Approximations of the Lovász Extension of Pseudo-Boolean Functions;

Applications to Multicriteria Decision Making

by

Jean-Luc Marichal University of Liège, Belgium

Approximations of pseudo-Boolean functions

Preliminary result (Hammer and Rudeanu, 1968)

Any pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ has a unique expression as a multilinear polynomial in n variables:

$$f(x) = \sum_{T \subset N} a_T \prod_{i \in T} x_i, \quad x \in \{0, 1\}^n,$$

where $N = \{1, \ldots, n\}$ and $a_T \in \mathbb{R}$.

Definition

Let $f:\{0,1\}^n\to\mathbb{R}$ and $k\in\{0,\ldots,n\}$. The best k-th approximation of f is the multilinear polynomial $f^{(k)}:\{0,1\}^n\to\mathbb{R}$ of degree $\leq k$ defined by

$$f^{(k)}(x) = \sum_{\substack{T \subseteq N \\ |T| < k}} a_T^{(k)} \prod_{i \in T} x_i$$

which minimizes

$$\sum_{x \in \{0,1\}^n} [f(x) - f^{(k)}(x)]^2$$

among all multilinear polynomials of degree $\leq k$.

Let $S \subseteq N$. The S-derivative of f at $x \in \{0,1\}^n$, denoted $\Delta_S f(x)$, is defined inductively as

$$\Delta_{i} f(x) := f(x \mid x_{i} = 1) - f(x \mid x_{i} = 0),$$

$$\Delta_{ij} f(x) := \Delta_{i}(\Delta_{j} f)(x) = \Delta_{j}(\Delta_{i} f)(x),$$

$$\vdots$$

$$\Delta_{S} f(x) := \Delta_{i}(\Delta_{S \setminus i} f)(x)$$

Theorem (Hammer and Holzman, 1992)

The best k-th approximation $f^{(k)}$ is given by the unique solution of the triangular linear system

$$\frac{1}{2^n} \sum_{x \in \{0,1\}^n} \Delta_S f^{(k)}(x) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \Delta_S f(x), \quad \forall S \subseteq N, \ |S| \le k.$$

Theorem (Grabisch, Marichal, and Roubens, 1998)

The coefficients $a_S^{(k)}$ of the best k-th approximation $f^{(k)}$ are given from those of f by

$$a_S^{(k)} = a_S + (-1)^{k-|S|} \sum_{\substack{T \supseteq S \ |T| > k}} {|T \setminus S| - 1 \choose k - |S|} \frac{1}{2|T \setminus S|} a_T, \quad S \subseteq N, \ |S| \le k.$$

Approximations of Lovász extensions

The Lovász extension (Lovász, 1983; Singer, 1985)

Let Π_n denote the family of all permutations π of N. The Lovász extension $\hat{f}:[0,1]^n \to \mathbb{R}$ of any pseudo-Boolean function f is defined on each n-simplex

$$\mathcal{B}_{\pi} = \{ x \in [0,1]^n \mid x_{\pi(1)} \le \dots \le x_{\pi(n)} \}, \quad \pi \in \Pi_n,$$

as the unique affine function which interpolates f at the n+1 vertices of \mathcal{B}_{π} :

$$\hat{f}(x) = \sum_{T \subseteq N} a_T \bigwedge_{i \in T} x_i, \quad x \in [0, 1]^n.$$

Definition

Let \hat{f} be the Lovász extension of a pseudo-Boolean function f, and let $k \in \{0, \ldots, n\}$. The best k-th approximation of \hat{f} is the min-polynomial $\hat{f}^{(k)} : [0, 1]^n \to \mathbb{R}$ of degree $\leq k$ defined by

$$\hat{f}^{(k)}(x) = \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{(k)} \bigwedge_{i \in T} x_i$$

which minimizes

$$\int_{[0,1]^n} [\hat{f}(x) - \hat{f}^{(k)}(x)]^2 \, dx$$

among all min-polynomials of degree $\leq k$. We write $\hat{f}^{(k)} = A^{(k)}(\hat{f})$.

We set

$$V^{(n)} := \left\{ \hat{f} \,\middle|\, \hat{f}(x) = \sum_{T \subseteq N} a_T \bigwedge_{i \in T} x_i, \ a_T \in \mathbb{R} \right\}$$

 $V^{(n)}$ is a vector space isomorphic to \mathbb{R}^{2^n} :

$$\hat{f} \longleftrightarrow (a_T)_{T \subseteq N}$$

In particular,

$$\dim(V^{(n)}) = 2^n$$

In $V^{(n)}$, we define

- \bullet a scalar product: $\langle \hat{f}_1,\hat{f}_2\rangle:=\int_{[0,1]^n}\hat{f}_1(x)\,\hat{f}_2(x)\,dx$
- a norm: $\|\hat{f}\| := \langle \hat{f}, \hat{f} \rangle^{1/2}$
- a distance: $d(\hat{f}_1, \hat{f}_2) := ||\hat{f}_1 \hat{f}_2||$ in $V^{(n)}$

For any $k \in \{0, \ldots, n\}$, we set

$$V^{(k)} := \left\{ \hat{f}^{(k)} \,\middle|\, \hat{f}^{(k)}(x) = \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{(k)} \bigwedge_{i \in T} x_i, \ a_T^{(k)} \in \mathbb{R} \right\}$$

(vector subspace in $V^{(n)}$)

A basis for $V^{(k)}$ is given by

$$B^{(k)} = \left\{ \bigwedge_{j \in S} x_j \, \middle| \, S \subseteq N, |S| \le k \right\}$$

In particular,

$$\dim(V^{(k)}) = \sum_{s=0}^{k} \binom{n}{s}$$

The best k-th approximation $\hat{f}^{(k)} = A^{(k)}(\hat{f})$ is given by

minimize:
$$\|\hat{f} - \hat{f}^{(k)}\|$$

subject to: $\hat{f}^{(k)} \in V^{(k)}$

(orthogonal projection of \hat{f} onto $V^{(k)}$)

$$\int_{[0,1]^n} [\hat{f}(x) - \hat{f}^{(k)}(x)] \bigwedge_{j \in S} x_j \, dx = 0, \qquad \forall S \subseteq N, |S| \le k$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\sum_{T \subseteq N} a_T \int_{[0,1]^n} \bigwedge_{i \in T} x_i \bigwedge_{j \in S} x_j \, dx = \sum_{T \subseteq N \atop |T| \le k} a_T^{(k)} \int_{[0,1]^n} \bigwedge_{i \in T} x_i \bigwedge_{j \in S} x_j \, dx$$

$$\forall S \subseteq N, |S| \le k$$

with
$$\int_{[0,1]^n} \bigwedge_{i \in T} x_i \bigwedge_{j \in S} x_j dx = \frac{|T| + |S| + 2}{(|T \cup S| + 2)(|T| + 1)(|S| + 1)}$$

Theorem

The coefficients $a_S^{(k)}$ of $A^{(k)}(\hat{f})$ are given from those of \hat{f} by

$$a_S^{(k)} = a_S + (-1)^{k-|S|} \sum_{\substack{T \supseteq S \\ |T| > k}} \frac{\binom{k+|S|+1}{|S|} \binom{|T \setminus S|-1}{k-|S|}}{\binom{|T|+k+1}{k+1}} a_T, \quad S \subseteq N, |S| \le k.$$

For k = 1 we obtain:

$$a_{\emptyset}^{(1)} = \sum_{T \subseteq N} \frac{-2(|T|-1)}{(|T|+1)(|T|+2)} a_{T}$$

$$a_{i}^{(1)} = \sum_{T \ni i} \frac{6}{(|T|+1)(|T|+2)} a_{T}, \quad i \in N$$

Approximations having two fixed values

We set

$$V^{(k,0,1)} := \left\{ \hat{f}^{(k,0,1)} \,\middle|\, \hat{f}^{(k,0,1)} \in V^{(k)}, \hat{f}^{(k,0,1)}(\mathbf{0}) = 0, \hat{f}^{(k,0,1)}(\mathbf{1}) = 1 \right\}$$
 where $\mathbf{0} = (0, \dots, 0)$ and $\mathbf{1} = (1, \dots, 1)$.

Any element in $V^{(k,0,1)}$ is of the form

$$\hat{f}^{(k,0,1)}(x) = \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{(k,0,1)} \bigwedge_{i \in T} x_i$$

with

$$\begin{cases} a_{\emptyset}^{(k,0,1)} = 0 \\ \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{(k,0,1)} = 1 \end{cases}$$

For a fixed $j \in N$, these functions can also be written as

$$\hat{f}^{(k,0,1)}(x) = x_j + \sum_{\substack{T \subseteq N, T \neq j \\ 1 < |T| < k}} a_T^{(k,0,1)} \Big(\bigwedge_{i \in T} x_i - x_j \Big)$$

 $V^{(k,0,1)}$ is an affine subspace in $V^{(k)}$. A basis for $V^{(k,0,1)}$ is given by

$$B_j^{(k,0,1)} = \left\{ \bigwedge_{i \in S} x_i - x_j \, \middle| \, S \subseteq N, S \neq \{j\}, 1 \le |S| \le k \right\}$$

for one $j \in N$. In particular

$$\dim(V^{(k,0,1)}) = \dim(V^{(k)}) - 2.$$

Problem

Given $\hat{f} \in V^{(n)}$, we search for the solution $\hat{f}^{(k,0,1)} = A^{(k,0,1)}(\hat{f})$ of

minimize:
$$\|\hat{f} - \hat{f}^{(k,0,1)}\|$$
 subject to: $\hat{f}^{(k,0,1)} \in V^{(k,0,1)}$

(orthogonal projection of \hat{f} onto $V^{(k,0,1)}$)

Since $V^{(k,0,1)}\subset V^{(k)},$ we have $A^{(k,0,1)}(\hat{f})=A^{(k,0,1)}(A^{(k)}(\hat{f}))$ and the problem becomes

minimize:
$$||A^{(k)}(\hat{f}) - \hat{f}^{(k,0,1)}||$$

subject to: $\hat{f}^{(k,0,1)} \in V^{(k,0,1)}$

(orthogonal projection of $A^{(k)}(\hat{f})$ onto $V^{(k,0,1)}$) \updownarrow

$$\int_{[0,1]^n} [(A^{(k)}\hat{f})(x) - \hat{f}^{(k,0,1)}(x)] (\bigwedge_{i \in S} x_i - x_j) dx = 0$$

$$\forall S \subseteq N, S \neq \{j\}, 1 \leq |S| \leq k$$

For k = 1 we obtain:

$$a_{\emptyset}^{(1,0,1)} = 0$$

$$a_{i}^{(1,0,1)} = a_{i}^{(1)} + \frac{1}{n} \left(1 - \sum_{j \in N} a_{j}^{(1)}\right), \quad i \in N$$

Increasing approximations having two fixed values

We set

$$V^{[k,0,1]} := \left\{ \hat{f}^{[k,0,1]} \,\middle|\, \hat{f}^{[k,0,1]} \in V^{(k,0,1)}, \, \hat{f}^{[k,0,1]} \text{ is increasing} \right\}$$

Any element in $V^{[k,0,1]}$ is of the form

$$\hat{f}^{[k,0,1]}(x) = \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{[k,0,1]} \bigwedge_{i \in T} x_i$$

with

$$\begin{cases} a_{\emptyset}^{[k,0,1]} = 0 \\ \sum_{\substack{T \subseteq N \\ |T| \le k}} a_T^{[k,0,1]} = 1 \\ \sum_{\substack{T: i \in T \subseteq S \\ |T| \le k}} a_T^{[k,0,1]} \ge 0, \quad S \subseteq N, i \in S. \end{cases}$$

 $V^{[k,0,1]}$ is a non-empty closed convex polyhedron in $V^{(k,0,1)}$.

Problem

Given $\hat{f} \in V^{(n)}$, we search for the solution $\hat{f}^{[k,0,1]} = A^{[k,0,1]}(\hat{f})$ of

minimize:
$$\|\hat{f} - \hat{f}^{[k,0,1]}\|$$
 subject to: $\hat{f}^{[k,0,1]} \in V^{[k,0,1]}$

(projection of \hat{f} onto the polyhedron $V^{[k,0,1]}$)

Since $V^{[k,0,1]} \subset V^{(k,0,1)}$, we can replace \hat{f} by $A^{(k,0,1)}(\hat{f})$.

Case of k = 1: the closest weighted arithmetic mean to a Lovász extension

Problem

Find the solution $(a_1^{[1,0,1]},\ldots,a_n^{[1,0,1]})\in\mathbb{R}^n$ of:

minimize:
$$\int_{[0,1]^n} \left[\sum_{i=1}^n a_i^{(1,0,1)} x_i - \sum_{i=1}^n a_i^{[1,0,1]} x_i \right]^2 dx$$

subject to:

$$\begin{cases} \sum_{i=1}^{n} a_i^{[1,0,1]} = 1\\ a_i^{[1,0,1]} \ge 0, \quad i \in N. \end{cases}$$

Recall that

$$V^{(1,0,1)} = \left\{ \sum_{i=1}^{n} \omega_i \, x_i \, \middle| \, \sum_{i=1}^{n} \omega_i = 1, \omega_i \in \mathbb{R} \right\}$$
$$V^{[1,0,1]} = \left\{ \sum_{i=1}^{n} \omega_i \, x_i \, \middle| \, \sum_{i=1}^{n} \omega_i = 1, \omega_i \ge 0 \right\}$$

 $V^{(1,0,1)}$ is the affine hull of x_1, \ldots, x_n $V^{[1,0,1]}$ is the convex hull of x_1, \ldots, x_n

$$\dim(V^{(1,0,1)}) = \dim(V^{[1,0,1]}) = n - 1$$

$$||x_i - x_j|| = \frac{1}{\sqrt{6}}, \quad \forall i, j \in N, i \neq j$$

 $P := V^{[1,0,1]}$ is a regular simplex in $V^{(1,0,1)}$

Assume $\hat{g} := A^{(1,0,1)}(\hat{f}) \in V^{(1,0,1)} \setminus P$. Then $A^{[1,0,1]}(\hat{f})$ can be obtained by projecting \hat{g} onto P.

There exists a facet $F_{\hat{g}}$ of P such that the affine hull $\operatorname{aff}(F_{\hat{g}})$ of its vertices contains \hat{g} or separates \hat{g} from P.

Theorem

Let $\hat{g} \in V^{(1,0,1)} \setminus P$. Then the projection of \hat{g} onto P is in $F_{\hat{g}}$.

The projection of \hat{g} onto P can be obtained by first projecting \hat{g} onto aff $(F_{\hat{g}})$ and then projecting, if necessary, the obtained projection onto $F_{\hat{g}}$.

If more than one affine hull contain \hat{g} or separate it from P then the projection onto P is clearly in the intersection of the corresponding facets.

Prestep.
$$P := V^{[1,0,1]}, \, \hat{g} := A^{(1,0,1)}(\hat{f}).$$

- Step 1. $F_{\hat{g}}^{\cap} := \text{intersection of all the facets of } P \text{ whose affine hull contains } \hat{g} \text{ or separates it from } P.$
- Step 2. $\hat{h} := \text{projection of } \hat{g} \text{ onto aff}(F_{\hat{g}}^{\cap}).$
- Step 3. If $\hat{h} \in F_{\hat{g}}^{\cap}$ then \hat{h} is the projection of $A^{(1,0,1)}(\hat{f})$ onto $P, \longrightarrow \text{stop}$, else $P \leftarrow F_{\hat{g}}^{\cap}$, $\hat{g} \leftarrow \hat{h}$, return to Step 1.

Example:

Let $\hat{f}:[0,1]^4\to\mathbb{R}$ be given by

$$\hat{f}(x) = \frac{3}{10} [x_1 + x_2 + x_3 + (x_1 \wedge x_2) + (x_1 \wedge x_3) + (x_2 \wedge x_3)] - \frac{21}{25} (x_1 \wedge x_2 \wedge x_3) + \frac{1}{25} (x_1 \wedge x_2 \wedge x_3 \wedge x_4).$$

The best linear approximation is given by

$$(A^{(1)}\hat{f})(x) = \frac{1}{100} + \frac{89}{250}(x_1 + x_2 + x_3) + \frac{1}{125}x_4$$

and the best min-quadratic approximation by

$$(A^{(2)}\hat{f})(x) = -\frac{27}{700} + \frac{803}{1750}(x_1 + x_2 + x_3) - \frac{8}{875}x_4$$
$$-\frac{19}{175}[(x_1 \wedge x_2) + (x_1 \wedge x_3) + (x_2 \wedge x_3)]$$
$$+\frac{2}{175}[(x_1 \wedge x_4) + (x_2 \wedge x_4) + (x_3 \wedge x_4)].$$

We also have

$$(A^{(1,0,1)}\hat{f})(x) = \frac{337}{1000}(x_1 + x_2 + x_3) - \frac{11}{1000}x_4$$

$$(A^{(2,0,1)}\hat{f})(x) = \frac{29419}{67000}(x_1 + x_2 + x_3) - \frac{1937}{67000}x_4$$
$$-\frac{181}{1675}[(x_1 \wedge x_2) + (x_1 \wedge x_3) + (x_2 \wedge x_3)]$$
$$+\frac{4}{335}[(x_1 \wedge x_4) + (x_2 \wedge x_4) + (x_3 \wedge x_4)].$$

and

$$(A^{[1,0,1]}\hat{f})(x) = \frac{1}{3}(x_1 + x_2 + x_3).$$

Applications to Multicriteria Decision Making

Example (Grabisch, 1995)

3 students: a, b, c

3 criteria: mathematics (M), physics (P), and literature (L)

Aggregation operator: weighted arithmetic mean

Weights: 3, 3, 2.

student	M	Р	L	global evaluation
a	18	16	10	15.25
b	10	12	18	12.75
c	14	15	15	14.62

No weight vector $(\omega_M, \omega_P, \omega_L)$ satisfying $\omega_M = \omega_P > \omega_L$ is able to favor student c:

$$c \succ a \iff \omega_L > \omega_M$$

We substitute a non-additive measure to the weight vector (additive measure)

Definition (Choquet, 1953)

A Choquet capacity on N is a set function $\mu: 2^N \to [0,1]$ satisfying

i)
$$\mu_{\emptyset} = 0, \mu_{N} = 1$$

$$ii)$$
 $S \subseteq T \Rightarrow \mu_S \leq \mu_T$

For example, we can define

$$\mu_{\emptyset} = 0$$
 $\mu_{M} = 0.45$ $\mu_{MP} = 0.50$ $\mu_{MPL} = 1$ $\mu_{P} = 0.45$ $\mu_{ML} = 0.90$ $\mu_{L} = 0.30$ $\mu_{PL} = 0.90$

Any real valued set function can be assimilated unambiguously with a pseudo-Boolean function. Particularly, to any Choquet capacity μ corresponds a unique increasing pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ such that $f(\mathbf{0}) = 0$ and $f(\mathbf{1}) = 1$:

$$\mu \longleftrightarrow f_{\mu}(x) = \sum_{T \subseteq N} a_T \prod_{i \in T} x_i$$

with

$$a_S = \sum_{T \subseteq S} (-1)^{|S \setminus T|} \mu_T, \quad S \subseteq N.$$

$$a_{\emptyset} = 0$$
 $a_{\text{M}} = 0.45$ $a_{\text{MP}} = -0.40$ $a_{\text{MPL}} = -0.10$ $a_{\text{P}} = 0.45$ $a_{\text{ML}} = 0.15$ $a_{\text{L}} = 0.30$ $a_{\text{PL}} = 0.15$

Definition (Choquet, 1953)

Let μ be a Choquet capacity on N. The (discrete) Choquet integral of a function $x: N \to [0,1]$ w.r.t. μ is defined by

$$C_{\mu}(x) := \sum_{i=1}^{n} x_{(i)} \left[\mu_{\{(i),\dots,(n)\}} - \mu_{\{(i+1),\dots,(n)\}} \right],$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

We also have

$$\mathcal{C}_{\mu}(x) = \hat{f}_{\mu}(x) = \sum_{T \subseteq N} a_T \bigwedge_{i \in T} x_i$$

Theorem

Let $M_{\mu}: [0,1]^n \to \mathbb{R}$ be an aggregation operator depending on a Choquet capacity μ on N. Then M_{μ} is

• linear w.r.t. the Choquet capacity: there exist functions $g_T(x): [0,1]^n \to \mathbb{R}, T \subseteq N$, such that

$$M_{\mu}(x) = \sum_{T \subseteq N} a_T g_T(x), \quad \forall \mu.$$

- increasing in each variable
- stable for the positive linear transformations

$$M_{\mu}(r x_1 + s, \dots, r x_n + s) = r M_{\mu}(x_1, \dots, x_n) + s$$
 for all $x \in [0, 1]^n$ and all $r > 0, s \in \mathbb{R}$.

• an extension of μ :

$$M_{\mu}(e_T) = \mu_T, \quad T \subseteq N.$$

if and only if $M_{\mu} = \mathcal{C}_{\mu}$.

Back to the example:

student	M	Р	L	WAM_{ω}	\mathcal{C}_{μ}
a	18	16	10	15.25	13.90
b	10	12	18	12.75	13.60
c	14	15	15	14.62	14.60

$$C_{\mu}: c \succ a \succ b$$

Linear approximation:

$$A^{[1,0,1]}(\mathcal{C}_{\mu}) = 0.29 x_M + 0.29 x_P + 0.42 x_L$$

Proposition

When $n \leq 3$, the weights of the linear approximation identify with the Shapley value :

$$a_i^{[1,0,1]} = \phi_{\mu}(i) = \sum_{T \ni i} \frac{1}{|T|} a_T, \quad i \in N.$$

However, for

$$\hat{f}(x) = \frac{3}{10} [x_1 + x_2 + x_3 + (x_1 \wedge x_2) + (x_1 \wedge x_3) + (x_2 \wedge x_3)] - \frac{21}{25} (x_1 \wedge x_2 \wedge x_3) + \frac{1}{25} (x_1 \wedge x_2 \wedge x_3 \wedge x_4),$$

we have

$$a_1^{[1,0,1]} = a_2^{[1,0,1]} = a_3^{[1,0,1]} = \frac{1}{3} \text{ and } a_4^{[1,0,1]} = 0$$

 $\phi(1) = \phi(2) = \phi(3) = \frac{33}{100} \text{ and } \phi(4) = \frac{1}{100}$

Min-quadratic approximation:

$$A^{[2,0,1]}(\mathcal{C}_{\mu}) = 0.47 x_M + 0.47 x_P + 0.31 x_L -0.45 (x_M \wedge x_P) + 0.10 [(x_M \wedge x_L) + (x_P \wedge x_L)]$$

student	M	Р	L	WAM_{ω}	\mathcal{C}_{μ}	$A^{[2,0,1]}(\mathcal{C}_{\mu})$
a	18	16	10	15.25	13.90	13.83
b	10	12	18	12.75	13.60	13.67
c	14	15	15	14.62	14.60	14.88