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Abstract

We present a model allowing to determine the
weights related to interacting criteria. This is
done on the basis of the knowledge of a partial
ranking over a reference set of alternatives (pro-
totypes), a partial ranking over the set of criteria,
and a partial ranking over the set of interactions
between pairs of criteria.
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1 Introduction

Let us consider a set of alternatives A =
{a,b,c,...} and a set of criteria N = {1,...,n}
in a multicriteria decision making problem. Each
alternative a € A is associated with a profile
z(a) = (z1(a),...,zn(a)) € R™ where z;(a) rep-
resents the utility of a related to the criterion 1,
with z; € X;, i = 1,...,n. We assume that all
the utilities z;(a) are defined according to a same
interval scale.

Suppose that the preferences over A of the de-
cision maker are known and expressed by a binary
relation >. In the classical multiattribute utility
(MAUT) model [9], the problem consists in con-
structing a utiity function U : IR® — IR repre-
senting the preference of the decision maker, that
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is such that
a>be Ulze(a) > Ulz(b)], Va,be A.

The binary relation > on X = []; X; verifies the
independence in coordinates (which is proven to
be equivalent to the mutually preferentially inde-
pendence) iff, for all i, z,y, zi, ts,

(zix—s) = (2iy—:) implies (t;x_;) = (tiy—:)

if (z;xz—;) represents the vector which has the
same coordinates as & € X except for the i-th

coordinative which is z;.
For some problems this principle might be vi-
olated as it can be seen in the following example

criterion 1 criterion 2 criterion 3

(price) (consumption) | {comfort)

car 1 | 10.000 Euro | 10 ¢ /100 km | very good
car 2 | 10.000 Euro | 9 £/100 km good

car 3 | 30.000 Euro | 10 £/100 km | very good
car 4 | 30.000 Euro | 9 ¢/100 km good

A decision maker might prefer car 2 to car 1
but also car 3 to car 4.

We know that independence in coordinates is
a necessary condition for a utility function to be
additive, i.e. it can be assumed that there exists a
weight vector w = (wi,...,ws) € [0,1]" fulfilling
> ;w; = 1 such that

Ulr(a)] = iwi zi(a), Va € A. (1)

=1
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In case of interactive criteria, the weighted arith-

" metic mean (1) can be extended to 2 Choquet

integral:

Ulz(a)] = O x@ (@) [B(Aw) — w(Aar)l, (2

i=1

where (-) indicates 2 permutation such that
ryla) < < zmy(a)- Also Ay =
{(),...,(m)}, and A@+y = ¢. We thus ob-
serve that the weights wi related to the criteria,
which were supposed independent, have been sub-
stituted by the weights (i1, - - ,1ix) related of any
coalition of interactive criteria.

In this paper, we propose a model allowing to
identify the weights of interacting criteria from
a partial preorder over a reference set of alter-
natives, a partial preorder over the set of val-
ues related to each criterion, 2 partial preorder
over interactions between pairs of criteria, and
the knowlegde of the sign of some interactions
between pairs of criteria. The weights can be ob-
tained by solving a linear problem.

5 The Choquet integral as an
aggregation operator

A fuzzy measure on the set N of criteria is a
monotonic set function g : 2 — (0, 1] with
w(@) = 0 and w(N) = 1. Monotonicity means
that w(S) < p(T") whenever SCT.

One thinks of u(S) as the weight of importance
of the subset of criteria S. Thus, in addition
to the usual weights on criteria taken separately,
weights on any combination of criteria are also
defined.

A fuzzy measure is said to be additive if p(SU
T) = u(S) + w(T) whenever SNnT =90. In
this case, it suffices to define the n coefficients
(weights) (1), .. -, x(n) to define the measure en-
tirely. In general, one needs to define the 2™ co-
efficients corresponding to the 2™ subsets of N.

In combinatorics, a viewed as a set function on
N given by

a($) = 2 (~0 (D),

TCS

YSCN (3

EUROFUSE-SIC’99 Budapest, May 2528, 1999

is called the Mdbius transform of v (see e.g.
Rota [13])

Of course, any set of 2" coefficients {a(T)|T €
N} could not be the Mébius representation of
a fuzzy measure: the boundary and monotonic-
ity conditions must be ensured. In terms of the
Mobius representation, those conditions can be
written as follows (see [2]):

a®) =0, > aT)=1
TCN (4)
Z a(T) =20, ¥YSC N, Vies.
T#eTCS

Let 2 = (&1,.--,%n) € R"™, and u be a fuzzy
measure on N. The (discrete) Choquet integral
of (€1, .., Tn) With respect to ji is defined by

3
Cu(.’lfl, ceey LEn> = Z.’I,‘(i) [;L(A(i)) - ﬁ"(A(H—l))]’
i=1
where (+) indicates a permutation such that z() <
... € Z(y). Moreover, Ag = {(3),..., (M}, and
44(n+1) e ‘/’

The Choquet integral has good properties for
aggregation (see e.g. Grabisch [4]). For instance,
it is continuous, non decreasing, comprised be-
tween min and maz, stable under the same trans-
formations of interval scales in the sense of the
theory of measurement, and coincides with a
weighted arithmetic mean when the fuzzy mea-
sure is additive.

In this paper, we substitute the Choquet inte-
gral to the weighted arithmetic mean whenever
interactive criteria are considered.

In terms of the Mobius representation, the
Choquet integral is written (see [2]):

Culz) = Z a{T) /\ r;, zeR"
TCN €T
where A stands for the minimum operation.

The Choquet integral has been characterized
by many authors (Schmeidler [15], de Campos et
al. [3], Grabisch et al. [6]). We present here
another characterization due to Marichal (10].

Consider an aggregator M () (), i.e. afunction
M : E* — R where E denotes the definition set
of values =i, i € N.

The aggregator M (m) gatisfies the axioms of
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e linearity with respect to the fuzzy measure u
(LM) iff there exists functions g7 : E® — R
(T C N) such that

ST

TCN

MM () = T)gr(z).

e monotonicity (Mo) iff for all z,z/ € E™, we
have

r; <z}, Vi € N implies M™ (z) < M™(z').
k3

o stability for admissible positive linear trans-
formations (SPL) iff for allz € E™, all 7 > 0,
s € R such that rz;, + s € E, forallie N

M™(rz +5) = rM™ (z) + s

o extension (Ex) iff
M™(e(T)) = w(T)

if e(T) represents the characteristic vector of
T, i.e. the vector of {0,1}"™ whose i-th com-
ponent is 1 iff i € T'.

Assuming that £ D [0,1], Marichal [10] has

proved that : An aggregator M;(‘ ™) depending on
a fuzzy measure p fulfills (LM, Mo, SPL, Ex) iff

MM (z) = CM(z).

3 The concept of interaction
among criteria

The overall importance of a criterion i € N is not
solely determined by the value u(i), but also by
all u(S) such that i € S. The importance index
or Shapley value of criterion i with respect to u
is defined by:

os)= > P Gy )
TCN\i ’
Q

The Shapley value is a fundamental concept in

game theory [16] expressing a power index. There
is in fact another common way of defining a power
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index, due to Banzhaf [1]. The so-called Banzhaf
value, defined as

=‘,,,_ D (T Uiy —u@), (6)

- TCN\¢

oB(1)

can be viewed as an alternative to the Shapley
value.

Now, consider a pair {i,j} C N of criteria.
The difference a(i, ) = u(i, j) — (i) — u(j) seems
to reflect the degree of interaction between i and
J- This difference is zero if ¢ and j are indepen-
dent criteria. It is positive if there is a synergy
effect between 7 and j and negative if they are
redundant. Here again, the interaction between i
an j should depend on the coefficients u(S) such
that 7,7 € §. Murofushi and Soneda [11] pro-
posed an interaction index among a pair of crite-
ria, based on multiattribute utility theory. More
generally, Grabisch [5] introduced an interaction
index among a combination S of criteria: the
Shapley interaction indez related to u, defined by,
YSCN,

Is(8) := > (—1)*~fu(LuT),

LCS
(7)
that is, in terms of the Mobius representation,

Is(S)=>_

Y

(n—t—9)'t
I

TCN\S

o(T), ¥YSCN. (8)

t—s+1
Viewed as a set function, the Shapley interaction
index coincides on singletons with the Shapley
value (5). Roubens [14] developed a parallel no-
tion of interaction index, based on the Banzhaf

value (6): the Banzhaf interaction index, defined
by, VS C N,

I8(8) = 5 3 T(=D"W(LUT), (9)
TCN\S LCS
that is, in terms of the Mobius representation,

S () a(T), VSCN.  (10)
38 ~

Ip(S) =

It should be noted that the interaction indices I
and Is have been axiomatically characterized by
Grabisch and Roubens [7].
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4 The 2-order model

We know that a problem involving n criteria re-
quires 2" coefficients in [0, 1] in order to define the
fuzzy measure u on every coalition. Of course, a
decision maker is not able to give such an amount
of information. Moreover, the meaning of the
numbers 1(S) and a(S) for |S| > 2 is not so clear
for the decision maker.

To overcome this problem, Grabisch [5] pro-
posed to use the concept of k-order fuzzy measure.
We may think of a fuzzy measure having a poly-
nomial representation of degree 2, or 3, or any
fixed integer k. Such a fuzzy measure is naturally
called k-order fuzzy measure since it represents a
k-order approximation of its polynomial expres-
sion.

We now confine to the 2-order case, which
seems to be the most interesting in practical ap-
plications, since it permits to model interaction
between criteria while remaining very simple. In-
deed, only n + (3) = nlntl) (oefficients are re-

2
quired to define the fuzzy measure:

w(S) = Za(i) + Z a(i,j), YSCN.

i€s (ij}es

Note that the 2-order case is equivalent to sup-
pose that the Shapley and Banzhaf interaction
indices are zero for subsets of at least 3 elements.
In this case, the Choquet integral becomes

Cu(z) = Z a(i) zi+ Z a(i, j) (zinzj), z € R".

iEN {i,j}CN

(11)
Moreover, the interaction indices coincide (Is =
Ig =I) and we have immediately:

I6) = a()+5 3 a(ij), ieN(12)
~ JEN\i

I(4,7) = a(,j), 4,j€N, (13)

I(S) = 0, YSCN,|S|>2. (14)

5 Identification of weights

We address now the problem of identification of
weights of interacting criteria. More precisely, we
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are interested in finding a 2-order fuzzy measure
on the basis of a partial ranking over a set alter-
natives (prototypes).

In this section, we suppose that we have at our
disposal an expert or decision maker who is able
to tell the relative importance of criteria, and the
kind of interaction between them, if any. For-
mally, the input data of the problem can be sum-
marized as follows: )

e The set A of alternatives and the set N of
criteria,

e A table of scores (utilities) {z;(a)|i € N,a €
A},

e A partial preorder =4 on A (ranking of al-
ternatives),

e A partial preorder >y on N (ranking of cri-
teria),

e A partial preorder >=p on the set of pairs of
criteria (ranking of interaction indices),

e The sign of some interactions a(i,j) : posi-
tive, nul, negative (translating synergy, inde-
pendence or redundancy).

All these data can be formulated with the help
of linear equalities or inequalities. Strict inequal-
ities can be converted into vague inequalities by
introducing a positive slack quantity.

The problem of finding a 2-order fuzzy mea-
sure can be formalized with the help of a linear
program. It is obvious that the more the input
information is poor, the more the solution set is
big. Hence, it is desirable that the information
is as complete as possible. However, if this infor-
mation contains incoherences then the solution
set could be empty.

Now, a model for identifying weights could be
as follows:

maxz =&

129



subject to

Cla)—C(b)>6b+¢
~6<Cla)—C(b) <5 ifan~yb
I(1) =1(7) 2 ¢

ifi>-n3 } ranking of
I(i) = 1(3)

ifi~n7g criteria

a(i,7) —alk,l) > ¢
a(i,j) = a(k, 1)

if {i,5} =p {k, 1}

if (i3} ~p (k1) | PR O

} ranking of
criteria

ifa >4 b | partial semiorder
with threshold &

integrals”, Fuzzy Sets and Systems 39 (1991)
75-90.

[4] M. Grabisch, The application of fuzzy inte-
grals in multicriteria decision making, Furo-
pean J. of Oper. Research 89 (1996) 445-456.

[5] M. Grabisch, k-order additive discrete fuzzy
measures and their representation, Fuzzy
Sets and Systerns 92 (1997) 167-189.

[6] M. Grabisch, H.T. Nguyen and E.A. Walker,

a(i, ) > < (resp. < —¢) if a(i, ) > O (resp. < 0) (S)lfgn Fundamentals of Uncertainty Calculi with
a(i,7) = 0 if a(i,7) = 0 } inter-  Applications to Fuzzy Influence, Kluwer Aca-
actions demic, Dordrecht, 1995.
boundarym M. Grabisch and M. Roubens, An Axiomatic
I =1 and Approach to the Concept of Interaction
a(i) >0 vie N monoto- among Players in Cooperative Games, Int.
a(i) + > jerali,j) 20 Vie N, VI' C N\ } nicity J. of Game Theory, submitted.

conditions

I6) = a(i) + 3 T,ems o)
Cla) = 3 ien ali) z:(a)
+ Z{i,j}gN a(t,7) [zi(a) Azj(a)] Vae A

It seems natural to assume that the ranking over
A is translated into a partial semiorder over the
set of the global evaluations given by the Cho-
quet integral. This partial semiorder has a fixed
threshold 4, which can be tuned as wished.

In order to illustrate the model, two small ex-
amples will be presented. They are constructed
in such a way that no generalized weighted arith-
metic mean can be used as utility function.
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