Derivative relationships between volume and surface area of compact regions in \mathbb{R}^{p}

Jean-Luc Marichal

Introductory Examples

- Sphere in \mathbb{R}^{3} of radius $r>0$:

$$
\begin{array}{ll}
V=\frac{4}{3} \pi r^{3} \\
A & =4 \pi r^{2}
\end{array} \quad \frac{d V}{d r}=A
$$

The rate of change in volume is the surface area

- Circle in \mathbb{R}^{2} of radius $r>0$:

$$
\begin{array}{ll}
A=\pi r^{2} \\
P=2 \pi r & \frac{d A}{d r}=P
\end{array}
$$

The rate of change in area is the perimeter

- Cube in \mathbb{R}^{3} of edge length $s>0$:

$$
\begin{array}{ll}
V=s^{3} \\
A & =6 s^{2}
\end{array} \quad \frac{d V}{d s}=3 s^{2} \neq A!!!
$$

- Square in \mathbb{R}^{2} of side length $s>0$:

$$
\begin{aligned}
& A=s^{2} \\
& P=4 s
\end{aligned} \quad \frac{d A}{d s}=2 s \neq P!!!
$$

Cube of edge length $s>0$

Express volume and area in terms of the inradius

$$
\begin{aligned}
& r=\frac{s}{2} \quad \Leftrightarrow s=2 r \\
& V=8 r^{3} \\
& A=24 r^{2} \frac{d V}{d r}=A
\end{aligned}
$$

Increasing the inradius r makes V increase at a rate A

Appropriate notation:

$$
\begin{aligned}
V & \rightarrow V(s) \\
A & \rightarrow A(s)
\end{aligned}>A[s(r)] \quad \text {] }
$$

$$
\frac{d}{d r} V[s(r)]=A[s(r)]
$$

Let us formalize the problem...

One-parameter family of compact regions in \mathbb{R}^{p}

$$
\mathcal{R}:=\left\{R(s) \subset \mathbb{R}^{p} \mid s \in E\right\} \quad(E=\text { real interval })
$$

With \mathcal{R} is associated:
$V: E \rightarrow \mathbb{R}_{+}$differentiable
$A: E \rightarrow \mathbb{R}_{+}$continuous
$V(s)$ is the volume of $R(s)$
$A(s)$ is the area of $R(s)$

Example: Family of cubes in \mathbb{R}^{3}

Edge length of $R(s)$: s

$$
\begin{aligned}
V(s) & =s^{3} \\
A(s) & =6 s^{2}
\end{aligned}
$$

Alternative representation:
Edge length of $R(s): \phi(s)$
e.g. $s=$ diameter of $R(s)$

$$
\begin{gathered}
\Rightarrow \quad \phi(s)=\frac{s}{\sqrt{3}} \\
V_{\phi}(s)=\phi(s)^{3} \\
A_{\phi}(s)=6 \phi(s)^{2}
\end{gathered}
$$

We search for a change of variable $s \mapsto r(s)$ so that

$$
\frac{d}{d r} V[s(r)]=A[s(r)] \quad(r \in r(E))
$$

Note : r represents a linear dimension (a length)

Questions:

Given a family \mathcal{R},

1. When does such a change of variable exists ?
2. When it exists, how can we calculate it ?
3. When it exists, can we provide a geometric interpretation of it?

Proposition

Suppose $V(s)$ is a strictly monotone and differentiable function in E and $A(s)$ is a continuous function in E. Then there is a differentiable change of variable

$$
r(s): E \rightarrow r(E)
$$

defined as

$$
r(s)=\int \frac{V^{\prime}(s)}{A(s)} d s \quad(s \in E)
$$

and unique within an additive constant $C \in \mathbb{R}$, such that

$$
\frac{d}{d r} V[s(r)]=A[s(r)] \quad(r \in r(E)) .
$$

Stability under any change of representation

If $V(s)$ and $A(s)$ are replaced with

$$
V_{\phi}(s)=V[\phi(s)] \quad \text { and } \quad A_{\phi}(s)=A[\phi(s)]
$$

respectively, where ϕ is a differentiable function from E into itself, then $r(s)$ is simply replaced with

$$
\begin{aligned}
r_{\phi}(s) & =\int \frac{V_{\phi}^{\prime}(s)}{A_{\phi}(s)} d s=\int \frac{V^{\prime}[\phi(s)] \phi^{\prime}(s)}{A[\phi(s)]} d s \\
& =\left.\int \frac{V^{\prime}(t)}{A(t)} d t\right|_{t=\phi(s)} \\
& =r[\phi(s)]
\end{aligned}
$$

Example: Family of cubes in \mathbb{R}^{3}

$$
\begin{gathered}
V(s)=s^{3} \\
A(s)=6 s^{2} \\
\Rightarrow r(s)=\int \frac{3 s^{2}}{6 s^{2}} d s=\frac{s}{2}+C
\end{gathered}
$$

If $C=0$ then $r(s)=\frac{s}{2}$ (inradius)

We can consider $C \neq 0$:
e.g. $r(s)=\frac{s}{2}-r_{0}$

$$
\begin{aligned}
V[s(r)] & =8\left(r+r_{0}\right)^{3} \\
A[s(r)] & =24\left(r+r_{0}\right)^{2}
\end{aligned}
$$

Family of rhombi in \mathbb{R}^{2}
Sides of fixed length $a>0$
A diagonal of variable length $s \in] 0,2 a[$

$$
\begin{aligned}
A(s) & =s \sqrt{a^{2}-s^{2} / 4} \\
P(s) & =4 a \\
r(s)=\int \frac{A^{\prime}(s)}{P(s)} d s & =\frac{1}{4 a} \int A^{\prime}(s) d s=\frac{A(s)}{4 a}+C
\end{aligned}
$$

If $C=0$ then $r(s)=\frac{A(s)}{4 a}$.

$$
\begin{aligned}
A[s(r)] & =4 a r \\
P[s(r)] & =4 a
\end{aligned}
$$

Interpretation:

Let $r^{*}(s)$ be the inradius of rhombus $R(s)$

$$
\begin{aligned}
& \frac{A(s)}{4}=\frac{a r^{*}(s)}{2} \\
\Rightarrow \quad & r(s)=\frac{A(s)}{4 a}=\frac{r^{*}(s)}{2}
\end{aligned}
$$

(half of the inradius)

Family of rectangles in \mathbb{R}^{2}
Fixed length $a>0$
Variable width $s>0$

$$
\begin{gathered}
A(s)=a s \\
P(s)=2 s+2 a \\
r(s)=\int \frac{A^{\prime}(s)}{P(s)} d s=\int \frac{a}{2 s+2 a} d s=\frac{a}{2} \ln (2 s+2 a)+C
\end{gathered}
$$

Interpretation?

Family of similar rectangles in \mathbb{R}^{2}
Width $s>0$
Length $2 s>0$

$$
\begin{aligned}
A(s) & =2 s^{2} \\
P(s) & =6 s \\
r(s)=\int \frac{A^{\prime}(s)}{P(s)} d s & =\int \frac{4 s}{6 s} d s=\frac{2}{3} s+C
\end{aligned}
$$

Interpretation?
Setting $r_{1}(s)=s$ and $r_{2}(s)=s / 2$, we have

$$
r(s)=\frac{2}{3} s=\frac{2}{\frac{1}{s}+\frac{2}{s}}=H\left[r_{1}(s), r_{2}(s)\right] .
$$

Case of Similar Regions

Suppose that \mathcal{R} is made up of similar regions and $s \in \mathbb{R}_{+}$is a characteristic linear dimension Then, there are $k_{1}, k_{2}>0$ such that

$$
\begin{aligned}
& V(s)=k_{1} s^{p} \\
& A(s)=k_{2} s^{p-1} \\
& \Rightarrow \quad r(s)=p \frac{V(s)}{A(s)}+C
\end{aligned}
$$

J. Tong, Area and perimeter, volume and surface area, College Math. J. 28 (1) (1997) 57.

Conversely,...

Proposition

Suppose $V(s)$ is a strictly monotone and differentiable function in E and $A(s)$ is a continuous function in E. Let

$$
r(s)=\int \frac{V^{\prime}(s)}{A(s)} d s \quad(s \in E)
$$

Then there exists a constant $C \in \mathbb{R}$ such that

$$
r(s)=p \frac{V(s)}{A(s)}+C \quad(s \in E)
$$

if and only if there exists a constant $k>0$ such that

$$
A(s)^{p}=k V(s)^{p-1} \quad(s \in E)
$$

In this case, \mathcal{R} is said to be a homogeneous family

Isoperimetric Ratio

The isoperimetric ratio (Pólya, 1954) of a compact region R in \mathbb{R}^{p} is given by $Q=A^{p} / V^{p-1}$.

The previous proposition says that \mathcal{R} is homogeneous iff the isoperimetric ratio

$$
Q(s)=A(s)^{p} / V(s)^{p-1} \quad(s \in E)
$$

is constant in E.

Example : Family of cubes in $\mathbb{R}^{3} \Rightarrow Q(s)=216$

Immediate Corollary

If the regions of \mathcal{R} are all similar then \mathcal{R} is a homogeneous family.

Converse false: Consider the hexagons $R(s)$ whose inner angles all have a fixed amplitude $2 \pi / 3$ and the consecutive sides have lengths $a(s), b(s), c(s), a(s), b(s)$, and $c(s)$, respectively. Then

$$
\begin{aligned}
& A(s)=\frac{\sqrt{3}}{2}[a(s) b(s)+b(s) c(s)+c(s) a(s)] \\
& P(s)=2[a(s)+b(s)+c(s)]
\end{aligned}
$$

By choosing $a(s)=1, b(s)=s^{2}$, and $c(s)=(s+1)^{2}$, where $s \in \mathbb{R}_{+}$, we obtain a homogeneous family.

Proposition

R is a homogeneous family if and only if there exists a differentiable change of variable $\phi: E \rightarrow \phi(E)$ and constants $k_{1}, k_{2}>0$ such that

$$
V(s)=k_{1} \phi(s)^{p} \quad \text { and } \quad A(s)=k_{2} \phi(s)^{p-1} \quad(s \in E) .
$$

$V(s)$ and $A(s)$ are homogeneous functions of degrees p and $p-1$, respectively, up to the same change of variable $\phi(s)$.

Elasticity

Define the area elasticity of volume as the proportional change in volume relative to the proportional change in area, that is,

$$
e_{V, A}(s)=\frac{\frac{d V(s)}{V(s)}}{\frac{d A(s)}{A(s)}}=\frac{V^{\prime}(s)}{A^{\prime}(s)} \frac{A(s)}{V(s)}
$$

Proposition

R is a homogeneous family if and only if

$$
e_{V, A}(s)=\frac{p}{p-1} \quad(s \in E) .
$$

Open Questions

- Characterize geometrically homogeneous families
- Given a class of compact regions in \mathbb{R}^{p}, find homogeneous subfamilies, if any.

Geometric Interpretation of r ?

Theorem For any family of similar circumscribing polytopes, the variable r represents the radius of the inscribed sphere
J. Emert and R. Nelson, Volume and surface area for polyhedra and polytopes, Math. Mag. 70 (1997) 365-371.

Corollary If a p-dimensional sphere of radius r is inscribed in a polytope, then

$$
V=\frac{r}{p} A
$$

M.J. Cohen, Ratio of volume of inscribed sphere to polyhedron, Amer. Math. Monthly 72 (1965) 183-184.

Proposition

Let \mathcal{R} be a homogeneous family of n-faced polyhedra $R(s)$ that are star-like with respect to a point $T(s)$ in the interior of $R(s)$. Let $P_{i}(s)$ be the pyramid whose base is the ith facet of $R(s)$ and whose vertex is $T(s)$. Then

$$
r(s)=\sum_{i=1}^{n} \frac{A_{i}(s)}{A(s)} r_{i}(s)
$$

and

$$
\frac{1}{r(s)}=\sum_{i=1}^{n} \frac{V_{i}(s)}{V(s)} \frac{1}{r_{i}(s)}
$$

where $V_{i}(s), A_{i}(s)$, and $r_{i}(s)$ are respectively the volume of $P_{i}(s)$, the surface area of the base of $P_{i}(s)$, and the altitude from $T(s)$ of $P_{i}(s)$.

Case of triangle

The centroid T of any triangle provides an equal-area triangulation.

So we have

$$
\frac{1}{r}=\sum_{i=1}^{3} \frac{V_{i}}{V} \frac{1}{r_{i}}=\frac{1}{3} \sum_{i=1}^{3} \frac{1}{r_{i}}
$$

that is

$$
r=H\left(r_{1}, r_{2}, r_{3}\right)
$$

Setting $h_{i}:=3 r_{i}$ (triangle altitudes), we get

$$
3 r=H\left(h_{1}, h_{2}, h_{3}\right)
$$

For any triangle, the harmonic mean of its altitudes is three times the inradius of the triangle

Open Questions

- Generalize the previous proposition to any star-like region (cones, cylinders...)
- Generalize the previous proposition to any region (torus...)

Some results on similar regions

1. Any convex region R in \mathbb{R}^{2} having an inscribed circle S of radius r has the property

$$
\frac{d}{d r} A=P
$$

2. Let $R \subset \mathbb{R}^{2}$ be a region as in (1) above and which is symmetric w.r.t. an axis through the center of S. For the solid formed by revolving R about that axis of symmetry, we have

$$
\frac{d}{d r} V=A
$$

The same for the solid formed by lifting R to a height of $2 r$.
M. Dorff and L. Hall, Solids in \mathbb{R}^{n} whose area is the derivative of the volume, submitted.

Singular Case

(non similar regions)

Let $R \subset \mathbb{R}^{2}$ be a disc or a regular polygonal region with inradius r. For any solid formed by revolving R about an axis that does not intersect R, we have

$$
\frac{d}{d r} V=A
$$

Example : Torus obtained by rotating a circle centered at the fixed point $(a, 0)$ and of radius $r<a$:

$$
\begin{aligned}
& V=(2 \pi a)\left(\pi r^{2}\right) \\
& A=(2 \pi a)(2 \pi r)
\end{aligned} \quad \frac{d}{d r} V=A
$$

Another open problem : the case of n-parameter families

Example: Consider a family of rectangles $R\left(s_{1}, s_{2}\right)$ with length $s_{1}>0$ and width $s_{2}>0$. Consider also the linear change of variables

$$
r_{1}(s)=\frac{s_{1}}{2} \quad \text { and } \quad r_{2}(s)=\frac{s_{2}}{2}
$$

which inverts into

$$
s_{1}(r)=2 r_{1} \quad \text { and } \quad s_{2}(r)=2 r_{2} .
$$

Then we clearly have

$$
A(s)=4 r_{1}(s) r_{2}(s)
$$

and

$$
P(s)=4 r_{1}(s)+4 r_{2}(s)
$$

Finally,

$$
\frac{\partial}{\partial r_{1}} A[s(r)]+\frac{\partial}{\partial r_{2}} A[s(r)]=P[s(r)] .
$$

In the general case, we consider the following derivative relationship:

$$
\sum_{j=1}^{n} \frac{\partial}{\partial r_{j}} V[s(r)]=A[s(r)]
$$

where $r(s)$ is an appropriate change of variables.
to be continued...

