their pending
transmissions as well as channel to channel access
delay using random backoff and optional RTS/
CTS exchange. A similar way of analysis was first
presented by Giuseppe Bianchi in his theoretical
model for the performance analysis of IEEE
802.11 DCF [27].

In order to calculate the time T} required for
data frame transmission and its corresponding
acknowledgement, it is necessary to take into ac-
count the framework employed by the physical
layer.

Data encapsulation performed at both physical
and link layers is presented in Fig. 4. Physical
Layer Convergence Protocol (PLCP) preamble is
transmitted prior any communication between
nodes, for the synchronization of their physical
circuits. PLCP Header contains signaling informa-
tion about the subsequent MAC layer frame, such

Data
(0 - 2312 byte)

Fig. 4. Physical and link layer encapsulation.

as length and bit rate. PLCP preamble and header
are always transmitted at the basic rate, regardless
of the maximum bitrate available on the medium.

The MAC header, being transmitted at the data
rate specified in the PLCP header, contains infor-
mation about the delivered data on the link layer.
FCS field finalizes frame containing CRC informa-
tion related to both MAC header and frame body.

According to physical and link layer specifica-
tions, the time required for data packet delivery
(including the data frame and the corresponding
ACK) is calculated as follows:

T = Tgata + SIFS + Tackx + DIFS, (3)
PLCP.Preamble + PLCP.Header
Tdata = N
Basic.Rate
MAC .Header + FCS Data)
Data.Rate Data.Rate’
PLCP.Preamble + PLCP.Header
Tack = -
Basic.Rate
ACK .Header + FCS (5)
Data.Rate
where DIFS is the Distributed Coordination

Function Inter-Frame Space.

The time required for a single data frame trans-
mission 7q,¢, includes the term which corresponds
to physical preamble and header (always fixed size
and transmitted at the basic rate). For example,
for basic rate of 1 Mbps, the time required for
the transmission of physical preamble and header
is equal to 192 ps. This means that the value of
the first term can be calculated once and then
reused for subsequent calculations.

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 695

The second term corresponds to the time
required for MAC header and CRC information,
which could be theoretically transmitted at any
rate supported by the standard. However, since
most of the rates specified by the standard are
obtained from the maximum one through simple
operations, it is possible to pre-calculate them,
for example, by building a short table with values
calculated for the entire set of possible data rates
for a given physical layer extension of the standard
(a, b or g).

The algorithm for bandwidth measurement is
the following:

1. Store the timestamp 73, for every data arrived
to the link layer for further transmission. The
data can arrive for forwarding from other nodes
or it can be generated locally by upper layers of
the protocol stack.

2. Prior actual data frame transmission, at time
Tou calculate the time taken for packet delivery
including queuing and packet transmission time
T, using Eq. (3).

3. Calculate the bandwidth experienced by the
packet using Eq. (1).

The bandwidth calculated by the presented
algorithm includes following components: queuing
delay, the time required to gain medium access and
the delay associated with physical and link layer
header transmission. It means that entire overhead
which occurs before any actual data transmission
over the physical medium is considered to be a fac-
tor which reduces the available bandwidth on the
link.

The overhead added at physical and link layers
is directly related to the utilization level. For exam-
ple, utilization of wired local area networks is rela-
tively high (97%) [28] while the utilization of
wireless IEEE 802.11 networks is on low level [29].

4.2. Delay estimation

Transport layer protocols provide end-to-end
data delivery without having any knowledge on
the network structure, like number of hops,
parameters of communication link and so on,
assuming to have a single data pipe between end

nodes. In order to reach the maximum perfor-
mance, transport protocols ideally should fill the
data pipe with its bandwidth—delay product.

Considering the four-node example presented in
Fig. 2, let us assume that node N1 wishes to com-
municate with node N4. The data generated by the
transport layer of node N1 is placed in the output
queue on the link layer. Then, after node N1 gains
medium access, the data packet can be transmitted
to node N2. Node N2, upon the reception of the
data packet which should be forwarded to the next
node of the string topology, performs its medium
access procedure—during which the packet can
be required to wait in the output queue of node
N2. Similar procedures are performed by the node
N3 as well, before the data reach the destination
node N4.

Finally, in our multi-hop scenario, queuing de-
lay is present on all the nodes except the destination
node. Such queuing delay does not correspond to
the length of data pipe between end nodes N1
and N4. On the contrary, the length of this pipe
consists only of the time required for actual data
transmission at the physical layer through all the
links along the communication path.

Most solutions for optimization of the TCP
performance through congestion window adjust-
ment (presented in Section 3) rely on RTT as a
delay measurement parameter. Such a way of
delay measurements approximates forward and
backward links within a single data pipe.

However, TCP assigns different communica-
tional purposes to links in forward and backward
directions. Thus, forward direction is used for
transfer of application payload while the back-
ward direction serves for the functionality of the
TCP acknowledgement scheme.

In the proposed delay estimation technique we
differentiate between forward and backward de-
lays. Forward delay contains the length of the data
pipe between sender and receiver nodes while
backward delay measures the time required for
the delivery of TCP ACK packets.

1. Forward delay. According to the consider-
ations described above, the single-hop forward
delay experienced by a data burst includes channel
access delay, time required for data delivery on the
physical layer including related physical and link

696 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

layer overhead, but excluding link layer queuing
delay.

Forward delay is calculated using (2) setting T,
to be equal to the time the packet leaves the queue
preparing for actual transmission on the link layer.
Such estimation avoids the insertion of link layer
queuing delay into the T;, — T, component.

Most of the transport layer measurement tech-
niques include also queuing delay along the entire
path experienced by the data packet at the link and
IP layers: the end-to-end data pipe is considered
artificially longer than it actually is. In other
words, a simple insertion of an additional traffic
increases the bandwidth—-delay product through
an increased measured delay. However, the band-
width—delay product should be decreased in this
situation through reduction of the available band-
width component while leaving forward delay
unaffected.

Considerations described above bring advan-
tages for link layer per-hop delay estimation
if compared with end-to-end transport layer
measurements.

2. Backward delay. The reliability of TCP is
achieved through implementation of a positive
acknowledgement scheme. The receiver acknowl-
edges successful data delivery with TCP ACK
packets going back towards the sender.

On contrary with forward delay measurement
technique described above, TCP ACK delay does
include both transmission and queuing delays,
i.e. it is equal to the difference between the time
the TCP ACK packet was generated by the recei-
ver node and its reception by the TCP sender.
Backward path delay on each single link is calcu-
lated using (2).

The proposed method for estimation of the
delay in forward and backward directions allows
the TCP sender to adjust the amount of outstand-
ing data to the bandwidth—delay product in the
forward path, while considering the backward
path as a simple delay line for TCP acknowledge-
ment reception.

4.3. “Options” support for IEEE 802.11

The previous two sections describe techniques
for available bandwidth and delivery delay mea-

surements at the link layer. Such measurements
are performed by wireless stations and correspond
to the neighboring links which in fact constitute a
single shared medium the nodes belong to.

Wireless multi-hop networks perform data
communication over several short-range links.
An evaluation of the capacity experienced by a cer-
tain data packet can be obtained by the analysis of
capacity of the individual links: the end-to-end
bandwidth Bgpg.to-eng OVer an n-hop path is equal
to the bandwidth of the bottleneck on the path,
while the end-to-end delay Depg.to-ena 1S Obtained
by the superposition of delays D; introduced by
individual links

Bcnd—to—cnd = l’IliIl(B],Bz, cee ,Bn), (6)
Dend-to-end = ZDz (7)
i=1

The obtained values for end-to-end bandwidth
and delay should be forwarded to the source pro-
ducing traffic to let it implement congestion control
based on performed measurements. In order to
support such functionality, we propose to extend
IEEE 802.11 MAC protocol by allowing the speci-
fication of optional fields inside the MAC header.

Optimization of IEEE 802.11 link layer is a hot
topic. Huge amount of optimization solutions are
proposed by the research community which intro-
duce an enhanced signaling for optimization of the
link layer performance. In most cases, enhanced
signaling requires the modification of the stan-
dardized MAC protocol or the specification of
an additional protocol. Indeed, research work
continues to go on after the specification of a
particular protocol has taken place. Many novel
approaches and optimization solutions appear
which cannot be easily applied to the existing spec-
ification. The idea to include an universal way for
inserting additional information has touched most
important protocol specifications nowadays. Thus,
IPv4 [30], IPv6 [31], TCP [2] specifications contain
the support of optional fields.

The proposed modifications are aimed at en-
abling optional support within the TEEE 802.11
MAC header (Fig. 5).

“Options” is a variable length field which
extends standard MAC header. It consists of

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 697

| MAC Header

.

Octets: 2 2 6 6 6

Ll
2 6 Variable 0 -2312 4
Frame
Body
Header . . .
Length Option 1 | Option 2 Option N

Option Option Option
Type Length Data

Fig. 5. “Options”-enabled IEEE 802.11 data frame.

“Header Length” field which specifies the entire
length of the MAC header, including the list of
options. The length of the header is required to
perform separation of the data encapsulated into
the frame from the MAC header.

Each option consists of option type, length in
octets and data. Length is required to handle the
case when a node does not support the corre-
sponding option. The knowledge of the option’s
length makes skipping the current option easier,
jumping to the next one for processing.

Current wireless devices do not support op-
tional fields within the MAC layer header. In order
to provide backward support within the existing
IEEE 802.11 standard specification a new type of
packet is introduced, since an options-enabled
data frame should be of a different type with re-
spect to a normal data frame. For that purpose,
one of the reserved types in the Frame Control
field of the MAC header of data frames can be
used. For example, the type equal to ‘10’ can be
used for data transmission, while the subtype
‘1000’ indicates options-enabled data frame.

Backward compatibility with standard IEEE
802.11 devices also requires the specification of
communication of options-enabled nodes with
those which implement standard MAC. In case
options-enabled node wishes to communicate with
another node, it should first try to establish com-
munication using the new options-enabled data
frame. If the destination node does not support
the new type of data frame, it will just simply drop
the received frame. The sender node will detect the
frame loss through the lack of positive acknowl-

edgement from the receiver after timeout occur-
rence, which is equal to SIFS+ ACK
transmission time. The second time the sender
node should use standard data frames to commu-
nicate with such node.

It could happen that the first communication
using options-enabled frames could be unsuccess-
ful because of information corruption during data
delivery in the channel. For that reason, the sender
node should periodically attempt to communicate
using new types of frames.

The presented backward compatibility tech-
nique is easy to implement, however it is not opti-
mal in the sense that the sender node needs to
probe the destination. These probes could be
unsuccessful in case the destination does not sup-
port MAC-layer options, producing additional
overhead which reduces the bandwidth utilization
and increases the packet delivery delay. In order
to avoid such additional overhead, the informa-
tion about options-enabled capability could be
encapsulated into route discovery protocol allow-
ing nodes to have knowledge about which type
of frame to use in advance.

Options-enabled data frames should not be
used in case the node does not transmit any
options inside the header.

4.4. The proposed approach: C°TCP

Fig. 6 presents an example of TCP communica-
tion over a 3-hop wireless network. Sender node
NI initiates the transmission by sending a TCP
data packet to node N4 over the string topology.

698 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

TCP
Sender TCP Data | ———————P»

TCP

+— TCP ACK]| | Receiver

Fig. 6. C’TCP usage scenario: TCP connection over 3-hop
wireless network.

Upon reception of the TCP data packet, the link
layer of node N1 performs bandwidth and delay
measurements for link L1. Then, it includes the
measured information into the corresponding
optional fields inside the MAC header. Node N2,
after the reception of the data frame from node
NI, performs the same measurements for link
L2. Then, it takes the minimal value for the mea-
sured bandwidth of links L1 and L2 and updates
the bandwidth option in the MAC header. Delay
experienced by the data on the link L2 is summed
with the delay on the link L1.

When the TCP data packet reaches the destina-
tion node N4, its MAC header contains bandwidth
and delay experienced by the packet on the path
through links L1-L2-L3. TCP receiver in N4 re-
plies with TCP ACK back to the sender indicating
successful data packet reception. This TCP ACK
is also encapsulated by link and physical layer
headers, including the bandwidth—delay informa-
tion obtained by N4 during TCP data packet
reception. Such information is simply echoed back
using the appropriate optional fields.

Upon the reception of the TCP ACK packet,
sender node N1 will have the bandwidth and the
delay for both transmitted TCP data and TCP
ACK packets. Based on the obtained information,
the sender can adjust the outgoing traffic using cal-
culated bandwidth—delay product. The bandwidth
is taken only from TCP data packet propagating
in forward direction, while the delay is obtained
as a sum of propagation delays of TCP data and
TCP ACK packets.

The goal of the presented approach is to avoid
any changes at the transport layer of the protocol
stack. For that reason, an additional module,
called congestion control module (CCM), is
inserted below the transport layer. This module

cooperates with the link layer providing conges-
tion control information for the transport layer,
using a cross-layer collaboration technique. The
implementation of cross-layer signaling is out of
the scope of current paper, however a detailed
description of existing approaches is provided by
authors of [32].

General architecture of C*TCP and position of
CCM within the protocol stack are specified in
Fig. 7. CCM has different functionalities depend-
ing whether it is implemented at the sender or at
the receiver node.

At the receiver’s side, upon the reception of a
packet, CCM requests from the link layer the
bandwidth and the delay which have been deliv-
ered with the TCP data packet. Having access to
TCP headers, CCM traces the outgoing TCP
ACKs. In case the produced TCP ACK acknow-
ledges the received TCP data packet, CCM
forwards the request to the link layer in order to
include the stored bandwidth—delay information
into MAC-layer header of the outgoing TCP
ACK.

Modern implementations of TCP support
cumulative or selective acknowledgements, which
lead to the generation of one TCP ACK packet
per several TCP data packets received. In this case,
CCM will include forward path measurement ob-
tained from the last data packet acknowledged
by the outgoing TCP ACK.

At the sender’s side, CCM requests end-to-end
measurements from the link layer upon TCP
ACK packet reception. Then, it calculates the de-
sired size of the congestion window based on the
on the forward path bandwidth and RTT values
on the forward path.

TCP specification includes receiver advertised
window function, which main idea is to allow the
receiver to specify (in the TCP ACK header) the
desired congestion window size. In current imple-
mentations of TCP, this parameter includes unoc-
cupied buffer space left on the receiver.

CCM uses the receiver advertised window
(RWND) field of TCP ACK packet for the deliv-
ery of the calculated congestion window. In detail,
it leaves the lower c¢wnd value between the calcu-
lated one and the one reported by the receiver.
Producing congestion control through the correc-

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 699
Sender Receiver
{ TCP Layer] { TCP Layer J

TCP ACK
(RWND Adjusted)

I
TCP ACK

Sequence Number Analysis

|)
!)
{]
!)
{] Include
: 1 F d Path
! End-to-end TCP ACK : M‘;"Svj:em:nts Forward Path TCP ACK
E Measurements Packet] Measurements
i]
Link Layer Link Layer
Txl Rx RXT Tx

Physical Medium

Fig. 7. Congestion control module (CCM) architecture and its position within the protocol stack of C3TCP-enabled nodes.

tion of receiver’s advertised window is not a novel
approach, on the contrary it is a common tech-
nique for the congestion window adjustment—pre-
sented in many works. For example, the authors of
[20] use RWND field of TCP header to inform the
sender about network congestion from intermedi-
ate routers based on the free buffer space left on
the edge device.

RWND signaling adjusts TCP window limiting
its upper bound of evolution. In order gain full
control on the size of the window, CCM should
be enabled with acknowledgement generation for
the local TCP layer in order to control the behav-
iour of TCP congestion control algorithm.

4.5. Multi-node multi-flow scenario

In previous paragraphs, congestion control was
mostly focused on the simple single-flow example.
However, wireless multi-hop networks are aimed
at supporting more complex scenarios, where dif-
ferent nodes initiate transmission of multiple data
flows.

Fig. 8 presents a three-flow example of multi-
hop communications. Flow F1 shares a part of
the data path with flow F2. Flow F3 will also influ-
ence flows F1 and F2, since the destination node
N6 shares the same medium with nodes N2, N3

Flow F1 - src node N1
dst node N5 !
----- Flow F2 - src node N1
dst node N4
— - = Flow F3 - src node N7
dst node N6

Fig. 8. Multi-flow communications between different nodes of
a multi-hop network.

700 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

and N4. It is assumed that all nodes use RTS/CTS
framework in order to solve the hidden node
problem.

Obviously, the bottleneck shared by all three
connections is located at node N3. For that rea-
son, the measured bandwidth between nodes N7
and N6 will contain the portion of bandwidth used
by flow F3.

Flows F1 and F2 are the flows produced by the
same sender node N1. This makes the measured
bandwidth equal to the portion of bandwidth
jointly occupied by both of them. For that reason,
it is not possible to adjust contention windows
without performing per-flow differentiation. How-
ever, per-flow differentiation can be supported by
the C*TCP framework.

The general structure of a possible flow-differen-
tiation module is presented in Fig. 9. The purpose
of the Packet Classifier is to differentiate incoming
packets according to the data flow they belong to.
Then, the transmission scheduler allocates for
every flow an appropriate portion of the available
bandwidth to the node. The implementation of
scheduling algorithm could be simple or contain
fairness and Quality of Service (QoS) support.

4.6. Routing

A multi-hop IEEE 802.11-based wireless net-
work is a self-organizing network, where nodes
should perform route discovery in order to know
the path or at least the next hop of the data com-
munication path.

Flow Flow L. Flow

Available
Bandwidth

Link Layer
Transmission

Fig. 9. Flow differentiation for congestion control in the
C*TCP framework.

IEEE 802.11 standard does not specify any
routing protocol, relying on a simple scenario
where all the nodes are located within transmission
range of each other. In order to adapt wireless net-
works to multi-hop scenarios, a growing amount
of proposals gave birth to many routing protocols
optimized for the wireless environment.

The existing routing protocols are categorized
into two major groups: on-demand and proactive.
On-demand protocols perform route discovery in
the moment of the need for communication, for
example AODV [33] and DSR [34]. Proactive
approaches like DSDV [35], on the contrary, try
to avoid the delay overhead added by initial route
discovery keeping the table with routes’ descrip-
tion, updated at regular intervals.

However, the main aspect of routing is the met-
ric which is chosen for route selection. Traditional
routing protocols rely on shortest path routing,
which brings performance optimization in wired
networks through improvement in data delivery
delay as well as bandwidth utilization. Wireless
networks have an additional set of parameters
which should be taken into account to make a
proper choice. Such parameters include energy
constrains, error rate, reliability of links, mobility
and available throughput level.

The importance of the last metric is underlined
in [36], where the authors introduce an alternative
metric for route selection which is called Medium
Time Metric (MTM). MTM assigns a weight to
each route that is proportional to the time taken
for packet delivery over that particular route.

As an extension of MTM metric, we propose to
differentiate different routes according to their
bandwidth—delay product. Dynamical update of
the weight of the routes can be produced based
on the values measured with existing data flows of
the nodes. Such a way of updating does not produce
an additional overhead, in opposite to the case of
routing protocol update—Ileading to an improved
efficiency in the utilization of network capacity.

5. Performance evaluation

The performance of the proposed solution is
analyzed using the ns-2 network simulator [37].

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 701

C>TCP evaluation is performed using two scenar-
ios: the first scenario is used to evaluate the
step-by-step operation of C*TCP—showing good
agreement with the design objectives, while the sec-
ond scenario is more complex and better approxi-
mates the reality of ad hoc multi-hop network
communications.

5.1. String topology

The first simulation scenario consists of four
nodes involved in a single TCP connection and
two nodes which produce cross-traffic UDP pack-
ets (Fig. 10). Node N1 is attached to a TCP agent,
while TCP sink is located at the node N4. TCP
packets are routed through the intermediate nodes
N2 and N3 up to the destination node N4. Due to
transmission range limitations, cross-traffic stream
shares the same medium with TCP flow only at the
link between nodes N3-N4. Each station’s trans-
mitting range is limited to 22.5 m, and the distance
between each pair of nodes in the simulation sce-
nario is equal to 20 m.

Congestion control module (CCM) is attached
at the link layer of end nodes of the TCP connec-
tion. At the sender size (node N1), CCM dynami-
cally adjusts TCP congestion window specifying its
desired size by the RWND field of TCP header.

Simulation parameters are set to satisfy the
IEEE 802.11b specification of the standard [1] at
both physical and link layers, and briefly summa-
rized in Table 1. In order to reduce collisions,
RTS/CTS exchange is employed.

3]
< S
3 3
== TCP Flow
e e« Cross-Traffic (UDP flow) @&y === ==*
UDP Agent UDP Sink
UDP Flow

Fig. 10. C*TCP evaluation: Scenario 1.

Table 1

Simulation parameters

Parameter name Value
Slot 20 ps
SIFS 10 ps
DIFS 50 ps
PLCP preamble + header 192 ps
Data rate 11 Mbps

Basic data rate
Propagation model

1 Mbps
Two-ray ground

TCP flow is started after 3.0 s of the simulation,
being initially the only traffic in the network.
Cross-traffic produced by node NS is present only
in the interval between 15.0 and 30.0s of
simulation.

In order to evaluate the accuracy of bandwidth
measurements provided by the presented tech-
nique, the difference between calculated bandwidth
and the one obtained at the link level is presented
in Fig. 11. The dashed curve corresponds to the
available bandwidth on the link, which is calcu-
lated without taking into account exponential
backoff performed by the nodes as well as in ab-
sence of collisions. The results show good approx-
imation achieved by measurements in both cases:
with and without cross-traffic.

Another important parameter for TCP perfor-
mance is the RTT. Fig. 12 presents a comparison
between RTT measured at the link level against
transport layer measurements. RTT measurements
at the transport layer are performed using time-
stamp options specified in [21].

Transport layer is not aware about the medium
it operates on. For that reason, it is not possible

Available
0.1 —=— Measured

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 11. Accuracy of C*TCP bandwidth measurement.

702 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

0.05+
— 0.044
()
D
7]
E
= 0.03
|_
o
0.02 4
—e—Link Layer
---m--- Transport Layer
0.01 T T T T T T T T |

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 12. C’TCP RTT measurements against standard TCP
measurements.

for standard TCP to differentiate between queue-
ing and transmission delay, as both of them are in-
cluded into the obtained RTT value.

In case TCP continuously outputs two data
packets, the last will stay in buffer waiting for
the transmission of the first one. This results in
an artificial increase of the RTT delay by a time
interval equal to the transmission delay of the first
packet over the wireless link. Such situation leads
to overestimate the length of available data pipe,
which results in an unnecessary increase of the
TCP congestion window.

In opposite to transport measurements, link
layer measurements avoid including queuing delay
into the measured round trip delay value. How-
ever, delay variation is still present due to the dif-
ference in medium access time as a consequence of
collisions and random backoff. The jitter of
the link layer curve which corresponds to single
TCP flow measurements mostly reflect variations
due to exponential backoff. In the presence of
cross-traffic (from 15.0 to 30.0s), the average of
RTT measured values is increased mostly due to
collisions.

Results presented in Fig. 12 underline the bene-
fits obtained from the C*TCP link layer measure-
ments if compared with those performed at the
transport layer, providing good confirmation of
the theoretical advantages of link layer measure-
ments described in Section 4.

The major metric for evaluating the perfor-
mance of TCP flows is the obtained end-to-end
throughput. The throughput comparison between

—e— C*TCP

Throughput (Mpb

+ - - # - -Standard

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 13. Throughput of C’TCP against standard TCP imple-
mentation.

TCP version with cross-layer congestion control
(C’TCP) and standard TCP implementation [2] is
presented in Fig. 13.

Results underline stability of throughput in the
case of C*TCP during all the phases of the exper-
iment. The classical implementation of congestion
control, on the opposite, always tries to enlarge the
window, periodically incurring into congestion.

In more details, in case TCP flow is the only
traffic present in network, C*°TCP throughput is
comparable with one obtained by standard TCP
implementation, with less jitter. However, when
cross-traffic is present (from 15.0 to 30.0 s), stan-
dard TCP flow periodically drops throughput to
0, while C*TCP always keeps the throughput level
close to the available bandwidth—showing good
utilization of the link capacity.

The bottleneck on the TCP communication
path in the evaluation scenario presented in
Fig. 10 is the link between nodes N2 and N3. Node
NS5 produces cross-traffic, generating RTS for
obtaining medium access which is heard by node
N3 but not by node N2. As a result, node N2 does
not receive any response while trying to communi-
cate with the node N3. The communication be-
tween nodes N1 and N2 is still possible, since
none of them is aware of the cross-traffic and
cross-traffic flow does not collide with transmis-
sions of such nodes. The only assumption which
is made is that signals transmitted by the nodes
do not collide outside effective transmission range
(22.5m). This comes from the implementation
details of IEEE 802.11 MAC inside ns-2
simulator.

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 703

The TCP source attached to node N1 delivers
data packets to node N2 utilizing full bandwidth
of the link between nodes N1 and N2. Then, node
N2 can forward the received packets to node N3
only after node N5 finalizes its pending transmis-
sion. The difference between incoming and outgo-
ing data rates observed by node N2 results in
multiple buffer overflows, which finally cause
TCP throughput reduction.

Packets dropped from the buffer of intermediate
routers are partially transported to the destination.
It is demonstrated that multiple drops of such
packets could lead to networks collapse [14]. In
order to evaluate buffer usage as well as for better
understanding the advantages of C>TCP, buffer
utilization at the bottleneck node N2 is measured.
The evaluated buffer is limited in size—allowing an
allocation of up to 20 packets, which is about 5
times greater than the entire link capacity (using
1 K TCP data packets). The obtained results are
presented in Fig. 14 for standard TCP and in
Fig. 15 for C*TCP.

Buffer usage of standard TCP flow is relatively
low (less than 5 packets) when the incoming and
outgoing data rates present on node N2 are com-
parable. However, in presence of cross-traffic,
standard TCP source produces much more pack-
ets, overloading the bottleneck link. Such situation
leads to buffer overflow and consequently multiple
packet drops in the interval between 15.0 and
30.0's.

On the contrary, knowledge of the capacity of
the communication path greatly reduces buffer
usage for C*TCP if compared with standard TCP

20
18 F hqu? ﬁﬁ
216

o 14

12
10

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Queue size (pa
[e¢]

onNn O

Fig. 14. Buffer utilization at node N2 for standard TCP.

20
18+
16+
14+

Queue size (packets)

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 15. Buffer utilization at node N2 for C>TCP.

implementation. Thus, buffer in node N2 does
not exceed the value of 10 packets in presence of
cross-traffic and it is fixed in the interval between
0 and 3 packets when C*TCP manages the only
flow in the network. As a consequence, C*TCP
scheme does not produce more packets than the
network can transport, saving communication re-
sources and avoiding multiple packet drops along
the communication path.

Standard TCP was chosen for the comparison
as the most wide-spread TCP implementation, in
order to underline the obtained performance
improvement. However, an additional comparison
with other approaches which aim at optimizing
TCP congestion control framework is provided
in the following.

TCP Vegas [15] and TCP Westwood [16] are
chosen among those congestion control solutions
which most closely approximate C*TCP from the
theoretical point of view. The model of TCP Vegas
1s taken from standard ns-2 distribution, while
TCP Westwood model is obtained from [38].

Throughput comparison results are presented in
Figs. 16 and 17 for TCP Vegas and TCP West-
wood respectively.

The results show that all the evaluated ap-
proaches achieve relatively close (with difference
less than 2%) throughput in the scenario when
TCP flow is not affected by cross-traffic (from 3.0
to 15.0 and from 30.0 to 45.0 s of simulation).

However, when cross-traffic is present (between
15.0 and 30.0 s of simulation), both TCP Vegas
and TCP Westwood periodically drop their
throughput down to zero due to overestimation
of the link capacity. For clarity of presentation,

704 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

£ 024 . —e— C'TCP
IR ---m--- TCP-Vegas

(P SR S—
0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 16. Throughput of C3TCP against TCP-Vegas imple-
mentation.

0.6

. —e—cC’tcp
- - & - -Westwood

Throughput (Mbps)
o
SN

0 5 10 15 20 25 30 35 40 45
Simulation time (sec)

Fig. 17. Throughput of C3TCP against TCP-Westwood imple-
mentation.

zoomed portions of the graphs are presented in
Figs. 18 and 19. In the considered scenario, TCP
Vegas performs better than TCP Westwood. The
main reason for that is that TCP Vegas performs
comparison between the estimated capacity and
the actually achieved throughput. Based of such

—e— C*TCP
—B—TCP-Vegas

0 T T |
15 20 25 30

Simulation time (sec)

Fig. 18. Throughput of C*TCP against TCP-Vegas implemen-
tation (zoomed).

—e—C°TCP
—— Westwood

15 20 25 30
Simulation time (sec)

Fig. 19. Throughput of C3’TCP against TCP-Westwood imple-
mentation (zoomed).

comparison TCP Vegas does not increase conges-
tion windows if this does not lead to a throughput
increase. As a result, the more conservative TCP
Vegas performs better than TCP Westwood.

The throughput of C*TCP is stable for the en-
tire simulation interval, showing good approxima-
tion of the available link capacity. The performed
comparison underlines the advantages of the net-
work capacity measurement at the link level rather
than at the transport level.

For the purpose of quantitative comparison, re-
sults show an improvement achieved by C*TCP of
around 27%, 18% and 7% against standard TCP,
TCP Westwood, and TCP Vegas, respectively.

5.2. Grid topology

The results presented in Scenario 1 show good
agreement with the design principles of C*TCP.
However, the simplicity of the scenario does not
guarantee similar behavior in the general case of
operation in a complex ad hoc multi-hop network.

In order to approach a more realistic case, Sce-
nario 2 specifies a flat-grid topology, consisting of
20 nodes, as shown in Fig. 20. The size of the cell
in the grid of 20 m—allowing communication only
between neighboring nodes (connected by a
dashed line).

TCP agent attached to node 10 and TCP Sink
attached to node 14 create a “long” four-hops
TCP flow, while a “short” two-hops flow is initi-
ated between nodes 5 and 17. As a result, the first
two hops utilized by the “long” flow are shared
with the “short” TCP flow.

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 705

.
1

w0z

Fig. 20. C*TCP evaluation: Scenario 2.

UDP agent and sink, attached to the nodes 8§
and 4 respectively, generate a constant-bitrate
cross-traffic flow—which impacts on the “long”
TCP flow but not the “short’ one.

Simulations are run for 100 s. Uninterrupted
TCP traffic flows are started at the beginning of
simulation, while the cross-traffic UDP flow is ac-
tive only in the interval between 30 and 70 s of sim-
ulation time. Other simulation parameters as well
as configuration of network simulator are fully
consistent with those described in Scenario 1.

Obtained simulation results are presented in
Fig. 21 for standard TCP, TCP Westwood, TCP
Vegas and proposed C>TCP implementations.
Within the entire simulation time, standard TCP
implementation (see Fig. 21a) continuously tries
to increase congestion window on relatively low
capacity links. As a result, due to multiple conges-
tion-related packet losses and TCP timeout expira-
tions, the throughput of both flows shows high
fluctuations. The “‘short” TCP flow gets slightly
higher average of 0.4 Mbps, if compared with
0.33 Mbps obtained by the “long” flow.

A similar behavior to standard TCP but with
lower level of fluctuations is observed for TCP
Westwood (see Fig. 21b). Both flows are continu-

ously trying to get full available bandwidth one
over another. Periodic throughput reduction pres-
ent on the graph derives from bandwidth overesti-
mation, caused mainly by the employed type of
TCP Westwood ACK filter. However, the large-
scale sharing of bandwidth by TCP Westwood
flows is relatively fair with an average throughput
of 0.4 Mbps per data flow.

Much more stable behavior is observed with
TCP Vegas flows (see Fig. 21¢). The presented re-
sults show relatively large unfairness in sharing the
available bandwidth: the “short” flow always
show better throughput if compared with the
“long” one. Additionally, in presence of con-
stant-bitrate UDP traffic, the throughput of the
“long” flow is dramatically decreased (down to
Zero).

Fig. 21d shows the results obtained with the
proposed C*TCP scheme. While not being dis-
turbed by cross-traffic, both flows share the avail-
able bandwidth equally—keeping their average
throughput at 0.45 Mbps. In the interval between
30.0 and 70.0 s of simulation time, the cross-traffic
UDP flow is starting to take a part of the band-
width from the “long” flow. As a result, the
throughput of the “short” flow is increased with

706 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

"long" flow
ogd short" flow

Throughput (Mbps)
o
[$]

0 20 40 60 80 100
(a) Simulation time (sec)

0.84 "long" flow
o74 T "short" flow

0.6
0.5
044 :
03] :
0.2
0.1

Throughput (Mbps)

(c) Simulation time (sec)

0 20 40 60 80 100

"long" flow
0.91 L "short" flow
§ 0.81 , . !
g 0.71
~ 0.61
3
2 o5
2 0.4
o
= 0.3
Foo2f |
0.19 |
0+ T T T v Y
0 20 40 60 80 100
(b) Simulation time (sec)
"long" flow

0.7 4 BEEEEEEE "short" flow

Throughput (Mbps)
o
~

0.3
0.2
0.1
0)
0 20 40 60 80 100
(d) Simulation time (sec)

Fig. 21. Simulation throughput results for data flows of (a) Standard TCP (b) TCP-Westwood (¢c) TCP Vegas, and (d) C*TCP

implementations.

the portion of the bandwidth temporarily released
by the “long” flow.

6. Conclusion

The paper presents the problem of performance
degradation of transport layer protocols due to
congestion in wireless multi-hop local area net-
works. Following the analysis of available solu-
tions to this problem, a cross-layer congestion
avoidance scheme (C*TCP) is presented, able to
obtain higher performance by gathering capacity
information such as bandwidth and delay at the
link layer. The method requires the introduction
of an additional module within the protocol stack
of the mobile node, able to adjust the outgoing
data stream based on capacity measurements. An
additional contribution of the paper is a proposal
to provide optional field support to existing IEEE
802.11 protocol, in order to support the presented

congestion control solution as well as many other
similar approaches.

Achieved results underline good agreement with
design considerations and high utilization of the
available resources. Ongoing work is oriented to a
comprehensive evaluation of the presented conges-
tion control technique and a possible proposal to
IEEE 802.11 working group to include the support
of optional fields into next releases of the standard.

References

[1] Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, IEEE 802.11 standard, 1997.
[2]J. Postel, Transmission control protocol, Request for

Comment RFC 793, September 1981.

[3] G. Miller, K. Thompson, R. Wilder, Wide-area Internet
traffic patterns and characteristics, IEEE Network
(November/December) (1997) 10-23.

[4] N. Brownlee, K. Claffy, Understanding Internet traffic
streams: Dragonflies and tortoises, IEEE Communication
Magazine 40 (October) (2002) 110-117.

D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708 707

[5] V. Jacobson, Congestion avoidance and control, Computer
Communication Review 18 (4) (1988) 314-329.

[6] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms, Request for
Comment RFC 2001, January 1997.

[7] K. Pentikousis, TCP in wired-cum-wireless, IEEE Com-
munications Surveys (2000).

[8] R. Wang, G. Pau, K. Yamada, M.Y. Sanadidi, M. Gerla,
TCP startup performance in large bandwidth delay net-
works, in: Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies (INFO-
COM 2004), vol. 2, March 2004, pp. 796-805.

[9] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, A
performance comparison of multi-hop wireless ad hoc
network routing protocols, in: Fourth Annual Interna-
tional Conference on Mobile Computing and Networking
(MobiCom’98), ACM, Dallas, TX, October 1998.

[10] S. Xu, T. Saadawi, Does the IEEE 802.11 MAC protocol
work well in multihop wireless ad hoc networks? IEEE
Communications Magazine 39 (June) (2001) 130-137.

[11] G. Holland, N. Vaidya, Analysis of TCP performance over
mobile ad hoc networks, Wireless Networks 8 (March)
(2002) 275-288.

[12] Z. Fu, X. Meng, S. Lu, How bad TCP can perform in mobile
ad hoc networks, in: Seventh International Symposium
on Computers and Communications (ISCC), July 2002.

[13]J. Nagle, Congestion control in IP/TCP internetworks,
Request for Comment RFC 896, Internet Engineering
Task Force, January 1984.

[14] S. Floyd, K. Fall, Promoting the use of end-to-end
congestion control in the Internet, IEEE/ACM Transac-
tions on Networking 7 (August) (1999) 458-472.

[15] L. Brakmo, L. Peterson, TCP Vegas: end to end congestion
avoidance on a global Internet, Computer Communication
Review 25 (October) (1995) 69-86.

[16] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, R. Wang,
TCP Westwood: end-to-end congestion control for wired/
wireless networks, Wireless Networks Journal 8 (2002)
467-479.

[17] O. Akan, 1. Akyildiz, ATL: an adaptive transport layer
suite for next-generation wireless Internet, IEEE Journal
on Selected Areas in Communications 22 (June) (2004)
802-817.

[18] S. Floyd, V. Jacobson, Random Early Detection gateways
for congestion control for high speed data networks, IEEE/
ACM Transactions on Networking 1 (4) (1993) 397-413.

[19] K. Ramakrishnan, S. Floyd, D. Black, The Addition of
Explicit Congestion Notification (ECN) to IP, Request for
Comments (RFC), September 2001.

[20] L. Kalampoukas, A. Varma, K. Ramakrishnan, Explicit
window adaptation: a method to improve TCP perfor-
mance, Infocom, April 1998.

[21] V. Jacobson, R. Braden, D. Borman, TCP Extensions for
High Performance, Request for Comment RFC 1323, May
1992.

[22] H. Ningning, P. Steenkiste, Evaluation and characteriza-
tion of available bandwidth probing techniques, IEEE

Journal on Selected Areas in Communications (JSAC) 21
(6) (2003) 879-894.

[23] K. Lai, M. Baker, Nettimer: a tool for measuring bottle-
neck link bandwidth, USENIX Symposium Internet Tech-
nologies and Systems, March 2001.

[24] C. Dovrolis, P. Ramanathan, D. Moore, What do packet
dispersion techniques measure? IEEE INFOCOM (April)
(2001).

[25] R. Kapoor, L. Chen, M. Sanadidi, M. Gerla, CapProbe: a
simple and accurate technique to measure path capacity,
Technical Report TR040001, UCLA SCD, 2004.

[26] M. Gerla, R. Bagrodia, Z. Lixia, K. Tang, W. Lan, TCP
over wireless multi-hop protocols: simulation and experi-
ments, in: IEEE International Conference on Communi-
cations (ICC), June 1999.

[27] G. Bianchi, Performance analysis of the IEEE 802.11
distributed coordination function, IEEE Journal on
Selected Areas in Communications (JSAC) 18 (March)
(2000) 535-547.

[28] D. Boggs, J. Mogul, C. Kent, Measured capacity of an
ethernet: myths and reality, Computer Communication
Reviews 18 (August) (1988) 222-234.

[29] D. Kliazovich, F. Granelli, Performance improvements in
data transfer over 802.11 WLANS, in: 10th IEEE Work-
shop on Computer-Aided Modeling, Analysis, and Design
of Communication Links and Networks, CAMAD’04,
Dallas, November 2004.

[30]J. Postel, Internet Protocol: DARPA Internet Program
Protocol Specification, Request for Comment RFC 791,
September 1981.

[31] S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, Request for Comment RFC 2460, December
1998.

[32] Q. Wang, M.A. Abu-Rgheff, Cross-layer signalling for
next-generation wireless systems, in: WCNC 2003, vol. 2,
March 2003, pp. 1084-1089.

[33] C. Perkins, E. Royer, Ad hoc on-demand distance vector
routing, in: Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New
Orleans, LA, February 1999, pp. 90-100.

[34] D. Johnson, D. Maltz, J. Broch, DSR: the dynamic source
routing protocol for multi-hop wireless ad hoc networks,
in: C. Perkins (Ed.), Ad Hoc Networking, Addison-Wesley,
2001, pp. 139-172 (Chapter 5).

[35] C. Perkins, P. Bhagwat, Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile
computers, in: Conference on Communications Architec-
tures, Protocols and Applications (SIGCOMM), 1994.

[36] B. Awerbuch, D. Holmer, H. Rubens, The medium time
metric: high throughput route selection in multirate ad hoc
wireless networks, in: Kluwer Mobile Networks and
Applications (MONET), Special Issue on “Internet Wire-
less Access: 802.11 and Beyond”™, 2005.

[37] NS-2 Simulator Tool Home Page. Available from: <http://
www.isi.edu/nsnam/ns/>, 2000.

[38] TCP Westwood Home Page. Available from: <http://
www.cs.ucla.edu/NRL/hpi/tcpw/>.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.cs.ucla.edu/NRL/hpi/tcpw/
http://www.cs.ucla.edu/NRL/hpi/tcpw/

708 D. Kliazovich, F. Granelli | Ad Hoc Networks 4 (2006) 687-708

[39] R. Garg, A. Kamra, V. Khurana, A game-theoretic
approach towards congestion control in communication
networks, Computer Communication Review (July) (2002)
47-61.

Dzmitry Kliazovich received his Mas-
ters degree in Telecommunication sci-
ence from Belarusian State University
of Informatics and Radioelectronics in
2002. He is currently working towards
the Ph.D. degree in University of
Trento, Italy. His main research inter-
est lies in wireless networking field with
a focus on performance optimization
and cross-layer design.

Fabrizio Granelli was born in Genoa in
1972. He received the «Laurea»
(M.Sc.) degree in Electronic Engineer-
ing from the University of Genoa,
Italy, in 1997, with a thesis on video
coding, awarded with the TELECOM
Italy prize, and the Ph.D. in Telecom-
munications from the same university,
in 2001. Since 2000 he is carrying on
his teaching activity as Assistant Pro-
fessor in Telecommunications at the

Department of Information and Communication Technol-
ogy—University of Trento (Italy). In August 2004, he was
visiting professor at the State University of Campinas (Brasil).
He is author or co-author of more than 40 papers published in
international journals, books and conferences, and he is
member of the Technical Committee of the International Con-
ference on Communications (ICC2003, ICC2004 and ICC2005)
and Global Telecommunications Conference (GLOBE-
COM2003 and GLOBECOM2004). He is guest-editor of ACM
Journal on Mobile Networks and Applications, special issue on
“WLAN Optimization at the MAC and Network Levels” and
Co-Chair of 10th IEEE Workshop on Computer-Aided
Modeling, Analysis, and Design of Communication Links
and Networks (CAMAD’04). He is General Vice-Chair of
the First International Conference on Wireless Internet
(WICON’05).

His main research activities are in the field of networking and
signal processing, with particular reference to network perfor-
mance modeling, medium access control, wireless networks,
next-generation IP, and video transmission over packet
networks.

	Cross-layer congestion control in ad hoc wireless networks
	Introduction
	Nature of congestion
	Available solutions
	TCP modifications
	Explicit feedback solutions
	Transport layer capacity measurement

	Cross-layer congestion control over multi-hop wireless networks
	Bandwidth measurement
	Delay estimation
	 ldquo Options rdquo support for IEEE 802.11
	The proposed approach: C3TCP
	Multi-node multi-flow scenario
	Routing

	Performance evaluation
	String topology
	Grid topology

	Conclusion
	References

