# Aggregation Functions for Multicriteria Decision Aid 

Jean-Luc Marichal<br>Brigham Young University

## The aggregation problem

Combining several numerical values into a single one
Example (voting theory)
Several individuals form quantifiable judgements about the measure of an object.

$$
x_{1}, \ldots, x_{n} \quad \longrightarrow \quad M\left(x_{1}, \ldots, x_{n}\right)=x
$$

where $M=$ arithmetic mean geometric mean median

Decision making (voters $\rightarrow$ criteria)
$x_{1}, \ldots, x_{n}=$ satisfaction degrees

## Aggregation in multicriteria decision making

- Alternatives $A=\{a, b, c, \ldots$,
- Criteria $N=\{1,2, \ldots, n\}$
- Profile $a \in A \longrightarrow$

commensurable partial scores
- Aggregation function $M: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
M: E^{n} \rightarrow \mathbb{R} \quad(E \subseteq \mathbb{R})
$$

| Alternative | crit. | 1 | $\cdots$ | crit. $n$ | global score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $x_{1}^{a}$ | $\cdots$ | $x_{n}^{a}$ | $M\left(x_{1}^{a}, \ldots, x_{n}^{a}\right)$ |  |
| $b$ | $x_{1}^{b}$ | $\cdots$ | $x_{n}^{b}$ | $M\left(x_{1}^{b}, \ldots, x_{n}^{b}\right)$ |  |
| $\vdots$ | $\vdots$ |  | $\vdots$ | $\vdots$ |  |

## Example :

|  | math. | physics | literature | global |
| :--- | :---: | :---: | :---: | :---: |
| student $a$ | 18 | 16 | 10 | $?$ |
| student $b$ | 10 | 12 | 18 | $?$ |
| student $c$ | 14 | 15 | 15 | $?$ |

## Non-commensurable scales :

|  | price <br> (to minimize) | Consumption <br> (to minimize) | comfort <br> (to maximize) | global |
| :---: | :---: | :---: | :---: | :---: |
| car $a$ | $\$ 10,000$ | $0.15 \ell \mathrm{pm}$ | good | $?$ |
| car $b$ | $\$ 20,000$ | $0.17 \ell \mathrm{pm}$ | excellent | $?$ |
| car $c$ | $\$ 30,000$ | $0.13 \ell \mathrm{pm}$ | very good | $?$ |
| car $d$ | $\$ 20,000$ | 0.16 lpm | good | $?$ |

## Scoring approach

For each $i \in N$, one can define a net score :

$$
\begin{gathered}
S_{i}(a)=\left|\left\{b \in A \mid b \preccurlyeq_{i} a\right\}\right|-\left|\left\{b \in A \mid b \succcurlyeq_{i} a\right\}\right| \\
s_{i}(a)=\frac{S_{i}(a)+(|A|-1)}{2(|A|-1)} \in[0,1]
\end{gathered}
$$

|  | price | cons. | comf. | global |
| :---: | :---: | :---: | :---: | :---: |
| car | $a$ | 1.00 | 0.66 | 0.16 |
| car | $b$ | 0.50 | 0.00 | 1.00 |
| car | $c$ | 0.00 | 1.00 | $?$ |
| car | $d$ | 0.50 | 0.33 | 0.16 |
| $?$ | $?$ |  |  |  |

## Aggregation properties

- Symmetry. $M\left(x_{1}, \ldots, x_{n}\right)$ is symmetric.
- Increasingness. $M\left(x_{1}, \ldots, x_{n}\right)$ is nondecreasing in each argument.
- Idempotency. $M(x, \ldots, x)=x$ for all $x$
- Internality. $\min x_{i} \leq M\left(x_{1}, \ldots, x_{n}\right) \leq \max x_{i}$ Note : id. + inc. $\Rightarrow$ int. $\Rightarrow$ id.
- Associativity.

$$
M\left(M\left(x_{1}, x_{2}\right), x_{3}\right)=M\left(x_{1}, M\left(x_{2}, x_{3}\right)\right)
$$

- Decomposability.

$$
M\left(x_{1}, x_{2}, x_{3}\right)=M\left(M\left(x_{1}, x_{3}\right), x_{2}, M\left(x_{1}, x_{3}\right)\right)
$$

- Bisymmetry.

$$
\begin{aligned}
& M\left(M\left(x_{1}, x_{2}\right), M\left(x_{3}, x_{4}\right)\right) \\
= & M\left(M\left(x_{1}, x_{3}\right), M\left(x_{2}, x_{4}\right)\right)
\end{aligned}
$$

## Quasi-arithmetic means

## Theorem 1 (Kolmogorov-Nagumo, 1930)

The functions $M_{n}: E^{n} \rightarrow \mathbb{R}$ are symmetric, continuous, strictly increasing, idempotent, and decomposable if and only if there exists a continuous strictly monotonic function $f: E \rightarrow \mathbb{R}$ such that

$$
M_{n}(x)=f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right] \quad(n \geq 1)
$$

| $f(x)$ | $M(x)$ | name |
| :---: | :---: | :---: |
| $x$ | $\frac{1}{n} \sum_{i=1}^{n} x_{i}$ | arithmetic |
| $\log x$ | $\sqrt[n]{\prod_{i=1}^{n} x_{i}}$ | geometric |
| $x^{-1}$ | $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}}$ | harmonic |
| $x^{\alpha}\left(\alpha \in \mathbb{R}_{0}\right)$ | $\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$ | root-power |

## Proposition 1 (Marichal, 2000)

Symmetry can be removed in the K-N theorem.

## Theorem 2 (Fodor-Marichal, 1997)

The functions $M_{n}:[a, b]^{n} \rightarrow \mathbb{R}$ are symmetric, continuous, increasing, idempotent, and decomposable if and only if there exist $\alpha$ and $\beta$ fulfilling $a \leq \alpha \leq$ $\beta \leq b$ and a continuous strictly monotonic function $f:[\alpha, \beta] \rightarrow \mathbb{R}$ such that, for any $n \geq 1$,

$$
M_{n}(x)= \begin{cases}F_{n}(x) & \text { if } x \in[a, \alpha]^{\prime} \\ G_{n}(x) & \text { if } x \in[\beta, b]^{r} \\ f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left[\operatorname{median}\left(\alpha, x_{i}, \beta\right)\right]\right] & \text { otherwise }\end{cases}
$$

where $F_{n}$ and $G_{n}$ are defined by...

Open problem : remove symmetry !

## Theorem 3 (Aczél, 1948)

The function $M: E^{n} \rightarrow \mathbb{R}$ is symmetric, continuous, strictly increasing, idempotent, and bisymmetric if and only if there exists a continuous strictly monotonic function $f: E \rightarrow \mathbb{R}$ such that

$$
M(x)=f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right]
$$

## When symmetry is removed :

There exist $\omega_{1}, \ldots, \omega_{n}>0$ fulfilling $\sum_{i} \omega_{i}=1$ s.t.

$$
M(x)=f^{-1}\left[\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)\right]
$$

| $f(x)$ | $M(x)$ | name |
| :---: | :---: | :---: |
| $x$ | $\sum_{i=1}^{n} \omega_{i} x_{i}$ | arithmetic |
| $\log x$ | $\prod_{i=1}^{n} x_{i}^{\omega_{i}}$ | geometric |
| $x^{\alpha}\left(\alpha \in \mathbb{R}_{0}\right)$ | $\left(\sum_{i=1}^{n} \omega_{i} x_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$ | root-power |

## Theorem 4 (Aczél, 1948)

The functions $M_{n}: E^{n} \rightarrow E$ are continuous, strictly increasing, and associative if and only if there exists a continuous and strictly monotonic function $f: E \rightarrow$ $\mathbb{R}$ such that

$$
M_{n}(x)=f^{-1}\left[\sum_{i=1}^{n} f\left(x_{i}\right)\right]
$$

## + idempotency : $\emptyset$

Open problem : replace str. increasing by increasing

## Theorem 5 (Fung-Fu, 1975)

The functions $M_{n}: E^{n} \rightarrow \mathbb{R}$ are symmetric, continuous, increasing, idempotent, and associative if and only if there exists $\alpha \in E$ such that

$$
\begin{aligned}
M_{n}(x) & =\operatorname{median}\left(\bigwedge_{i=1}^{n} x_{i}, \bigvee_{i=1}^{n} x_{i}, \alpha\right) \\
& =\operatorname{median}(x_{1}, \ldots, x_{n}, \underbrace{\alpha, \ldots, \alpha}_{n-1})
\end{aligned}
$$

## Without symmetry :

## Theorem 6 (Marichal, 2000)

The functions $M_{n}: E^{n} \rightarrow \mathbb{R}$ are continuous, increasing, idempotent, and associative if and only if there exist $\alpha, \beta \in E$ such that

$$
M_{n}(x)=\left(\alpha \wedge x_{1}\right) \vee\left(\bigvee_{i=1}^{n}\left(\alpha \wedge \beta \wedge x_{i}\right)\right) \vee\left(\beta \wedge x_{n}\right) \vee\left(\bigwedge_{i=1}^{n} x_{i}\right)
$$

Without symmetry and idempotency :

## Theorem 7 (Marichal, 2000)

The functions $M_{n}:[a, b]^{n} \rightarrow[a, b]$ are continuous, increasing, associative, and have $a$ and $b$ as idempotent elements if and only if there exist $\alpha, \beta \in E$ such that

$$
M_{n}(x)= \begin{cases}F_{n}(x) & \text { if } x \in[a, \alpha \wedge \beta]^{n} \\ G_{n}(x) & \text { if } x \in[\alpha \vee \beta, b]^{n} \\ \left(\alpha \wedge x_{1}\right) \vee \ldots & \text { otherwise }\end{cases}
$$

where $F_{n}$ and $G_{n}$ are defined by...

## Interval scales

Example : marks obtained by students

- on a $[0,20]$ scale : $16,11,7,14$
- on a [0,1] scale : 0.80, 0.55, 0.35, 0.70
- on a $[-1,1]$ scale : 0.60, 0.10, -0.30, 0.40

Definition. $M: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is stable for the positive linear transformations if

$$
M\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r M\left(x_{1}, \ldots, x_{n}\right)+s
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and all $r>0, s \in \mathbb{R}$.

## Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)

The function $M: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is stable for the positive linear transformations if and only if

$$
M(x)=S(x) F\left(\frac{x_{1}-A(x)}{S(x)}, \ldots, \frac{x_{n}-A(x)}{S(x)}\right)+A(x)
$$

where $A(x)=\frac{1}{n} \sum_{i} x_{i}, \quad S(x)=\sqrt{\sum_{i}\left[x_{i}-A(x)\right]^{2}}$, and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ arbitrary.

## Interesting unsolved problem :

Describe increasing and stable functions

## Theorem 9 (Marichal-Mathonet-Tousset, 1999)

The function $M: E^{n} \rightarrow \mathbb{R}$ is increasing, stable for the positive linear transformations, and bisymmetric if and only if it is of the form

$$
M(x)=\bigvee_{i \in S} x_{i} \quad \text { or } \quad \bigwedge_{i \in S} x_{i} \quad \text { or } \quad \sum_{i=1}^{n} \omega_{i} x_{i}
$$

where $S \subseteq N, S \neq \emptyset, \omega_{1}, \ldots, \omega_{n} \geq 0$, and $\sum_{i} \omega_{i}=1$.

Theorem 10 The functions $M_{n}: E^{n} \rightarrow \mathbb{R}$ are increasing, stable for the positive linear transformations, and decomposable if and only if they are of the form

$$
M_{n}(x)=\bigvee_{i=1}^{n} x_{i} \text { or } \bigwedge_{i=1}^{n} x_{i} \text { or } x_{1} \text { or } x_{n} \text { or } \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Theorem 11 The functions $M_{n}: E^{n} \rightarrow \mathbb{R}$ are increasing, stable for the positive linear transformations, and associative if and only if they are of the form

$$
M_{n}(x)=\bigvee_{i=1}^{n} x_{i} \text { or } \bigwedge_{i=1}^{n} x_{i} \text { or } x_{1} \text { or } x_{n}
$$

## An illustrative example (Grabisch, 1996)

Evaluation of students w.r.t. three subjects: mathematics, physics, and literature.

| Student | M | P | L | global |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.90 | 0.80 | 0.50 | $?$ |
| $b$ | 0.50 | 0.60 | 0.90 | $?$ |
| $c$ | 0.70 | 0.75 | 0.75 | $?$ |

(marks are expressed on a scale from 0 to 1 )

Often used: the weighted arithmetic mean

$$
\operatorname{WAM}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{i}
$$

with $\sum_{i} \omega_{i}=1$ and $\omega_{i} \geq 0$ for all $i \in N$

$$
\left.\begin{array}{rl}
\left.\begin{array}{r}
\omega_{\mathrm{M}}=0.35 \\
\omega_{\mathrm{P}}=0.35 \\
\omega_{\mathrm{L}}
\end{array}\right\} .0 .30
\end{array}\right\} \Rightarrow \begin{array}{|}
\mathrm{St} \\
& \Rightarrow \quad a \succ c \succ b
\end{array}
$$

Suppose we want to favor student $c$

| Student | M | P | L | global |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.90 | 0.80 | 0.50 | 0.74 |
| $b$ | 0.50 | 0.60 | 0.90 | 0.65 |
| $c$ | 0.70 | 0.75 | 0.75 | 0.73 |

No weight vector ( $\omega_{M}, \omega_{P}, \omega_{L}$ ) satisfying

$$
\omega_{\mathrm{M}}=\omega_{\mathrm{P}}>\omega_{\mathrm{L}}
$$

is able to provide $c \succ a$ !

$$
\begin{aligned}
c \succ a \Leftrightarrow & 0.70 \omega_{M}+0.75 \omega_{P}+0.75 \omega_{L} \\
& >0.90 \omega_{M}+0.80 \omega_{P}+0.50 \omega_{L} \\
& \Leftrightarrow-0.20 \omega_{M}-0.05 \omega_{P}+0.25 \omega_{L}>0 \\
& \Leftrightarrow-0.25 \omega_{M}+0.25 \omega_{L}>0 \\
& \Leftrightarrow \omega_{L}>\omega_{M}
\end{aligned}
$$

What's wrong ?

$$
\begin{aligned}
& \operatorname{WAM}_{\omega}(1,0,0)=\omega_{M}=0.35 \\
& \operatorname{WAM}_{\omega}(0,1,0)=\omega_{P}=0.35 \\
& \operatorname{WAM}_{\omega}(1,1,0)=0.70!!!
\end{aligned}
$$

What is the importance of $\{\mathrm{M}, \mathrm{P}\}$ ?

## Definition (Choquet, 1953; Sugeno, 1974)

A fuzzy measure on $N$ is a set function $v: 2^{N} \rightarrow[0,1]$ such that
i) $v(\emptyset)=0, v(N)=1$
ii) $S \subseteq T \Rightarrow v(S) \leq v(T)$

$$
\begin{aligned}
v(S) & =\text { weight of } S \\
& =\text { degree of importance of } S
\end{aligned}
$$

A fuzzy measure is additive if

$$
v(S \cup T)=v(S)+v(T) \quad \text { if } S \cap T=\emptyset
$$

$\rightarrow$ independent criteria

$$
v(\mathrm{M}, \mathrm{P})=v(\mathrm{M})+v(\mathrm{P})(=0.70)
$$

Question : how can we extend the weighted arithmetic mean by taking into account the interaction among criteria ?

## The discrete Choquet integral

## Definition

Let $v \in \mathcal{F}_{N}$. The (discrete) Choquet integral of $x \in \mathbb{R}^{n}$ w.r.t. $v$ is defined by

$$
\mathcal{C}_{v}(x):=\sum_{i=1}^{n} x_{(i)}\left[v\left(A_{(i)}\right)-v\left(A_{(i+1)}\right)\right]
$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$. Also, $A_{(i)}=\{(i), \ldots,(n)\}$.

Example: If $x_{3} \leq x_{1} \leq x_{2}$, we have

$$
\begin{aligned}
\mathcal{C}_{v}\left(x_{1}, x_{2}, x_{3}\right)= & x_{3}[v(3,1,2)-v(1,2)] \\
& +x_{1}[v(1,2)-v(2)] \\
& +x_{2} v(2)
\end{aligned}
$$

Particular case:

$$
v \text { additive } \Rightarrow \mathcal{C}_{v}=\mathrm{WAM}_{\omega}
$$

Indeed,

$$
\mathcal{C}_{v}(x)=\sum_{i=1}^{n} x_{(i)} v((i))=\sum_{i=1}^{n} x_{i} \underbrace{v(i)}_{\omega_{i}}
$$

## Properties of the Choquet integral

- Linearity w.r.t. the fuzzy measures There exist $2^{n}$ functions $f_{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}(T \subseteq N)$ such that

$$
\mathcal{C}_{v}=\sum_{T \subseteq N} v(T) f_{T} \quad\left(v \in \mathcal{F}_{N}\right)
$$

Indeed, on can show that

$$
\mathcal{C}_{v}(x)=\sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T}(-1)^{|K|-|T|} \bigwedge_{i \in K} x_{i}}_{f_{T}(x)}
$$

- Stability w.r.t. positive linear transformations For any $x \in \mathbb{R}^{n}, r>0, s \in \mathbb{R}$,

$$
\mathcal{C}_{v}\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r \mathcal{C}_{v}\left(x_{1}, \ldots, x_{n}\right)+s
$$

Example : marks obtained by students

- on a $[0,20]$ scale : $16,11,7,14$
- on a $[0,1]$ scale : $0.80,0.55,0.35,0.70$
- on a $[-1,1]$ scale : $0.60,0.10,-0.30,0.40$

Remark : The partial scores may be embedded in $[0,1]$

## - Increasing monotonicity

For any $x, x^{\prime} \in \mathbb{R}^{n}$, one has

$$
x_{i} \leq x_{i}^{\prime} \quad \forall i \in N \quad \Rightarrow \quad \mathcal{C}_{v}(x) \leq \mathcal{C}_{v}\left(x^{\prime}\right)
$$

- $\mathcal{C}_{v}$ is properly weighted by $v$

$$
\mathcal{C}_{v}\left(e_{S}\right)=v(S) \quad(S \subseteq N)
$$

$e_{S}=$ characteristic vector of $S$ in $\{0,1\}^{n}$
Example : $e_{\{1,3\}}=(1,0,1,0, \ldots)$

Independent criteria
$\operatorname{WAM}_{\omega}\left(e_{\{i\}}\right)=\omega_{i}$
$\operatorname{WAM}_{\omega}\left(e_{\{i, j\}}\right)=\omega_{i}+\omega_{j}$

Dependent criteria

$$
\begin{aligned}
& \mathcal{C}_{v}\left(e_{\{i\}}\right)=v(i) \\
& \mathcal{C}_{v}\left(e_{\{i, j\}}\right)=v(i, j)
\end{aligned}
$$

## Example :



Axiomatic characterization of the class of Choquet integrals with $n$ arguments

## Theorem (Marichal, 2000)

The operators $M_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}\left(v \in \mathcal{F}_{N}\right)$ are

- linear w.r.t. the underlying fuzzy measures $v$ $M_{v}$ is of the form

$$
M_{v}=\sum_{T \subseteq N} v(T) f_{T} \quad\left(v \in \mathcal{F}_{N}\right)
$$

where $f_{T}$ 's are independent of $v$

- stable for the positive linear transformations

$$
\begin{aligned}
& M_{v}\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r M_{v}\left(x_{1}, \ldots, x_{n}\right)+s \\
& \text { for all } x \in \mathbb{R}^{n}, r>0, s \in \mathbb{R} \text {, and all } v \in \mathcal{F}_{N}
\end{aligned}
$$

- increasing
- properly weighted by $v$

$$
M_{v}\left(e_{S}\right)=v(S) \quad\left(S \subseteq N, v \in \mathcal{F}_{N}\right)
$$

if and only if $M_{v}=\mathcal{C}_{v}$ for all $v \in \mathcal{F}_{N}$

Back to the example

## Assumptions :

- M and P are more important than L
- $M$ and $P$ are somewhat substitutive

Non-additive model : $\mathcal{C}_{v}$

$$
\begin{aligned}
& v(\mathrm{M})=0.35 \\
& v(\mathrm{P})=0.35 \\
& v(\mathrm{~L})=0.30
\end{aligned}
$$

$$
v(M, P)=0.60 \quad \text { (redundancy })
$$

$$
v(\mathrm{M}, \mathrm{~L})=0.80 \quad \text { (complementarity) }
$$

$$
v(\mathrm{P}, \mathrm{~L})=0.80 \quad \text { (complementarity) }
$$

$v(\emptyset)=0$
$v(\mathrm{M}, \mathrm{P}, \mathrm{L})=1$

| Student | M | P | L | WAM | Choquet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.90 | 0.80 | 0.50 | 0.74 | 0.71 |
| $b$ | 0.50 | 0.60 | 0.90 | 0.65 | 0.67 |
| $c$ | 0.70 | 0.75 | 0.75 | 0.73 | 0.74 |

Now : $c \succ a \succ b$

Another example (Marichal, 2000)

| Student | M | P | L | global |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.90 | 0.70 | 0.80 | $?$ |
| $b$ | 0.90 | 0.80 | 0.70 | $?$ |
| $c$ | 0.60 | 0.70 | 0.80 | $?$ |
| $d$ | 0.60 | 0.80 | 0.70 | $?$ |

## Behavior of the decision maker :

When a student is good at M (0.90), it is preferable that he/she is better at $L$ than $P$, so

$$
a \succ b
$$

When a student is not good at $M$ (0.60), it is preferable that he/she is better at $P$ than $L$, so

$$
d \succ c
$$

Additive model : $\mathrm{WAM}_{\omega}$

$$
\left.\begin{array}{rll}
a \succ b & \Leftrightarrow & \omega_{\mathrm{L}}>\omega_{\mathrm{P}} \\
d \succ c & \Leftrightarrow & \omega_{\mathrm{L}}<\omega_{\mathrm{P}}
\end{array}\right\} \quad \text { No solution ! }
$$

Non additive model : $\mathcal{C}_{v}$

| Student | M | P | L | global |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 0.90 | 0.70 | 0.80 | 0.81 |
| $b$ | 0.90 | 0.80 | 0.70 | 0.79 |
| $c$ | 0.60 | 0.70 | 0.80 | 0.71 |
| $d$ | 0.60 | 0.80 | 0.70 | 0.72 |

## Particular cases of Choquet integrals

- Weighted arithmetic mean

$$
\operatorname{WAM}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{i}, \quad \sum_{i=1}^{n} \omega_{i}=1, \quad \omega_{i} \geq 0
$$

## Proposition

Let $v \in \mathcal{F}_{N}$.
The following assertions are equivalents
i) $v$ is additive
ii) $\exists$ a weight vector $\omega$ such that $\mathcal{C}_{v}=$ WAM $_{\omega}$
iii) $\mathcal{C}_{v}$ is additive: $\mathcal{C}_{v}\left(x+x^{\prime}\right)=\mathcal{C}_{v}(x)+\mathcal{C}_{v}\left(x^{\prime}\right)$

- Ordered weighted averaging (Yager, 1988)

$$
\operatorname{OWA}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{(i)}, \quad \sum_{i=1}^{n} \omega_{i}=1, \quad \omega_{i} \geq 0
$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Grabisch-Marichal, 1995)
Let $v \in \mathcal{F}_{N}$.
The following assertions are equivalents
i) $v$ is cardinality-based
ii) $\exists$ a weight vector $\omega$ such that $\mathcal{C}_{v}=\mathrm{OWA}_{\omega}$
iii) $\mathcal{C}_{v}$ is a symmetric function.

## Ordinal scales

Example : Evaluation of a scientific journal paper on importance

$$
\begin{gathered}
1=\text { Poor, } 2=\text { Below average, } 3=\text { Average, } \\
4=\text { Very Good, } 5=\text { Excellent } \\
\text { Values : } 1,2,3,4,5 \\
\text { or : } 2,7,20,100,246 \\
\text { or : }-46,-3,0,17,98
\end{gathered}
$$

Numbers assigned to an ordinal scale are defined up to an increasing bijection $\varphi: \mathbb{R} \rightarrow \mathbb{R}$.

Definition. A function $M: E^{n} \rightarrow \mathbb{R}$ is comparison meaningful if for any increasing bijection $\varphi: E \rightarrow E$ and any $x, x^{\prime} \in E^{n}$,

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{n}\right) & \leq M\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \mathbb{\imath} \\
M\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right) & \leq M\left(\varphi\left(x_{1}^{\prime}\right), \ldots, \varphi\left(x_{n}^{\prime}\right)\right)
\end{aligned}
$$

## Means on ordered sets

Example. The arithmetic mean is a meaningless function. Consider

$$
4=\frac{3+5}{2}<\frac{1+8}{2}=4.5
$$

and any bijection $\varphi$ such that $\varphi(1)=1, \varphi(3)=4$, $\varphi(5)=7, \varphi(8)=8$. We have

$$
5.5=\frac{4+7}{2} \nless \frac{1+8}{2}=4.5
$$

## Theorem 12 (Ovchinnikov, 1996)

The function $M: E^{n} \rightarrow \mathbb{R}$ is symmetric, continuous, internal, and comparison meaningful if and only if there exists $k \in N$ such that

$$
M(x)=x_{(k)} \quad\left(x \in E^{n}\right)
$$

Note : $x_{(k)}=\operatorname{median}(x)$ if $n=2 k-1$

## Lattice polynomials

Definition. A lattice polynomial defined in $\mathbb{R}^{n}$ is any expression constructed from the variables $x_{1}, \ldots, x_{n}$ and the symbols $\wedge, \vee$.

Example : $\left(x_{2} \vee\left(x_{1} \wedge x_{3}\right)\right) \wedge\left(x_{4} \vee x_{2}\right)$

It can be proved that such an expression can always be put in the form

$$
L_{c}(x)=\bigvee_{\substack{T \subseteq N \\ c(T)=1}} \bigwedge_{i \in T} x_{i}
$$

where $c: 2^{N} \rightarrow\{0,1\}$ is a nonconstant set function such that $c(\emptyset)=0$.

In particular,

$$
x_{(k)}=\bigvee_{\substack{T \subseteq N \\|T|=n-k+1}} \bigwedge_{i \in T} x_{i}
$$

$$
\operatorname{median}\left(x_{1}, \ldots, x_{2 k-1}\right)=\bigvee_{\substack{T \subseteq N \\|T|=k}} \bigwedge_{i \in T} x_{i}
$$

## Without symmetry :

## Theorem 13 (Marichal-Mathonet, 2001)

The function $M: E^{n} \rightarrow \mathbb{R}$ is continuous, idempotent, and comparison meaningful if and only if there exists a nonconstant set function $c: 2^{N} \rightarrow\{0,1\}$, with $c(\emptyset)=0$, such that

$$
M(x)=L_{c}(x) \quad\left(x \in E^{n}\right)
$$

## Without symmetry and idempotency :

Theorem 14 The function $M: E^{n} \rightarrow \mathbb{R}$ is nonconstant, continuous, and comparison meaningful if and only if there exist a nonconstant set function $c: 2^{N} \rightarrow\{0,1\}$, with $c(\emptyset)=0$, and a continuous and strictly monotonic function $g: E \rightarrow \mathbb{R}$ such that

$$
M(x)=g\left(L_{c}(x)\right) \quad\left(x \in E^{n}\right)
$$

## Replacing continuity by increasing monotonicity:

Theorem 15 (Marichal-Mathonet, 2001)
Assume that $E$ is open. The function $M: E^{n} \rightarrow \mathbb{R}$ is increasing, idempotent, and comparison meaningful if and only if there exists a nonconstant set function $c: 2^{N} \rightarrow\{0,1\}$, with $c(\emptyset)=0$, such that

$$
M(x)=L_{c}(x) \quad\left(x \in E^{n}\right)
$$

Open problem : Describe increasing and comparison meaningful functions.

## Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)
If $v \in \mathcal{F}_{N}$ is $\{0,1\}$-valued then $\mathcal{C}_{v}(x)=L_{v}(x)$

Conversely, we have $L_{c}(x)=\mathcal{C}_{c}(x)$

Proposition 3 (Radojević, 1998)
A function $M: E^{n} \rightarrow \mathbb{R}$ is a Choquet integral if and only if it is a weighted arithmetic mean of lattice polynomials

$$
\mathcal{C}_{v}(x)=\sum_{i=1}^{q} \omega_{i} L_{c_{i}}(x)
$$

This decomposition is not unique !

$$
\begin{gathered}
0.2 x_{1}+0.6 x_{2}+0.2\left(x_{1} \wedge x_{2}\right) \\
=0.4 x_{2}+0.4\left(x_{1} \wedge x_{2}\right)+0.2\left(x_{1} \vee x_{2}\right)
\end{gathered}
$$

## Proposition 4 (Marichal, 2001)

Any Choquet integral can be expressed as a lattice polynomial of weighted arithmetic means

$$
\mathcal{C}_{v}(x)=L_{c}\left(g_{1}(x), \ldots, g_{n}(x)\right)
$$

Example (continued)

$$
\begin{gathered}
0.2 x_{1}+0.6 x_{2}+0.2\left(x_{1} \wedge x_{2}\right) \\
=\left(0.4 x_{1}+0.6 x_{2}\right) \wedge\left(0.2 x_{1}+0.8 x_{2}\right)
\end{gathered}
$$

The converse is not true ! The function

$$
\left(\frac{x_{1}+x_{2}}{2}\right) \wedge x_{3}
$$

is not a Choquet integral.

Unsolved problem : Give conditions under which a lattice polynomial of weighted arithmetic means is a Choquet integral.

