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Derivative relationships between volume and

surface area of compact regions in Rp

Jean-Luc Marichal

Slide 1

'

&

$

%

Introductory Examples

• Sphere in R3 of radius r > 0:

V = 4
3πr3

A = 4πr2

dV

dr
= A

The rate of change in volume is the surface area

• Circle in R2 of radius r > 0:

A = πr2

P = 2πr

dA

dr
= P

The rate of change in area is the perimeter
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• Cube in R3 of edge length s > 0:

V = s3

A = 6s2

dV

ds
= 3s2 6= A !!!

• Square in R2 of side length s > 0:

A = s2

P = 4s

dA

ds
= 2s 6= P !!!
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Cube of edge length s > 0

Express volume and area in terms of the inradius

r =
s

2
⇔ s = 2r

V = 8r3

A = 24r2

dV

dr
= A

Increasing the inradius r makes V increase at a rate A

Appropriate notation:

V → V (s) → V [s(r)]

A → A(s) → A[s(r)]

d

dr
V [s(r)] = A[s(r)]
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Let us formalize the problem...

One-parameter family of compact regions in Rp

R := {R(s) ⊂ Rp | s ∈ E} (E = real interval)

With R is associated:
V : E → R+ differentiable
A : E → R+ continuous

V (s) is the volume of R(s)
A(s) is the area of R(s)
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Example: Family of cubes in R3

Edge length of R(s): s

V (s) = s3

A(s) = 6s2

Alternative representation:
Edge length of R(s): φ(s)

e.g. s = diameter of R(s)

⇒ φ(s) =
s√
3

Vφ(s) = φ(s)3

Aφ(s) = 6φ(s)2
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We search for a change of variable s 7→ r(s) so that

d

dr
V [s(r)] = A[s(r)] (r ∈ r(E))

Note : r represents a linear dimension (a length)

Questions:
Given a family R,

1. When does such a change of variable exists ?

2. When it exists, how can we calculate it ?

3. When it exists, can we provide a geometric interpretation
of it ?
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Proposition
Suppose V (s) is a strictly monotone and differentiable func-
tion in E and A(s) is a continuous function in E. Then there
is a differentiable change of variable

r(s) : E → r(E),

defined as

r(s) =
∫

V ′(s)
A(s)

ds (s ∈ E)

and unique within an additive constant C ∈ R, such that

d

dr
V [s(r)] = A[s(r)] (r ∈ r(E)).
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Stability under any change of representation

If V (s) and A(s) are replaced with

Vφ(s) = V [φ(s)] and Aφ(s) = A[φ(s)]

respectively, where φ is a differentiable function from E into
itself, then r(s) is simply replaced with

rφ(s) =
∫

V ′
φ(s)

Aφ(s)
ds =

∫
V ′[φ(s)]φ′(s)

A[φ(s)]
ds

=
∫

V ′(t)
A(t)

dt
∣∣∣
t=φ(s)

= r[φ(s)]
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Example: Family of cubes in R3

V (s) = s3

A(s) = 6s2

⇒ r(s) =
∫

3s2

6s2
ds =

s

2
+ C

If C = 0 then r(s) = s
2 (inradius)

We can consider C 6= 0:

e.g. r(s) =
s

2
− r0

V [s(r)] = 8(r + r0)3

A[s(r)] = 24(r + r0)2
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Family of rhombi in R2

Sides of fixed length a > 0
A diagonal of variable length s ∈ ]0, 2a[

A(s) = s
√

a2 − s2/4

P (s) = 4a

r(s) =
∫

A′(s)
P (s)

ds =
1
4a

∫
A′(s) ds =

A(s)
4a

+ C

If C = 0 then r(s) = A(s)
4a .

A[s(r)] = 4ar

P [s(r)] = 4a
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Interpretation:
Let r∗(s) be the inradius of rhombus R(s)

A(s)
4

=
ar∗(s)

2

⇒ r(s) =
A(s)
4a

=
r∗(s)

2
(half of the inradius)

6
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Family of rectangles in R2

Fixed length a > 0
Variable width s > 0

A(s) = as

P (s) = 2s + 2a

r(s) =
∫

A′(s)
P (s)

ds =
∫

a

2s + 2a
ds =

a

2
ln(2s + 2a) + C

Interpretation ?
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Family of similar rectangles in R2

Width s > 0
Length 2s > 0

A(s) = 2s2

P (s) = 6s

r(s) =
∫

A′(s)
P (s)

ds =
∫

4s

6s
ds =

2
3

s + C

Interpretation ?

Setting r1(s) = s and r2(s) = s/2, we have

r(s) =
2
3

s =
2

1
s + 2

s

= H[r1(s), r2(s)].
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Case of Similar Regions

Suppose that R is made up of similar regions and s ∈ R+ is
a characteristic linear dimension
Then, there are k1, k2 > 0 such that

V (s) = k1s
p

A(s) = k2s
p−1

⇒ r(s) = p
V (s)
A(s)

+ C

J. Tong, Area and perimeter, volume and surface area, College

Math. J. 28 (1) (1997) 57.

Conversely,...
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Proposition
Suppose V (s) is a strictly monotone and differentiable func-
tion in E and A(s) is a continuous function in E. Let

r(s) =
∫

V ′(s)
A(s)

ds (s ∈ E).

Then there exists a constant C ∈ R such that

r(s) = p
V (s)
A(s)

+ C (s ∈ E)

if and only if there exists a constant k > 0 such that

A(s)p = kV (s)p−1 (s ∈ E).

In this case, R is said to be a homogeneous family
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Isoperimetric Ratio

The isoperimetric ratio (Pólya, 1954) of a compact region R

in Rp is given by Q = Ap/V p−1.

The previous proposition says that R is homogeneous iff the
isoperimetric ratio

Q(s) = A(s)p/V (s)p−1 (s ∈ E)

is constant in E.

Example : Family of cubes in R3 ⇒ Q(s) = 216
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Immediate Corollary
If the regions of R are all similar then R is a homogeneous
family.

Converse false: Consider the hexagons R(s) whose inner an-
gles all have a fixed amplitude 2π/3 and the consecutive sides
have lengths a(s), b(s), c(s), a(s), b(s), and c(s), respectively.
Then

A(s) =
√

3
2

[a(s)b(s) + b(s)c(s) + c(s)a(s)],

P (s) = 2[a(s) + b(s) + c(s)].

By choosing a(s) = 1, b(s) = s2, and c(s) = (s + 1)2, where
s ∈ R+, we obtain a homogeneous family.

9
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Proposition
R is a homogeneous family if and only if there exists a dif-
ferentiable change of variable φ : E → φ(E) and constants
k1, k2 > 0 such that

V (s) = k1φ(s)p and A(s) = k2φ(s)p−1 (s ∈ E).

V (s) and A(s) are homogeneous functions of degrees p and
p− 1, respectively, up to the same change of variable φ(s).
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Elasticity

Define the area elasticity of volume as the proportional change
in volume relative to the proportional change in area, that is,

eV,A(s) =
dV (s)
V (s)

dA(s)
A(s)

=
V ′(s)
A′(s)

A(s)
V (s)

.

Proposition
R is a homogeneous family if and only if

eV,A(s) =
p

p− 1
(s ∈ E).

10
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Open Questions

• Characterize geometrically homogeneous families

• Given a class of compact regions in Rp, find homogeneous
subfamilies, if any.
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Geometric Interpretation of r ?

Theorem For any family of similar circumscribing polytopes,
the variable r represents the radius of the inscribed sphere

J. Emert and R. Nelson, Volume and surface area for polyhedra and

polytopes, Math. Mag. 70 (1997) 365–371.

Corollary If a p-dimensional sphere of radius r is inscribed
in a polytope, then

V =
r

p
A.

M.J. Cohen, Ratio of volume of inscribed sphere to polyhedron, Amer.

Math. Monthly 72 (1965) 183–184.
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Proposition
Let R be a homogeneous family of n-faced polyhedra R(s) that
are star-like with respect to a point T (s) in the interior of
R(s). Let Pi(s) be the pyramid whose base is the ith facet of
R(s) and whose vertex is T (s). Then

r(s) =
n∑

i=1

Ai(s)
A(s)

ri(s)

and
1

r(s)
=

n∑

i=1

Vi(s)
V (s)

1
ri(s)

where Vi(s), Ai(s), and ri(s) are respectively the volume of
Pi(s), the surface area of the base of Pi(s), and the altitude
from T (s) of Pi(s).
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Case of triangle

The centroid T of any triangle provides an equal-area trian-
gulation.

So we have
1
r

=
3∑

i=1

Vi

V

1
ri

=
1
3

3∑

i=1

1
ri

that is
r = H(r1, r2, r3).

Setting hi := 3ri (triangle altitudes), we get

3r = H(h1, h2, h3)

For any triangle, the harmonic mean of its altitudes is three
times the inradius of the triangle

12
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Open Questions

• Generalize the previous proposition to any star-like region
(cones, cylinders...)

• Generalize the previous proposition to any region (torus...)
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Some results on similar regions

1. Any convex region R in R2 having an inscribed circle S of

radius r has the property

d

dr
A = P

2. Let R ⊂ R2 be a region as in (1) above and which is symmetric

w.r.t. an axis through the center of S. For the solid formed by

revolving R about that axis of symmetry, we have

d

dr
V = A

The same for the solid formed by lifting R to a height of 2r.

M. Dorff and L. Hall, Solids in Rn whose area is the derivative
of the volume, submitted.
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Singular Case
(non similar regions)

Let R ⊂ R2 be a disc or a regular polygonal region with in-
radius r. For any solid formed by revolving R about an axis
that does not intersect R, we have

d

dr
V = A

Example : Torus obtained by rotating a circle centered at
the fixed point (a, 0) and of radius r < a:

V = (2πa)(πr2)

A = (2πa)(2πr)

d

dr
V = A
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Another open problem : the case of
n-parameter families

Example: Consider a family of rectangles R(s1, s2) with
length s1 > 0 and width s2 > 0. Consider also the linear
change of variables

r1(s) =
s1

2
and r2(s) =

s2

2
which inverts into

s1(r) = 2r1 and s2(r) = 2r2.

Then we clearly have

A(s) = 4r1(s)r2(s)

14
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and
P (s) = 4r1(s) + 4r2(s).

Finally,
∂

∂r1
A[s(r)] +

∂

∂r2
A[s(r)] = P [s(r)].

In the general case, we consider the following derivative rela-
tionship:

n∑

j=1

∂

∂rj
V [s(r)] = A[s(r)],

where r(s) is an appropriate change of variables.

to be continued...
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