
Assessing In-Vehicle Information Systems application in
the car: a versatile tool and unified testing platform.

Nicolas Louveton†, Roderick McCall†, Tigran Avanesov†, Vincent Koenig†‡, Thomas Engel†,
†SnT, Université du Luxembourg ‡ EMACS, Université du Luxembourg

4, rue Alphonse Weicker Route de Diekirch
L-2721 Luxembourg L-7220 Walferdange, Luxembourg

<firstname>.<lastname>@uni.lu

ABSTRACT
In this paper we present the DriveLab IVIS testing platform
which allows for the same experiments to be conducted both
under simulator and real car conditions. Other key aspects
of DriveLab is that it is highly modular (therefore allowing
the exchange or integration of different components) and
that it supports more than one driver. For example we show
that the same IVIS devices and scenario can be used with
two different 3D engines. The paper provides a technical
overview and a brief example of use.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human information processing ; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—User interfaces

Keywords
Driving simulators, Mobile applications, IVIS, Usability

1. INTRODUCTION
Infotainment applications for cars are taking an increasing
place in the in-vehicle space [4]. As they offer new sets of
functionalities and come on top of other on-board systems,
these In-Vehicle Information Systems (IVIS) are likely to
place an increasing cognitive demand on the driver [3, 5].
This requires an approach for evaluating new in-car info-
tainment systems both under simulation and real world set-
ting where scenarios can be tested and evaluated using the
same design analysis tools and evaluation method. These
pressing needs have been identified in the I-GEAR project
(outlined later) and developed under a platform known as
DriveLab which allows for new scenarios and devices to be
easily added to a common 3D (for now desktop) and in-car
simulation platform for IVIS evaluation. In the following
paper we present a full description of the testing and simu-
lation platform being developed within I-GEAR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
AutomotiveUI’13, October 28 - 30 2013, Eindhoven, Netherlands
Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-2478-
6/13/10. . . $15.00. http://dx.doi.org/10.1145/2516540.2516576

We begin by explaining the background to the project, then
discussing, comparing our ideas to existing solutions and fi-
nally explaining the technical aspects of the simulation plat-
form making it both unified and versatile.

2. I-GEAR PROJECT
In-car infortainment systems, urban mobility and community-
based platforms such as WAZE c© (http://www.waze.com/)
are growing in popularity. This is in part due to the in-
creasing problems of traffic congestion in many major cities
across the world. In order to help overcome traffic problems,
the I-GEAR project [9, 10] aims to develop a mobile appli-
cation that provides incentives for commuters to undertake
alternative mobility behaviours by making use of game-like
concepts such as leaderboards and challenges. As this appli-
cation is likely to be used in the car, its development requires
an extensive evaluation of its usability; this will be done first
in a simulated environment and then on the road.

3. REQUIREMENTS FOR THE PLATFORM
Car driving simulators can take many different shapes rang-
ing from low-cost and compact desktop set-ups to full fixed-
or motion-based car cab simulators. In the same way the
complexity and realism of the 3D environment, physics and
traffic simulation can vary greatly. While high-profile driv-
ing simulators can improve immersion and fidelity, they are
also expensive and space-consuming, making them not nec-
essarily suitable for early and rapid prototyping of IVIS.

In turn, low-cost simulators may impair the perception of
ego-motion, speeds and distances, yielding under-estimated
speed and inter-vehicular judgements [7]. However, while
high-fidelity simulation is required for complex driving sce-
narios (involving weather conditions, traffic characteristics
etc.) and for driver’s perception studies, their low-cost coun-
terparts may be used efficiently for assessing dashboard er-
gonomics and simple driving tasks [7].

Indeed low-cost simulators, in spite of their lack of physi-
cal fidelity (no driving cab, narrow visual field and lack of
motion) and virtual reality immersion (more or less realis-
tic simulated environment) were proven to be relevant at
early stage of IVIS developments [6]. In this comparative
study, authors demonstrated a less safe behaviour in regard
to inter-vehicular distances in a low-cost set-up compared
to the high-profile one. However, results related to speed
control and secondary task (interaction with the IVIS) com-
pletion time were found to be consistent across simulator

http://www.waze.com/

types as no significant effect was evidenced.

Given the early stage of the development of our application
we decided to develop DriveLab, a compact yet scalable plat-
form for testing in-car applications. Although, our platform
is currently based around a desktop simulator, DriveLab im-
plements a modular architecture (detailed in Section 4) that
supports the integration of new components including more
complex 3D/Physics engine, traffic simulators and real hard-
ware/physical devices. Moreover, to the best of our knowl-
edge there is no single platform which can be used to design
a user study and run it within both a 3D simulation en-
vironment and a real car with minimal modification. This
is where our approach differs as the car or 3D environment
are viewed merely as a plug-in (with a range of limitations)
from which data can be sent and received (see also section
5). As noted later this modular approach therefore makes it
easier to construct studies, conduct tests and compare data
across simulated and real environments. In the long run the
goal of our platform is to serve both academic and industry
research. Although our platform is not a design tool as such,
our system is open to be connected to any interactive pro-
totype as long as this prototype can send and receive data
to/from DriveLab.

4. MODULAR ARCHITECTURE
A key requirement for our platform is to be highly mod-
ular and customisable. This means that it has to support
e.g. new graphics engines as they become available, allowing
us to change, add and remove hardware components such
as tablet PCs and finally integrating external applications
(e.g., mobile applications, monitoring software, eye track-
ing software). This has been achieved by implementing a
plug-in architecture around the core control and commu-
nication part. Each plug-in provides specific features and
a common programming interface that allows their connec-
tion to the main platform. The core application maintains
an up-to-date model of the simulation states (cars telemetry
and traffic data) and performs necessary communication be-
tween the different plug-ins. For example, data persistence
relies on a plug-in encoding simulation states and events
into a SQLite3 database. However, this type of data logging
could be changed at any time by writing another plug-in
(e.g., CSV files or MySQL). Plug-ins are represented by a
directory containing a main Python script file exposing both
the main plug-in class and an initialization function. Plug-
ins are initiated at the start-up of the simulation platform
and are launched and registered for the communication pro-
cess (JSON packets). The fact that the main class should
be written in Python does not prevent to use other lan-
guages: for example, our mobile application is written in
HTML5/JavaScript (see Section 4.3). This system made
particularly convenient the addition or substitution of het-
erogeneous external programs.

An additional important requirement for our platform exists
in the abstraction of events and user-interaction in order
to isolate them from the specific simulation environment in
which they occur. Indeed, the game mechanics involved in
our mobility application is a separated effort that needs to
be portable across different testing environments. It is also
implemented as a plug-in so as to make it independent from
the 3D/physics engine for example or any other components.

This game engine uses scripts written in plain Python and
can provide access to simulation states and to user actions
by mobile device so as to trigger e.g. specific events on the
mobile application.

4.1 Flexibility: switching 3D/Physics engines
In a preceding version of our platform [2], we created a
3D map of Luxembourg city in order to rely on a realistic
simulation environment. City data was drawn from Open-
StreetMap while we used a 3D racing game (SpeedDreams 2)
as 3D and Physics engine for the simulator platform. How-
ever, the preliminary usability studies of our mobile applica-
tion do not require a comprehensive model of Luxembourg.
Instead we thus use a car following task which is quite well
specified [11] and often used in the context of in-car systems’
usability evaluation [6, 1, 13, 12, 14]. For the same reason
we integrated another 3D/Physics engine called OpenDS [8].
We chose this engine for two reasons: first, it is open-source
and second it allows rapid scenario scripting through XML
files. This made it a convenient choice for implementing a
lead car speed changing scenario. However we plan to de-
velop a complete API. It is worth to mention that using this
engine required us to implement a few modifications only in
order to send traffic data to our simulator platform. This
allowed us to switch from SpeedDreams to OpenDS while
keeping the same events logic in our mobile application.

4.2 Multi-Driver and Multiplayer
IVIS applications increasingly rely on data from more than
one driver. DriveLab supports multiple cars/drivers (both
real and simulator cockpits) as essentially each one is classed
as a device. This approach allows for the exploration of
social driving aspects and is of particular interest to our
multiplayer ”gamified” mobility experiences. As the data
from each car and associated devices is logged, it gives the
evaluators an easy way to compare what happens when a
particular event is triggered that effects multiple drivers.
For example if there is a road accident and information is
provided by the IVIS it is possible to see how the drivers
respond therefore allowing a direct comparison.

The server architecture also lets one trigger events from ei-
ther the internal game logic engine (currently under develop-
ment) or another external platform. For the latter one must
add to the DriveLab a plugin which will transform messages
received from the external platform to appropriate JSON
packets processed by the server and the other way round.
As with the rest of the platform such approach can be used
to trigger events on the tablets or other IVIS devices. Fur-
thermore, the DriveLab server can also send for example
telemetry data to the game engine therefore allowing it to
trigger events based on the up-to-date status of the various
drivers. Our intention is to provide a skeleton game logic
engine which supports human-factors analysis and gamifica-
tion of driving which can be used to test basic concepts.

4.3 Rapid prototyping: employing mobile web
technologies

One of our requirements for the platform is the ability to as-
sess the usability of different kinds of user-interfaces in the
car and to quantify the impact of these interfaces on the driv-
ing performance. In order to make the development process

3D engine

Physic engine

Traffic simulation

Simulator studies

Abstracted
Vehicles
Model

Common
Communication

Interface

User-defined
Events

Simulation platform

OBDII plug

Additional operations

Field studies

Mobile
Application

Driving
Environments

Common Data storage:
Vehicular data

User Interactions

SpeedDreams2

OpenDS

Renault Twizy

Figure 1: Plug-in architecture allowing usability testing of a mobile application in different driving environ-
ments.

faster and the resulting application more portable we use
standard web and mobile technologies such as HTML5 and
JavaScript. The connection with the simulation platform
relies on the use of WebSockets. The game engine triggers
events as a function of user actions and simulation states
in order to display specific screens and tasks on the mo-
bile phone. The ability to use interactive prototypes along
side to independant modules shows that designers can take
advantage of the modularity of DriveLab in their workflow.
Once the experimental script developped, designers can then
focus on user-interfaces and iterate quickly on their proto-
type.

5. STUDIES SET-UP AND MONITORING
As we want to use a car following task scenario as a stan-
dard task we developed tools around the simulator platform
in order to generate this kind of driving scenario and eas-
ily run them. The experimenter can generate car follow-
ing scenarios with a couple of options such as length of the
trial, number of speed changes, randomization of lead vehi-
cle behaviour and decoration along the road. The trials are
managed by another application allowing the experimenter
to set-up participant’s profile and choose among available
driving scenarios. We are in the process of building tools
for automatic data analysis and reporting based on com-
mon driving performance and usability measurements (see
an example in Fig. 2).

As known from PC user testing evaluation platforms we also
offer the ability to remotely monitor the current car status
(either a real car or the 3D model) e.g. location, speed,
steering wheel position, gear, use of the pedals and the cock-

pit view (at present provided as a direct camera feed out-
side of the evaluator console environment). This is done via
the evaluator console which runs on a remote PC. As the
platform evolves, the evaluator console will also support the
triggering of remote events, for example triggering a change
in the user interface on one of the in-car devices. In ad-
dition, it will also support real-time data information from
devices such as eye trackers and provide statistics such as
lane deviation etc.

The modularity of our approach allows us to go further and
to replace the 3D simulation engine by a real driving context.
Indeed, although we replace the simulated environment with
a real car, we can still run our simulation platform with the
same data logging, mobile application and game mechanics.
The only change required is that the source of the realtime
data for the platform has to be set to receive from the car
bus. We plan to implement a new component of our plat-
form using associated work of our research group which al-
lows capturing car data from the Renault Twizy (see Fig. 1,
bottom-left side of the diagram) and forward them to mobile
applications through a Bluetooth connection. The Twizy it-
self uses a proprietary data format and we are also in the
process of extending our platform to be able to make use
of data from more traditional cars as well. Therefore, we
will be able to run the same in-car application, the same in-
teraction logic and the same data logging structure in real-
world driving situations. It enables us to compare usability
data coming from our simulated environment to data com-
ing from real-world driving. Such a comparison will allow a
progressive and consistent usability testing approach along
the project lifetime. This connection to real cars is currently

50 100 150 200 250 300 350
Time (s)

38

40

42

44

46

48

Sp
ee

d
(k

m
/h

)
With application
Without application
Lead vehicle (with)
Lead vehicle (without)

Figure 2: Pilot data (left panel) from our platform representing participant’s speed (continuous lines) during
trials with (green lines) and without (blue lines) the mobile application. Dashed lines represent the lead
vehicle speed in the two conditions. The vertical color strips show when the participant actually interacted
with the application and the correctness of the answer (green for correct answers and red for wrong ones.
The simulator setup is presented on the right panel.

being implemented and will give rise to numerous challenges
in terms of accuracy of sensors and real-time processing.

6. CONCLUSIONS
Our platform is an integrated way to quickly prototype and
test user interfaces. It provides a convenient way to con-
sistently test interaction mechanics between the user and
the application in different contexts. Indeed, the 3D simu-
lation engine can easily be switched without impacting the
interaction mechanics with the application or the user study
design. Finally, the 3D simulation engine can be replaced
by a real car in order to compare data at different levels of
fidelity with regard to the target situation.

7. ACKNOWLEDGMENTS
The I-GEAR project was funded by the National Research
Fund, Luxembourg (Project code: 11/IS/1204159). We also
thank other colleagues and students from the I-GEAR team
(www.igear.lu).

8. REFERENCES
[1] H. Alm and L. Nilsson. The effects of a mobile

telephone task on driver behaviour in a car following
situation. Accident Analysis & Prevention,
27(5):707–715, 1995.

[2] T. Avanesov, N. Louveton, R. McCall, V. Koenig, and
M. Kracheel. Towards a Simple City Driving Simulator
Based on Speed Dreams and OSM. Automotive UI in
Adjunct Proceedings – Work in Progress Paper, 2012.

[3] P. Burns and T. Lansdown. E-distraction: the
challenges for safe and usable internet services in
vehicles. In Internet Forum on the Safety Impact of
Driver Distraction When Using In-Vehicle
Technologies, 2000.

[4] T. Fishman. Digital-age transportation: The future of
urban mobility. Technical report, Deloitte University
Press, 2012.

[5] P. Green. Driver distraction, telematics design, and
workload managers: Safety issues and solutions.

Society of Automotive Engineers, 2004.

[6] S. L. Jamson and A. H. Jamson. The validity of a
low-cost simulator for the assessment of the effects of
in-vehicle information systems. Safety Science,
48(10):1477–1483, 2010.

[7] A. Kemeny and F. Panerai. Evaluating perception in
driving simulation experiments. Trends Cogn Sci,
7(1):31–37, Jan. 2003.

[8] R. Math, A. Mahr, M. M. Moniri, and C. Müller.
Opends: A new open-source driving simulator for
research. GMM-Fachbericht-AmE 2013, 2013.

[9] R. McCall and V. Koenig. Gaming concepts and
incentives to change driver behaviour. In Ad Hoc
Networking Workshop (Med-Hoc-Net), 2012 The 11th
Annual Mediterranean, pages 146–151. IEEE, 2012.

[10] R. McCall, V. Koenig, and M. Kracheel. Using
gamification and metaphor to design a mobility
platform for commuters. International Journal of
Mobile Human Computer Interaction (IJMHCI),
5(1):1–15, 2013.

[11] National Highway Traffic Safety Administration.
Visual-Manual NHTSA Driver Distraction Guidelines
for In-Vehicle Electronic Devices. Technical Report
NHTSA-2010-0053, National Highway Traffic Safety
Administration, Washington, DC: U.S., 2012.

[12] D. D. Salvucci. Distraction beyond the driver:
predicting the effects of in-vehicle interaction on
surrounding traffic. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’13, pages 3131–3134, New York, NY, USA, 2013.
ACM.

[13] D. D. Salvucci and K. L. Macuga. Predicting the
effects of cellular-phone dialing on driver performance.
Cognitive Systems Research, 3(1):95–102, 2002.

[14] D. D. Salvucci, D. Markley, M. Zuber, and D. P.
Brumby. ipod distraction: Effects of portable
music-player use on driver performance. In Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages 243–250. ACM, 2007.

www.igear.lu

	Introduction
	I-GEAR project
	Requirements for the platform
	Modular architecture
	Flexibility: switching 3D/Physics engines
	Multi-Driver and Multiplayer
	Rapid prototyping: employing mobile web technologies

	Studies set-up and Monitoring
	Conclusions
	Acknowledgments
	References

