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Approximations of pseudo-Boolean
functions

Preliminary result (Hammer and Rudeanu. 1968)

Any pseudo-Boolean function f : {0,1}" — IR has a unique
expression as a multilinear polynomial in n variables:

fle)= % ap Il =, x€{0,1}",

TCN €T

where N ={1,...,n} and ay € R.

Definition

Let f:{0,1}" — R and k£ € {0,...,n}. The best k-th
approximation of f is the multilinear polynomial f*): {0, 1} —
IR of degree < k defined by

TCN ASE

which minimizes

> [fz) = [P )

ze{0,1}7

among all multilinear polynomials of degree < k.



Let S C N. The S-derivative of f at x € {0,1}", denoted
As f(z), is defined inductively as

Aif(z) = fla|zi=1)— flz]z; =0),
Ay flz) = Ai(A; @) = Ai(A; f)lz),

As flz) = Af(Agy f)lz)

Theorem (Hammer and Holzman, 1992)

The best k-th approximation f*) is given by the unique solution
of the triangular linear system

1 1
— > AgfPz)=— ¥ Agf(z), VSCN, |S|<E.
2" zefo1)n 2" zefo1yn

Theorem (Grabisch, Marichal, and Roubens, 1998)

The coefficients agk) of the best k-th approximation f*) are

given from those of f by

k —|S T\S|—
as) = as+ (=1 = (5
\T|>k

SIT\S] ar, S C N, ’Si < k.



Approximations of Lovasz extensions

The Lovasz extension (Lovéasz, 1983; Singer, 1985)

Let II,, denote the family of all permutations @ of N. The
Lovdsz extension f :[0,1]" — IR of any pseudo-Boolean function
f 18 defined on each n-simplex

Br ={z €[0,1]"[zz) <+ S ar(n}, mE L,

as the unique affine function which interpolates f at the n + 1
vertices of B.:

flo)= S ar Ax, w€ 0, 1]".

TCN €T

Definition

Let f be the Lovész extension of a pseudo-Boolean function f,
and let k£ € {0,...,n}. The best k-th approximation of f is the
min-polynomial £ : [0,1]* — R of degree < k defined by

fO@) = % o A

TCN el
T|<k

which minimizes

~ ~

/[0,1]n[f(5’7> — f(k)@f)F dx

among all min-polynomials of degree < k.
We write f*) = AF)(£).



We set

:{f

TCN €T

. . . -)TI,
V(") is a vector space isomorphic to IR* :

A~

f <a’T>TgN

In particular,

In V" we define

e a scalar product: ( fl, fg /01 f1

e anorm: || f]| == (f, )2

o a distance: d(fy, f2) = | fi — fol in VO

For any k € {0,...,n}, we set

~

vk . {f(k)

~

| ! T

(vector subspace in V(™)

A basis for V¥ is given by

folz) da

fO@) = < a Az, L af)

BW®) — {/\ij]S C N, |S| <k}
JjE

In particular,

flz)= X ar A =, ar € R}

c R}



The best k-th approximation f (k) = AR)( f ) is given by

minimize: ||f — f®)]
subject to: f*) ¢ V¥

(orthogonal projection of f onto V(’f))

i
/[Oyl}n[f(at) — ()] é\sq;j dr =0, VSCN,|S| <k
je
)
Z aT/[O,l]" /\ X; /\ 33] dr = Z a{[{b) '/[O,l]n /\ Z; /\ .’I,'j dx

TCN €T jeSs TCN €T jeSs
|Ti<k
VS CN,|S| <k
. T+ [S] + 2
with x; N\ z;dx = |
foar L% A% = r ST B0 5 DS D)

Theorem

The coefficients a,(k) of Ak)( f ) are given from those of f by

(k—l—|S|+1) <[T\S]—1)

af) = ag+(—)F » BB Lg SCNIS| <k
= I G
ITT>k +1
For k = 1 we obtain:
(1) —2(|T| - 1)
a = a
N e
(1) 6 -
a, = >, ar, 1€ N
= (T + )(T[+2)



Approximations having two fixed values

We set
V(k,O,l) — {f(k,O,l) l Jﬁ(k,O,l) c V(k) f(lc,Ol < -0 f (k,0,1) ( ) 1}
where 0 = (0,...,0)and 1 =(1,...,1).

k,0,1)

Any element in V*01) is of the form

with

For a fixed 4 € N, these functions can also be written as

FOE) s ¥ ()
TCN,T#j €T
1<|T|<k

V&1 ig an affine subspace in V). A basis for VFO) is given
by

BFMW <IN o —aj|SC N, S # {j},1<|S] <k}

J
1€8

for one 7 € N. In particular

dim(V®OD) = dim(V®) — 2.



Problem

Given f € V™ we search for the solution f*01) = 4&01(FY of
minimize: ||f — f®0.1)
subject to: f(k’o’l) c VxR0

(orthogonal projection of f onto V#:0:1) )

Since VELD ¢ V) e have AROD(f) = ABOD(AR)(£)) and
the problem becomes

~

minimize: HA (f) f’”01|]
subject to: f*k0L g 1 (*0.1)

(orthogonal projection of Alk (f) onto V #%:0.1) )

0

fouplA® @) = FEPI@) (A - ) do =0
VS C NS £ {1 < ;s; <k

For k = 1 we obtain:

I

a’él,o,l) — 0
1
51 0,1) agl) 4+ = (1 -5 a§-1>>, 1€ N



Increasing approximations having two fixed
values

We set
VA {]E[k,o,l]

k01 ¢ 0D £lRO01] 5 mcreasmg}

k,0,1]

Any element in V' is of the form

fE(@) = 5 ar™ Az

TCN 1€T
IT|<k
with b
a[ I 0
> ap? =1
TCN
IT|<k
v >0 SCNies
T:1€TCS
IT|<k

VIES s a non-empty closed convex polvhedron in V%01,

Problem

Given f ey , we search for the solution f k0.1 — AlkO, 1]( f ) of

minimize: || f — fEO)
subject to: f#01 e Y01

(projection of f onto the polyhedron V[""’O’l])

Since V01 V(k’o’l), we can replace f bv A Ak0.1) (f)



Case of kK =1: the closest weighted
arithmetic mean to a Lovasz extension

Problem
Find the solution (a{ll’o’l], a0y € R of:
n n ¢
minimize: 0 l]n[z aEl’O’l):EZ- = a,p‘o’l]xi]z dx
S| i=1

subject to:

Recall that

V(l’o’l) = {i Wi T
1=1

i w; =1, w; € IR.}
i=1

V[l’o’l} = {” Ww; T
=1

7

i w; = 1,w; 2 0}
=1

V0.1 is the affine hull of 1, ..., 2,
VL0 is the convex hull of Ti,...,ZTnp

dim(V0) = dim(VILO)y = n — 1

1

= Vi jeN,i+#j

NG J #* ]
U

P =VOl gy regular simplex in V(101

10



Assume § == ALOD(f) e YOI P,
Then A[LO’H(f) can be obtained by projecting ¢ onto P.

There exists a facet Fj of P such that the affine hull aff(F}) of its
vertices contains g or separates g from F.

Theorem

Let g € VLOU\ P. Then the projection of § onto P is in F}.

The projection of g onto P can be obtained by first projecting g
onto aff(F) and then projecting, if necessary, the obtained pro-
jection onto Fj.

11



A\
N\

aft(F,)

If more than one affine hull contain g or separate it from P then the
projection onto P is clearly in the intersection of the corresponding
facets.

Prestep. P := VILoO1 g = A(l’o’l)(f).

Step 1. Fg” := intersection of all the facets of P whose affine hull
contains g or separates it from P.

~

Step 2.  h := projection of § onto aff(F}").

Step 3. Ifhe F}' then h is the projection of ALOD(F) onto P, — stop,
else P« F}!, § + h, return to Step 1.



* < 0}, - Output:
ifi € R, (AL (z) = 3 af m;.
a; ifi¢ R. e

13



Example:

Let f :[0,1]* — R be given by

fl@) =

10 [5131 + I9 + T3 —+ <:Z?1 7AN 332> —+ (CEl AN CL‘3> + (:1,’2 VAN :273)]
——1 ( A A\ ) —1 ( AN A\ A )

T €T T3 + X €T X Ta).
25 1 2 3 25 1 2 3 4

The best linear approximation is given by
A 1 89 1

(A(1>f>($) = m + ﬁ(l’l + T9 +CI’3> + ﬁl‘z}
and the best min-quadratic approximation by
o A 27 803 8
A 2) - - ) —
(ATS)() 00 T I7pg (P17 wa) — g
1
—1s (21 A x3) + (21 A x3) + (9 A 23)]
2
175 (21 Axy) + (22 A zy) + (23 A 24)].
We also have
337 11
(1,0,1) o
(AN f)() = 56 (@1 + 22 3) = 555 7
A 29419 1937
A(Q,O,l) _ . .
( f)(z) 67(1%(% (21 + 22+ 23) — o5 T
1o (21 N xo) + (27 A x3) + (22 A 3))
335 (21 A zq) + (22 A zg) + (3 A 24)].
and !
(A[l’o’l]‘ﬂ(a?) = — (5171 + X9 + 5233>.

3
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Applications to Multicriteria Decision
Making

Example (Grabisch, 1995)

3 students: a, b, ¢

3 criteria: mathematics (M), physics (P), and literature (L)
Aggregation operator: weighted arithmetic mean

Weights: 3, 3, 2.

student [M P L |global evaluation
a 18 16 10 15.25
b 10 12 18 12.75
C 14 15 15 14.62

No weight vector (wpys,wp,wy,) satistying wy; = wp > wy, is able
to favor student ¢ :

cC>a <~ Wy > Wiy

We substitute a non-additive measure to the weight vector (addi-

tive measure)

Definition (Choquet, 1953)

A Choquet capacity on N is a set function u : 2 — [0, 1] satis-
fying

1)t

it) S

=0,uv=1
CT = ps<pr



For example, we can define

Ly = 0 MU\ = 0.45 NP = 0.50 LMPL = 1
pp =045 gy = 0.90
py, = 0.30 ppr, = 0.90

Any real valued set function can be assimilated unambiguously
with a pseudo-Boolean function. Particularly. to any Choquet ca-
pacity i corresponds a unique increasing pseudo-Boolean function

f:{0,1}" — R such that f(0) =0and f(1)=1:
b fla)= X ar T a

TCN 1€T
with
as — Z (—1)‘S\T*/LT, S g N.
TCS
ap = 0 ayp = 0.45 amp — —0.40 apMPpPL, = —0.10

ap = 0.45 aMmr =— 0.15
ay, = 0.30 apy, = 0.15

Definition (Choquet, 1953)

Let 1 be a Choquet capacity on N. The (discrete) Choquet inte-
gral of a function x : N — [0, 1] w.r.t. p is defined by

Cul®) = X 20 @)} — B3+ Dmt;
with the convention that z(;) < --- < x(y).

We also have

16



Theorem

Let M, : [0,1]" — IR be an aggregation operator depending on a
Choquet capacity g on N. Then M), is

o linear w.r.t. the Choquet capacity :
there exist functions gr(z) : [0,1]" — R, T C N, such that

My(z)= 3 argr(z), Yu

TCN
e increasing in each variable
e stable for the positive linear transformations
Mrzi+s,...,rxp+s) =7 M,(z1,...,2,) + 5
for all z € [0,1]" and all » > 0,s € R.
e an extension of [ :

M'ﬂ(eT) = U, T C N.

if and only if M, = C,.

Back to the example :

student M P L |WAM, | C,
a 18 16 10| 15.25 ]13.90
b 10 12 18| 12.75 |13.60
c 14 15 15| 14.62 |14.60

Cho:c=axb

17



Linear approximation :

AMOUC ) =0292) +0.292p +0.422;

Proposition

When n < 3, the weights of the linear approximation identify with
the Shapley value :

1 0,1] 1 .
¢#< ) 'ﬁ(lj‘7 1€ N.
75 |T|
However, for
- 3
f(z) = 0 [z1 + 2o+ 25+ (x1 Aze) + (1 Axg) + (29 A x3)]
21 A I o
—ég(:cl 1‘2/\$3)+§—5($1/\(LQ/\‘Lg/\xﬁ;),
we have
agl,o,l] _ agl,o,l] _ a:{)},o ST - and LL[ 011 _ g
J
33 1
1) = ¢(2) = p(3 —— and ¢

Min-quadratic approximation :

AROY(C )Y = 0472y +0472p +0.31 2,
—0.45 (:UM N :Cp) + 0.10 [(SL“M AN CEL) + (xp A xL)]

student M P L |WAM, | C, |AR%U(C)
a |18 16 10] 15.25 [13.90] 13.83
b |10 12 18| 12.75 |13.60| 13.67
c |14 15 15| 14.62 |14.60| 14.88
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