Aggregation Functions for Multicriteria Decision Aid

Jean-Luc Marichal Brigham Young University

The aggregation problem

Combining several numerical values into a single one

Example (voting theory)

Several individuals form quantifiable judgements about the measure of an object.

$$x_1, \dots, x_n \longrightarrow M(x_1, \dots, x_n) = x$$

where M= arithmetic mean geometric mean median

. . .

Decision making (voters → criteria)

 $x_1, \ldots, x_n = \text{satisfaction degrees}$

Aggregation in multicriteria decision making

- Alternatives $A = \{a, b, c, \dots, \}$
- Criteria $N = \{1, 2, ..., n\}$
- Aggregation function $M: \mathbb{R}^n \to \mathbb{R}$ $M: E^n \to \mathbb{R}$ $(E \subseteq \mathbb{R})$

Alternative	crit. 1	 crit. n	global score
a	x_1^a	 x_n^a	$M(x_1^a,\ldots,x_n^a)$
b	$x_{1}^{ar{b}}$	 x_n^b	$M(x_1^{\overline{b}},\ldots,x_n^b)$
i i	:	:	:

Example:

	math.	physics	literature	global
student a	18	16	10	?
student b	10	12	18	?
student c	14	15	15	?

Non-commensurable scales:

	price	consumption	comfort	global
	(to minimize)	(to minimize)	(to maximize)	
car a	\$10,000	0.15 <i>ℓ</i> pm	good	?
car b	\$20,000	0.17 <i>ℓ</i> pm	excellent	?
car c	\$30,000	0.13 <i>ℓ</i> pm	very good	?
car d	\$20,000	$0.16~\ell$ pm	good	?

Scoring approach

For each $i \in N$, one can define a *net score* :

$$S_i(a) = |\{b \in A \mid b \preccurlyeq_i a\}| - |\{b \in A \mid b \succcurlyeq_i a\}|$$

$$s_i(a) = \frac{S_i(a) + (|A| - 1)}{2(|A| - 1)} \in [0, 1]$$

	price	cons.	comf.	global
car a	1.00	0.66	0.16	?
car b	0.50	0.00	1.00	?
$car\ c$	0.00	1.00	0.66	?
$car\ d$	0.50	0.33	0.16	?

Aggregation properties

- Symmetry. $M(x_1, \ldots, x_n)$ is symmetric.
- Increasingness. $M(x_1, ..., x_n)$ is nondecreasing in each argument.
- Idempotency. M(x,...,x) = x for all x
- Internality. $\min x_i \leq M(x_1, \dots, x_n) \leq \max x_i$ Note: id. + inc. \Rightarrow int. \Rightarrow id.
- Associativity.

$$M(M(x_1, x_2), x_3) = M(x_1, M(x_2, x_3))$$

• Decomposability.

$$M(x_1, x_2, x_3) = M(M(x_1, x_3), x_2, M(x_1, x_3))$$

Bisymmetry.

$$M(M(x_1, x_2), M(x_3, x_4))$$

= $M(M(x_1, x_3), M(x_2, x_4))$

Quasi-arithmetic means

Theorem 1 (Kolmogorov-Nagumo, 1930)

The functions $M_n: E^n \to \mathbb{R}$ are symmetric, continuous, strictly increasing, idempotent, and **decomposable** if and only if there exists a continuous strictly monotonic function $f: E \to \mathbb{R}$ such that

$$M_n(x) = f^{-1} \left[\frac{1}{n} \sum_{i=1}^n f(x_i) \right]$$
 $(n \ge 1)$

f(x)	M(x)	name
x	$\frac{1}{n} \sum_{i=1}^{n} x_i$	arithmetic
$\log x$	$\sqrt[n]{\prod_{i=1}^n x_i}$	geometric
x^{-1}	$\frac{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}}$	harmonic
$x^{\alpha} \ (\alpha \in \mathbb{R}_0)$	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Proposition 1 (Marichal, 2000)

Symmetry can be removed in the K-N theorem.

Theorem 2 (Fodor-Marichal, 1997)

The functions $M_n:[a,b]^n\to\mathbb{R}$ are symmetric, continuous, increasing, idempotent, and decomposable if and only if there exist α and β fulfilling $a \leq \alpha \leq \alpha$ $\beta \leq b$ and a continuous strictly monotonic function $f: [\alpha, \beta] \to \mathbb{R}$ such that, for any $n \geq 1$,

$$M_n(x) = \begin{cases} F_n(x) & \text{if } x \in [a, \alpha]^n, \\ G_n(x) & \text{if } x \in [\beta, b]^n, \end{cases}$$

$$f^{-1} \Big[\frac{1}{n} \sum_{i=1}^n f[\mathsf{median}(\alpha, x_i, \beta)] \Big] \quad \text{otherwise}$$
 where F_n and G_n are defined by...

where F_n and G_n are defined by...

Open problem: remove symmetry!

Theorem 3 (Aczél, 1948)

The function $M: E^n \to \mathbb{R}$ is symmetric, continuous, strictly increasing, idempotent, and **bisymmetric** if and only if there exists a continuous strictly monotonic function $f: E \to \mathbb{R}$ such that

$$M(x) = f^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} f(x_i) \right]$$

When symmetry is removed:

There exist $\omega_1, \ldots, \omega_n > 0$ fulfilling $\sum_i \omega_i = 1$ s.t.

$$M(x) = f^{-1} \Big[\sum_{i=1}^{n} \omega_i f(x_i) \Big]$$

f(x)	M(x)	name
x	$\sum_{i=1}^{n} \omega_i x_i$	arithmetic
$\log x$	$\prod_{i=1}^{n} x_i^{\omega_i}$	geometric
$x^{\alpha} \ (\alpha \in \mathbb{R}_0)$	$\left(\sum_{i=1}^{n}\omega_{i}x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Theorem 4 (Aczél, 1948)

The functions $M_n: E^n \to E$ are continuous, strictly increasing, and **associative** if and only if there exists a continuous and strictly monotonic function $f: E \to \mathbb{R}$ such that

$$M_n(x) = f^{-1} \Big[\sum_{i=1}^n f(x_i) \Big]$$

+ idempotency : \emptyset

Open problem: replace str. increasing by increasing

Theorem 5 (Fung-Fu, 1975)

The functions $M_n: E^n \to \mathbb{R}$ are symmetric, continuous, increasing, idempotent, and **associative** if and only if there exists $\alpha \in E$ such that

$$M_n(x) = \text{median}\left(\bigwedge_{i=1}^n x_i, \bigvee_{i=1}^n x_i, \alpha\right)$$

= \text{median}(x_1, \ldots, x_n, \overline{\alpha}, \ldots, \overline{\alpha})

Without symmetry:

Theorem 6 (Marichal, 2000)

The functions $M_n: E^n \to \mathbb{R}$ are continuous, increasing, idempotent, and associative if and only if there exist $\alpha, \beta \in E$ such that

$$M_n(x) = (\alpha \wedge x_1) \vee \left(\bigvee_{i=1}^n (\alpha \wedge \beta \wedge x_i)\right) \vee (\beta \wedge x_n) \vee \left(\bigwedge_{i=1}^n x_i\right)$$

Without symmetry and idempotency:

Theorem 7 (Marichal, 2000)

The functions $M_n : [a,b]^n \to [a,b]$ are continuous, increasing, associative, and have a and b as idempotent elements if and only if there exist $\alpha, \beta \in E$ such that

$$M_n(x) = \begin{cases} F_n(x) & \text{if } x \in [a, \alpha \wedge \beta]^n, \\ G_n(x) & \text{if } x \in [\alpha \vee \beta, b]^n, \\ (\alpha \wedge x_1) \vee \dots & \text{otherwise} \end{cases}$$

where F_n and G_n are defined by...

Interval scales

Example: marks obtained by students

- on a [0,20] scale: 16, 11, 7, 14
- on a [0,1] scale: 0.80, 0.55, 0.35, 0.70
- on a [-1,1] scale: 0.60, 0.10, -0.30, 0.40

Definition. $M: \mathbb{R}^n \to \mathbb{R}$ is stable for the positive linear transformations if

$$M(rx_1 + s, \dots, rx_n + s) = r M(x_1, \dots, x_n) + s$$

for all $x_1, \ldots, x_n \in \mathbb{R}$ and all r > 0, $s \in \mathbb{R}$.

Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)

The function $M:\mathbb{R}^n \to \mathbb{R}$ is stable for the positive linear transformations if and only if

$$M(x) = S(x) F\left(\frac{x_1 - A(x)}{S(x)}, \dots, \frac{x_n - A(x)}{S(x)}\right) + A(x)$$

where $A(x) = \frac{1}{n} \sum_i x_i$, $S(x) = \sqrt{\sum_i [x_i - A(x)]^2}$, and $F: \mathbb{R}^n \to \mathbb{R}$ arbitrary.

Interesting unsolved problem:

Describe increasing and stable functions

Theorem 9 (Marichal-Mathonet-Tousset, 1999)

The function $M: E^n \to \mathbb{R}$ is increasing, stable for the positive linear transformations, and bisymmetric if and only if it is of the form

$$M(x) = \bigvee_{i \in S} x_i$$
 or $\bigwedge_{i \in S} x_i$ or $\sum_{i=1}^n \omega_i x_i$

where $S \subseteq N$, $S \neq \emptyset$, $\omega_1, \ldots, \omega_n \geq 0$, and $\sum_i \omega_i = 1$.

Theorem 10 The functions $M_n : E^n \to \mathbb{R}$ are increasing, stable for the positive linear transformations, and decomposable if and only if they are of the form

$$M_n(x) = \bigvee_{i=1}^n x_i \text{ or } \bigwedge_{i=1}^n x_i \text{ or } x_1 \text{ or } x_n \text{ or } \frac{1}{n} \sum_{i=1}^n x_i$$

Theorem 11 The functions $M_n: E^n \to \mathbb{R}$ are increasing, stable for the positive linear transformations, and associative if and only if they are of the form

$$M_n(x) = \bigvee_{i=1}^n x_i$$
 or $\bigwedge_{i=1}^n x_i$ or x_1 or x_n

An illustrative example (Grabisch, 1996)

Evaluation of students w.r.t. three subjects: mathematics, physics, and literature.

Student	M	Р	L	global
a	0.90	0.80	0.50	?
b	0.50	0.60	0.90	?
c	0.70	0.75	0.75	?

(marks are expressed on a scale from 0 to 1)

Often used: the weighted arithmetic mean

$$WAM_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_i$$

with $\sum_i \omega_i = 1$ and $\omega_i \geq 0$ for all $i \in N$

$$\begin{array}{c}
\omega_{\mathsf{M}} = 0.35 \\
\omega_{\mathsf{P}} = 0.35 \\
\omega_{\mathsf{L}} = 0.30
\end{array} \Rightarrow \begin{array}{c}
\mathsf{Student} & \mathsf{global} \\
\hline
a & 0.74 \\
b & 0.65 \\
c & 0.73
\end{array}$$

$$a \succ c \succ b$$

Suppose we want to favor student c

Student	M	Р	L	global
a	0.90	0.80	0.50	0.74
b	0.50	0.60	0.90	0.65
c	0.70	0.75	0.75	0.73

No weight vector $(\omega_{M}, \omega_{P}, \omega_{L})$ satisfying

$$\omega_{\mathsf{M}} = \omega_{\mathsf{P}} > \omega_{\mathsf{L}}$$

is able to provide $c \succ a$!

$$c \succ a \Leftrightarrow 0.70\omega_{M} + 0.75\omega_{P} + 0.75\omega_{L}$$

$$> 0.90\omega_{M} + 0.80\omega_{P} + 0.50\omega_{L}$$

$$\Leftrightarrow -0.20\omega_{M} - 0.05\omega_{P} + 0.25\omega_{L} > 0$$

$$\Leftrightarrow -0.25\omega_{M} + 0.25\omega_{L} > 0$$

$$\Leftrightarrow \omega_{L} > \omega_{M}$$

What's wrong ?

$$WAM_{\omega}(1,0,0) = \omega_{M} = 0.35$$

 $WAM_{\omega}(0,1,0) = \omega_{P} = 0.35$
 $WAM_{\omega}(1,1,0) = 0.70 !!!$

What is the importance of $\{M,P\}$?

Definition (Choquet, 1953; Sugeno, 1974) A fuzzy measure on N is a set function $v: 2^N \to [0,1]$ such that

- $i) \quad v(\emptyset) = 0, v(N) = 1$
- ii) $S \subseteq T \Rightarrow v(S) \le v(T)$

$$v(S)$$
 = weight of S = degree of importance of S

A fuzzy measure is additive if

$$v(S \cup T) = v(S) + v(T)$$
 if $S \cap T = \emptyset$

→ independent criteria

$$v(M,P) = v(M) + v(P)$$
 (= 0.70)

Question: how can we extend the weighted arithmetic mean by taking into account the interaction among criteria?

The discrete Choquet integral

Definition

Let $v \in \mathcal{F}_N$. The (discrete) Choquet integral of $x \in \mathbb{R}^n$ w.r.t. v is defined by

$$C_v(x) := \sum_{i=1}^n x_{(i)} [v(A_{(i)}) - v(A_{(i+1)})]$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$. Also, $A_{(i)} = \{(i), \dots, (n)\}$.

Example: If $x_3 \le x_1 \le x_2$, we have

$$C_v(x_1, x_2, x_3) = x_3 [v(3, 1, 2) - v(1, 2)] + x_1 [v(1, 2) - v(2)] + x_2 v(2)$$

Particular case:

$$v \text{ additive } \Rightarrow \mathcal{C}_v = \mathsf{WAM}_{\omega}$$

Indeed,

$$C_v(x) = \sum_{i=1}^n x_{(i)}v((i)) = \sum_{i=1}^n x_i \underbrace{v(i)}_{\omega_i}$$

Properties of the Choquet integral

• Linearity w.r.t. the fuzzy measures

There exist 2^n functions $f_T:\mathbb{R}^n\to\mathbb{R}$ $(T\subseteq N)$ such that

$$C_v = \sum_{T \subseteq N} v(T) f_T \qquad (v \in \mathcal{F}_N)$$

Indeed, on can show that

$$C_v(x) = \sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T} (-1)^{|K| - |T|} \bigwedge_{i \in K} x_i}_{f_T(x)}$$

• Stability w.r.t. positive linear transformations For any $x \in \mathbb{R}^n, r > 0, s \in \mathbb{R}$,

$$C_v(r x_1 + s, \dots, r x_n + s) = r C_v(x_1, \dots, x_n) + s$$

Example: marks obtained by students

- on a [0, 20] scale: 16, 11, 7, 14
- on a [0, 1] scale: 0.80, 0.55, 0.35, 0.70
- on a [-1,1] scale : 0.60, 0.10, -0.30, 0.40

Remark : The partial scores may be embedded in $\left[0,1\right]$

Increasing monotonicity

For any $x, x' \in \mathbb{R}^n$, one has

$$x_i \leq x_i' \quad \forall i \in N \quad \Rightarrow \quad \mathcal{C}_v(x) \leq \mathcal{C}_v(x')$$

ullet \mathcal{C}_v is properly weighted by v

$$C_v(e_S) = v(S)$$
 $(S \subseteq N)$

 $e_S = \text{characteristic vector of } S \text{ in } \{0,1\}^n$ Example : $e_{\{1,3\}} = (1,0,1,0,\ldots)$

Independent criteria

Dependent criteria

$$WAM_{\omega}(e_{\{i\}}) = \omega_i \qquad \qquad C_v(e_{\{i\}}) = v(i)$$

$$WAM_{\omega}(e_{\{i,j\}}) = \omega_i + \omega_j \qquad C_v(e_{\{i,j\}}) = v(i,j)$$

$$C_v(e_{\{i\}}) = v(i)$$

$$C_v(e_{\{i,j\}}) = v(i,j)$$

Example:

Axiomatic characterization of the class of Choquet integrals with n arguments

Theorem (Marichal, 2000)

The operators $M_v:\mathbb{R}^n \to \mathbb{R} \ (v \in \mathcal{F}_N)$ are

ullet linear w.r.t. the underlying fuzzy measures v M_v is of the form

$$M_v = \sum_{T \subseteq N} v(T) f_T \qquad (v \in \mathcal{F}_N)$$

where f_T 's are independent of v

stable for the positive linear transformations

$$M_v(r\,x_1+s,\ldots,r\,x_n+s)=r\,M_v(x_1,\ldots,x_n)+s$$
 for all $x\in\mathbb{R}^n, r>0, s\in\mathbb{R}$, and all $v\in\mathcal{F}_N$

- increasing
- ullet properly weighted by v

$$M_v(e_S) = v(S)$$
 $(S \subseteq N, v \in \mathcal{F}_N)$

if and only if $M_v = \mathcal{C}_v$ for all $v \in \mathcal{F}_N$

Back to the example

Assumptions:

- M and P are more important than L
- M and P are somewhat substitutive

Non-additive model : \mathcal{C}_v

$$v(M) = 0.35$$

 $v(P) = 0.35$
 $v(L) = 0.30$

$$v(\mathsf{M},\mathsf{P}) = 0.60$$
 (redundancy) $v(\mathsf{M},\mathsf{L}) = 0.80$ (complementarity) $v(\mathsf{P},\mathsf{L}) = 0.80$ (complementarity)

$$v(\emptyset) = 0$$

 $v(M, P, L) = 1$

Student	М	Р	L	WAM	Choquet
a	0.90	0.80	0.50	0.74	0.71
b	0.50	0.60	0.90	0.65	0.67
c	0.70	0.75	0.75	0.73	0.74

Now: $c \succ a \succ b$

Another example (Marichal, 2000)

Student	М	Р	L	global
a	0.90	0.70	0.80	?
b	0.90	0.80	0.70	?
c	0.60	0.70	0.80	?
d	0.60	0.80	0.70	?

Behavior of the decision maker:

When a student is good at M (0.90), it is preferable that he/she is better at L than P, so

$$a \succ b$$

When a student is not good at M (0.60), it is preferable that he/she is better at P than L, so

$$d \succ c$$

Additive model : WAM_{ω}

$$\left. \begin{array}{l} a \succ b & \Leftrightarrow & \omega_{\mathsf{L}} > \omega_{\mathsf{P}} \\ d \succ c & \Leftrightarrow & \omega_{\mathsf{L}} < \omega_{\mathsf{P}} \end{array} \right\} \quad \text{No solution } !$$

Non additive model : \mathcal{C}_v

Student	М	Р	L	global
a	0.90	0.70	0.80	0.81
b	0.90	0.80	0.70	0.79
c	0.60	0.70	0.80	0.71
d	0.60	0.80	0.70	0.72

Particular cases of Choquet integrals

Weighted arithmetic mean

$$WAM_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_i, \quad \sum_{i=1}^{n} \omega_i = 1, \quad \omega_i \ge 0$$

Proposition

Let $v \in \mathcal{F}_N$.

The following assertions are equivalents

- i) v is additive
- ii) \exists a weight vector ω such that $\mathcal{C}_v = \mathsf{WAM}_\omega$
- *iii*) C_v is additive: $C_v(x+x') = C_v(x) + C_v(x')$

• Ordered weighted averaging (Yager, 1988)

$$OWA_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_{(i)}, \quad \sum_{i=1}^{n} \omega_i = 1, \quad \omega_i \ge 0$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Grabisch-Marichal, 1995)

Let $v \in \mathcal{F}_N$.

The following assertions are equivalents

- i) v is cardinality-based
- ii) \exists a weight vector ω such that $\mathcal{C}_v = \mathsf{OWA}_\omega$
- iii) C_v is a symmetric function.

Ordinal scales

Example: Evaluation of a scientific journal paper on importance

Values: 1, 2, 3, 4, 5

or: 2, 7, 20, 100, 246

or: -46, -3, 0, 17, 98

Numbers assigned to an ordinal scale are defined up to an increasing bijection $\varphi : \mathbb{R} \to \mathbb{R}$.

Definition. A function $M: E^n \to \mathbb{R}$ is comparison meaningful if for any increasing bijection $\varphi: E \to E$ and any $x, x' \in E^n$,

$$M(x_1, \dots, x_n) \leq M(x'_1, \dots, x'_n)$$

$$\updownarrow$$

$$M(\varphi(x_1), \dots, \varphi(x_n)) \leq M(\varphi(x'_1), \dots, \varphi(x'_n))$$

Means on ordered sets

Example. The arithmetic mean is a meaningless function. Consider

$$4 = \frac{3+5}{2} < \frac{1+8}{2} = 4.5$$

and any bijection φ such that $\varphi(1)=1$, $\varphi(3)=4$, $\varphi(5)=7$, $\varphi(8)=8$. We have

$$5.5 = \frac{4+7}{2} \not< \frac{1+8}{2} = 4.5$$

Theorem 12 (Ovchinnikov, 1996)

The function $M: E^n \to \mathbb{R}$ is symmetric, continuous, internal, and comparison meaningful if and only if there exists $k \in N$ such that

$$M(x) = x_{(k)} \qquad (x \in E^n)$$

Note: $x_{(k)} = \text{median}(x)$ if n = 2k - 1

Lattice polynomials

Definition. A lattice polynomial defined in \mathbb{R}^n is any expression constructed from the variables x_1, \ldots, x_n and the symbols \wedge , \vee .

Example :
$$(x_2 \lor (x_1 \land x_3)) \land (x_4 \lor x_2)$$

It can be proved that such an expression can always be put in the form

$$L_c(x) = \bigvee_{\substack{T \subseteq N \\ c(T) = 1}} \bigwedge_{i \in T} x_i$$

where $c: 2^N \to \{0,1\}$ is a nonconstant set function such that $c(\emptyset) = 0$.

In particular,

$$x_{(k)} = \bigvee_{\substack{T \subseteq N \\ |T| = n - k + 1}} \bigwedge_{i \in T} x_i$$

$$\mathrm{median}(x_1,\ldots,x_{2k-1}) = \bigvee_{\substack{T \subseteq N \\ |T| = k}} \bigwedge_{i \in T} x_i$$

Without symmetry:

Theorem 13 (Marichal-Mathonet, 2001)

The function $M: E^n \to \mathbb{R}$ is continuous, idempotent, and comparison meaningful if and only if there exists a nonconstant set function $c: 2^N \to \{0,1\}$, with $c(\emptyset) = 0$, such that

$$M(x) = L_c(x) \qquad (x \in E^n)$$

Without symmetry and idempotency:

Theorem 14 The function $M: E^n \to \mathbb{R}$ is non-constant, continuous, and comparison meaningful if and only if there exist a nonconstant set function $c: 2^N \to \{0,1\}$, with $c(\emptyset) = 0$, and a continuous and strictly monotonic function $g: E \to \mathbb{R}$ such that

$$M(x) = g(L_c(x)) \qquad (x \in E^n)$$

Replacing continuity by increasing monotonicity:

Theorem 15 (Marichal-Mathonet, 2001)

Assume that E is open. The function $M: E^n \to \mathbb{R}$ is increasing, idempotent, and comparison meaningful if and only if there exists a nonconstant set function $c: 2^N \to \{0,1\}$, with $c(\emptyset) = 0$, such that

$$M(x) = L_c(x) \qquad (x \in E^n)$$

Open problem: Describe increasing and comparison meaningful functions.

Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)

If $v \in \mathcal{F}_N$ is $\{0,1\}$ -valued then $\mathcal{C}_v(x) = L_v(x)$

Conversely, we have $L_c(x) = \mathcal{C}_c(x)$

Proposition 3 (Radojević, 1998)

A function $M: E^n \to \mathbb{R}$ is a Choquet integral if and only if it is a weighted arithmetic mean of lattice polynomials

$$C_v(x) = \sum_{i=1}^q \omega_i L_{c_i}(x)$$

This decomposition is not unique!

$$0.2x_1 + 0.6x_2 + 0.2(x_1 \wedge x_2)$$

= $0.4x_2 + 0.4(x_1 \wedge x_2) + 0.2(x_1 \vee x_2)$

Proposition 4 (Marichal, 2001)

Any Choquet integral can be expressed as a lattice polynomial of weighted arithmetic means

$$C_v(x) = L_c(g_1(x), \dots, g_n(x))$$

Example (continued)

$$0.2x_1 + 0.6x_2 + 0.2(x_1 \wedge x_2)$$

= $(0.4x_1 + 0.6x_2) \wedge (0.2x_1 + 0.8x_2)$

The converse is not true! The function

$$\left(\frac{x_1+x_2}{2}\right)\wedge x_3$$

is not a Choquet integral.

Unsolved problem: Give conditions under which a lattice polynomial of weighted arithmetic means is a Choquet integral.