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The aggregation problem

Combining several numerical values into a single one

Example (voting theory)
Several individuals form quantifiable judgements about

the measure of an object.

area(box 2) __ ,
area(box 1)

box 1 box 2

x1,...,on — M(xq,...,2n) =2
where M = arithmetic mean
geometric mean
median

Decision making (voters — criteria)

x1,...,Tn = satisfaction degrees



Adggregation in multicriteria decision making
e Alternatives A = {a,b,c,...,}
e Criteria N={1,2,...,n}

e Profile ae A — (z¢,...,z5) € R”

/ N

commensurable partial scores

e Aggregation function M : R" — R
M:E"—R (ECR)

Alternative | crit. 1 --- crit. n | global score
a x{ x4 M(zg,...,z5%)
b :UZ])_ zb M(:vg,,a:%)
Example :
math. | physics | literature | global
student a 18 16 10 ?
student b 10 12 18 Ie

student ¢ 14 15 15 e




Non-commensurable scales :

price consumption comfort global
(to minimize) (to minimize) (to maximize)
car a | $10,000 0.15 /pm good ?
car b | $20,000 0.17 ¢pm excellent ?
car ¢ | $30,000 0.13 /pm very good ?
car d | $20,000 0.16 /pm good ?

Scoring approach

For each 7 € N, one can define a net score :

Si(a) ={be A|b<jar| —[{be A|b = a}
Si(a) + (JA| - 1)

s;(a) (A — 1) e [0, 1]
price | cons. | comf. || global

cara | 1.00 | 0.66 | 0.16 ?

car b | 0.50 | 0.00 | 1.00 ?

carc | 0.00 | 1.00 | 0.66 ?

card| 0.50 | 0.33 | 0.16 ?




Adggregation properties

Symmetry. M(x1,...,zn) iS Symmetric.

Increasingness. M(x1,...,zn) iS nondecreasing
in each argument.

Idempotency. M(x,...,x) =z for all x

Internality. minz; < M(z1,...,zn) < Maxz;
Note : id. 4+ inc. = int. = id.

Associativity.
AJ(AI(xlax2)7x3)::-A[(x17ﬂl(x27x3))

Decomposability.

M(x1,20,23) = M(M(z1,23), 22, M(z1,23))

Bisymmetry.

Af(A4($1,$2>,A4($3,$4))
::.Af(A1($1,$3),A4($2,$4))



Quasi-arithmetic means

Theorem 1 (Kolmogorov-Nagumo, 1930)
The functions M, : E™ — R are symmetric, continu-

ous, strictly increasing, idempotent, and decompos-
able if and only if there exists a continuous strictly

monotonic function f : E — R such that

M) = Y )] ()
1=1

f(x) M (x) name
n
x 1 Yo ox; arithmetic
n .
1=1
n
log = TTII x4 geometric
i=1
z1 1 harmonic
1 3 1
n . xi
1=1
n 1
x® (a € Rg) (% '21 :c;?‘)o‘ root-power
1=




Proposition 1 (Marichal, 2000)
Symmetry can be removed in the K-N theorem.

Theorem 2 (Fodor-Marichal, 1997)
The functions My, : [a,b]™" — R are symmetric, contin-
uous, increasing, idempotent, and decomposable
if and only if there exist o« and @ fulfilling a < a <
B < b and a continuous strictly monotonic function
f i la, 8] — R such that, for any n > 1,

( Fn(ac) if x < [a'7a]nr

My () = < Gn(x) if x € [3,0b]",

f_l[% Zn: f[median(a,:cz-,ﬁ)]} otherwise
\ =1

where F,, and G, are defined by...

Open problem : remove symmetry !



Theorem 3 (Aczél, 1948)
The function M : E™ — R is symmetric, continuous,
strictly increasing, idempotent, and bisymmetric if

and only if there exists a continuous strictly mono-
tonic function f : E — R such that

M) = Y S
=1

When symmetry is removed :
There exist wy,...,wn > 0 fulfilling > ,w; =1 s.t.

n

M(z) = 1 Y wif (2:)]

i=1
f(x) M (x) name
n . .
x Y wix; arithmetic
i=1
n "y .
log x [ x;* geometric

root-power




Theorem 4 (Aczél, 1948)

The functions M, : E™ — E are continuous, strictly
increasing, and associative if and only if there exists
a continuous and strictly monotonic function f . E —

R such that

Mn(z) = f71 3 ien)
1=1

+ idempotency : 0

Open problem : replace str. increasing by increasing

Theorem 5 (Fung-Fu, 1975)
The functions M, : E™ — R are symmetric, continu-

ous, increasing, idempotent, and associative if and
only if there exists o« € £ such that

n

median( /\ x;, \”/ mi,oz)
1=1

1=1

= median(xzq,...,Tn,q, ... ,1a)
n_



Without symmetry .

Theorem 6 (Marichal, 2000)

The functions M,, : E™ — R are continuous, increas-
ing, idempotent, and associative if and only if there
exist a, 3 € E such that

n

Mp(z) = (aml)v(@ (anBre))V(BArzn)V (N i)

=1 1=1
Without symmetry and idempotency :

Theorem 7 (Marichal, 2000)

The functions My, : [a,b]™ — [a,b] are continuous, in-
creasing, associative, and have a and b as idempotent
elements if and only if there exist o, 3 € E such that

[ Fp(x) if x € [a,a N B]7,
Mnp(x) =< Gn(x) if x € [aV 3,b]",
(aAz1) V... otherwise

where F,, and G, are defined by...



Interval scales

Example : marks obtained by students

- on a [0,20] scale : 16, 11, 7, 14

- on a [0,1] scale : 0.80, 0.55, 0.35, 0.70
- on a [-1,1] scale : 0.60, 0.10, -0.30, 0.40

Definition. M : R®" — R Jjs stable for the positive
linear transformations if

M(rz1+s,...,7ren+s) =rM(x1,...,zn) + s
for all z1,....2n € R and all 7> 0, s € R.

Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)

The function M : R" — R js stable for the positive

linear transformations if and only if

x1 — A(x) xn — A(x)
S(x) o S(x)

where A(z) = L5z, S(x) = /Silz; — A(x)]2, and
F : R"®™ — R arbitrary.

M(z) = S(z) F( ) + A(z)

Interesting unsolved problem :

Describe increasing and stable functions
10



Theorem 9 (Marichal-Mathonet-Tousset, 1999)
The function M : E™ — R is increasing, stable for
the positive linear transformations, and bisymmetric
if and only if it is of the form

n

M(z)= \/ =z or Nz or > wu
€5 €5 1=1

where SC N, S#0, wi,...,wn >0, and >, w; = 1.

Theorem 10 The functions M, : E™ — R are in-
creasing, stable for the positive linear transforma-
tions, and decomposable if and only if they are of
the form

n n 1 n
Mn(z) = \/ =; or N\ x; or z1 or = or =) =

Theorem 11 The functions M, : E"™ — R are in-
creasing, stable for the positive linear transforma-
tions, and associative if and only if they are of the
form

n n
Mp(z) = \/ = or N\ z; or =1 or zy
i=1 i=1

11



An illustrative example (Grabisch, 1996)

Evaluation of students w.r.t. three subjects:
mathematics, physics, and literature.

Student M P L global
a 0.90 | 0.80 | 0.50 ?
b 0.50 | 0.60 | 0.90 ?
C 0.70 | 0.75 | 0.75 ?

(marks are expressed on a scale from 0 to 1)

Often used: the weighted arithmetic mean

n
WAMy (z) = > wiz;
=1

with 3, w; =
WM — 0.35
wp — 0.35
Wl = 0.30

1 and w; >0 for all € N

=

Student | global
a 0.74
b 0.65
C 0.73

a>=c>b

12



Suppose we want to favor student c

Student | M P L global
a 0.90 | 0.80 | 0.50 || 0.74
b 0.50 | 0.60 | 0.90 | 0.65
c 0.70 | 0.75 | 0.75 | |0.73

No weight vector (wp, wp,w| ) satisfying
WM = wp > W
IS able to provide ¢ > a !

c>a < 0.70wp + 0.75wp + 0.75w|_
> 0.90wp + 0.80wp + 0.50w

& —0.20wp — 0.05wp + 0.25w > 0
& —0.25wp + 0.25w >0
& WL > WM

What's wrong ?

WAM,(1,0,0) = wp = 0.35
WAM,,(0,1,0) wp = 0.35
WAM,(1,1,0) = 0.70 !l

What is the importance of {M,P} 7

13



Definition (Choquet, 1953; Sugeno, 1974)
A fuzzy measure on N is a set function v : 2% — [0, 1]

such that
i) v(@)=0,v(N)=1
1) SCT = v(S) <v(T)

v(S) weight of S

degree of importance of S

A fuzzy measure is additive if
v(SUT) =v(S)+ov(T) ifSNT =10
— Independent criteria

v(M,P) =v(M) +v(P) (=0.70)

Question : how can we extend the weighted arith-
metic mean by taking into account the interaction
among criteria ?

14



The discrete Choquet integral

Definition
Let v € Fn. The (discrete) Choquet integral of
x € R" w.r.t. v is defined by

n

Co(x) = ) zp[v(Ag)) —v(Ag41))]

i=1
with the convention that T(1) < ... < T(p)-
Also, A(z) = {(Z), Ceey (n)}

Example: If z3 < z1 < 29, We have

CU(ajl?anx:S) — I3 [U(37 172> o ’U(].,Q)]
+ z1 [v(1,2) —v(2)]
+ x2 v(2)

Particular case:

v additive = (C, = WAM,

Indeed,

Co(@) = Y- agyo(@) = Y @i 0()
1=1 W;

1 =1 i

15



Properties of the Choquet integral

e Linearity w.r.t. the fuzzy measures
There exist 2™ functions fpr : R — R (T" C N)
such that

Cv= > o(T) fr (v € Fn)
TCN
Indeed, on can show that
Co(z) = Y (@) Y (—DIEFITEA o
TCN KDT icK
fT‘(rfB)

7

e Stability w.r.t. positive linear transformations
For any x € R",r > 0,s € R,

Co(rzi1+s,....,raxn+3s) =rCy(x1,...,2n) + s

Example : marks obtained by students

- on a [0,20] scale : 16, 11, 7, 14

- on a [0, 1] scale : 0.80, 0.55, 0.35, 0.70

- on a [—1,1] scale : 0.60, 0.10, —0.30, 0.40

Remark : The partial scores may be embedded
in [0, 1]

16



e INncreasing monotonicity
For any z,z’ € R", one has

r; <z, YieN = Cy(z)<Cy(a)

e Cy IS properly weighted by v
Cv(eg) = v(S) (SCN)

eg = characteristic vector of S in {0,1}"
Example @ egy 31 = (1,0,1,0,...)

Independent criteria Dependent criteria
WAMw(e{Z}) — Wy Cv(e{z}) — ’U(’L)
WAMw(e{Z,]}) — Wy _I_ wj C’U(e{z,]}) — U(Zaj)
Example :

v(M,P) < v(M) + v(P)

I I I
Cy(1,1,0) C»(1,0,0) C,(0,1,0)

17



AXxiomatic characterization of the class of
Choquet integrals with n arguments

Theorem (Marichal, 2000)
The operators M, : R* - R (v € Fy) are

linear w.r.t. the underlying fuzzy measures v
M, is of the form

My= > o(T) fr (v € Fn)
TCN

where fr's are independent of v

stable for the positive linear transformations

My(rxqy+s,...,7rxn+5s) =rMy(xq,...,2n) + s
for all x e R",r > 0,s € R, and all v € Fy

INncreasing

properly weighted by v
My(eg) = v(5) (S C N,veFy)

if and only if My, =C, for all v € Fy

18



Back to the example
Assumptions :
- M and P are more important than L

- M and P are somewhat substitutive

Non-additive model : C,

v(M) = 0.35
v(P) = 0.35
v(L) = 0.30

v(M,P) = 0.60
v(M, L) = 0.80

(redundancy)
(complementarity)

v(P,L) = 0.80 (complementarity)
v(0) =0
v(M,P,L) =1
Student M P L WAM | Choquet

a 0.90 | 0.80 | 0.50 | 0.74 0.71

b 0.50 | 0.60 | 0.90 | 0.65 0.67

c 0.70 | 0.75 | 0.75 || 0.73 0.74

Now : |c>=a > b

19




Another example (Marichal, 2000)

Student M P L global
a 0.90 | 0.70 | 0.80 ?
b 0.90 | 0.80 | 0.70 ?
c 0.60 | 0.70 | 0.80 ?
d 0.60 | 0.80 | 0.70 ?

Behavior of the decision maker :
When a student is good at M (0.90), it is preferable
that he/she is better at L than P, so

a>=>b

When a student is not good at M (0.60), it is prefer-
able that he/she is better at P than L, so

d > c

Additive model : WAM,,

a>=b & w_ >wp

} No solution !
d>=c & w_<wp

Non additive model : C,

Student M P L global
a 0.90 | 0.70 | 0.80 0.81
b 0.90 | 0.80 | 0.70 0.79
C 0.60 | 0.70 | 0.80 0.71
d 0.60 | 0.80 | 0.70 0.72

20



Particular cases of Choquet integrals

Weighted arithmetic mean

n n
WAMy(z) = ) wiz;, > w; =1, w;>0
1=1 =1

Proposition
Let v € Fy.
The following assertions are equivalents
i) v is additive
it) 3 a weight vector w such that C, = WAM,,
111) Cy is additive: Cy(z + ') = Co () + Cu(2)

Ordered weighted averaging (Yager, 1988)

n n
OV\/Aw(CE) — Z wzx(z) , Z w; — 1, Wy 2 0

with the convention that T(1) < ... < T(p)-

Proposition (Grabisch-Marichal, 1995)
Let v € Fy.

T he following assertions are equivalents
i) v is cardinality-based

i1) 3 a weight vector w such that C, = OWA,
111) Cyp is a symmetric function.

21



Ordinal scales

Example : Evaluation of a scientific journal paper

on importance

1=Poor, 2=Below average, 3=Average,
4=Very Good, 5=Excellent

Values : 1, 2, 3,4, 5
or: 2,7, 20, 100, 246

or : -46, -3, 0, 17, 98

Numbers assigned to an ordinal scale are defined up
to an increasing bijection ¢ : R — R.

Definition. A function M : E™ — R is comparison

meaningful if for any increasing bijection ¢ : E — E
and any z,x' € E",

M(x1,...,2n) < M(ZY,...,2))
)

M(p(x1);- - p(zn)) < M(p(@1),- .., p(ah))

22



Means on ordered sets

Example. The arithmetic mean is a meaningless
function. Consider

345 1+ 8
4 — —+ < —+ = 4.5
2 2
and any bijection ¢ such that ¢(1) = 1, ¢(3) = 4,

©0(5) =7, ¢(8) = 8. We have

5.5=ﬂ<1+8:

— =45
2 2

Theorem 12 (Ovchinnikov, 1996)

The function M : E™ — R is symmetric, continuous,
internal, and comparison meaningful if and only if
there exists k € N such that

M(z) = z(p) (x € E™)

Note : z(;) = median(x) if n =2k -1

23



Lattice polynomials

Definition. A lattice polynomial defined in R™ is any
expression constructed from the variables xzq1,...,xzn
and the symbols A, V.

Example : (zoV (x1 Ax3)) A(x4 V 22)

It can be proved that such an expression can always
be put in the form

Le(x) = \/ /\ x;
TCN ieT
c(T)=1

where ¢ : 2V — {0,1} is a nonconstant set function
such that ¢(@) = 0.

In particular,

L) = V N @i
TCN €T
T |=n—k+1

median(:cl,...,x%_l) = \/ /\ x;
TCN €T
T|=k

24



Without symmetry

Theorem 13 (Marichal-Mathonet, 2001)

The function M : E™ — R is continuous, idempotent,
and comparison meaningful if and only if there ex-
ists a nonconstant set function ¢ : 2V — {0,1}, with
c(0) = 0, such that

M(z) = Le(x) (z € E")

Without symmetry and idempotency :

Theorem 14 The function M : E™ — R is non-
constant, continuous, and comparison meaningful if
and only if there exist a nonconstant set function
c:2N — {0,1}, with ¢(§) = 0, and a continuous and
strictly monotonic function g : E — R such that

M(z) = g(Lc()) (z € E")

25



Replacing continuity by increasing monotonicity:

Theorem 15 (Marichal-Mathonet, 2001)
Assume that E is open. The function M : E™ — R is
increasing, idempotent, and comparison meaningful
if and only if there exists a nonconstant set function
c: 2N — {0,1}, with ¢(0) = 0, such that

M(z) = Le(z)  (z € EM)

Open problem : Describe increasing and compari-
son meaningful functions.
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Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)
Ifve Fy is {0,1}-valued then Cy(x) = Ly(x)

Conversely, we have L¢(x) = Cc(x)

Proposition 3 (Radojevic¢, 1998)

A function M : E™ — R is a Choquet integral if and
only if it is a weighted arithmetic mean of lattice
polynomials

q
Co(z) = > wj Le,(x)
1=1

T his decomposition is not unique !

0.2z1 + 0.6x25 4+ 0.2(x1 A z2)
= 0.425 4+ 0.4(x1 AN xp) + 0.2(x1 V z2)

27



Proposition 4 (Marichal, 2001)

Any Choquet integral can be expressed as a lattice

polynomial of weighted arithmetic means

Co(z) = Le(91(2), ..., gn(x))

Example (continued)

0.2x1 + 0.6x5 4+ 0.2(x1 A x2)
= (0.421 4+ 0.625) A (0.221 4+ 0.8x5)

The converse is not true ! The function

(:cl + x>
2
is not a Choquet integral.

)/\$3

Unsolved problem : Give conditions under which

a

lattice polynomial of weighted arithmetic means is a

Choquet integral.
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