Characterization of some stable aggregation functions

Jean-Luc Marichal and Marc Roubens
Institute of Mathematics, University of Liège, Belgium

Abstract

We characterize the class of ordinaly stable, continuous, neutral (symmetric) and monotonic aggregators together with the class of associative or decomposable, continuous, neutral and monotonic aggregation operators which are stable for any positive linear transformation.

Keywords : logical connectives; aggregation functions; ordinal and interval scales; stability.

Introduction

Let us assume that a set of a finite number of elements $\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ is given according to some scale type as defined by Stevens [8]- see also Coombs [2] and Roberts [7]. One of the main problems for the definition of an appropriate aggregation function $M\left(x_{1}, \ldots, x_{m}\right) \in[0,1]$ in the field of multifactorial evaluation for the construction of multiple-criterion aggregation connective corresponds to the stability of the aggregators.

Let us suppose the admissible transformations related to the scale type are functions $\phi:[0,1] \rightarrow[0,1]$. Stability of M is assumed if $M\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)\right]=\phi M\left(x_{1}, \ldots, x_{m}\right)$.

Two particular scale types are considered : the continuous ordinal scale and the interval scale where the corresponding admissible transformations ϕ are respectively the continuous strictly increasing transformations (called the family Φ) and the positive linear transformations.

The main difficulty for this kind of functions is the lack of a representation theorem for M analogous to those given by Kolmogorov [5] and Nagumo [6] for generalized means or by Aczèl [1] for associative aggregators.

The main aim in this paper is to characterize two important classes of aggregation functions : the ordinaly stable aggregators and the connectives which preserve the stability for positive linear transformations.

1 Basic definitions

We consider a vector $\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ and we are willing to substitute to that vector a single value $M\left(x_{1}, \ldots, x_{m}\right) \in[0,1]$ using the aggregation operator M.

The operator is called
C-operator if M is continuous in the arguments x_{1}, \ldots, x_{m}.
N-operator if M is neutral (commutative, symmetric), i.e. independant of the labels :

$$
M\left(x_{1}, \ldots, x_{m}\right)=M\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)
$$

where $\left(i_{1}, \ldots, i_{m}\right)=\sigma(1, \ldots, m)$ and σ represents a permutation operation.
M-operator if M is monotonic, which means that

$$
x_{i}^{\prime}>x_{i} \text { implies } M\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right) \geq M\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)
$$

$C N M$-operator if M is a continuous, neutral and monotonic operator.
S-operator if M is strictly monotonic (strict), which means that

$$
x_{i}^{\prime}>x_{i} \text { implies } M\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)>M\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)
$$

I-operator if M is idempotent, i.e. if M satisfies

$$
M(x, \ldots, x)=x, \text { for all } x \in[0,1]
$$

A-operator if M is associative. In that case, aggregation of only two arguments can be canonically extended to any finite number of arguments :

$$
\begin{aligned}
M\left(x_{1}, x_{2}, x_{3}\right) & =M\left(x_{1}, M\left(x_{2}, x_{3}\right)\right)=M\left(M\left(x_{1}, x_{2}\right), x_{3}\right) \\
M\left(x_{1}, \ldots, x_{m}\right) & =M\left(M\left(x_{1}, \ldots, x_{m-1}\right), x_{m}\right) .
\end{aligned}
$$

D-operator if M is decomposable (see Kolmogorov (1930), Nagumo (1930)), i.e. each element of a subgroup of elements to be aggregated can be substituted to its partial aggregation without change :

$$
M^{(m)}\left(x_{1}, \ldots, x_{m}\right)=M^{(m)}(\underbrace{\bar{x}, \ldots, \bar{x}}_{k \text { times }}, x_{k+1}, \ldots, x_{m})
$$

with $\bar{x}=M^{(k)}\left(x_{1}, \ldots, x_{k}\right)$.
$S O$-operator if M is ordinaly stable, which means that

$$
M\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)\right)=\phi M\left(x_{1}, \ldots, x_{m}\right)
$$

where $\phi \in \Phi$ is a continuous strictly increasing function : $[0,1] \rightarrow[0,1]$.
SPL-operator if M is stable for any admissible positive linear transformation. In that case :

$$
M\left(\alpha x_{1}+t, \ldots, \alpha x_{m}+t\right)=\alpha M\left(x_{1}, \ldots, x_{m}\right)+t
$$

$\alpha>0, \alpha x_{k}+t \in[0,1]$, for all $k \in\{1, \ldots, m\}$ and $\alpha M\left(x_{1}, \ldots, x_{m}\right)+t \in[0,1]$.
SSI-operator if M is stable for any admissible similarity. This property means that

$$
M\left(\alpha x_{1}, \ldots, \alpha x_{m}\right)=\alpha M\left(x_{1}, \ldots, x_{m}\right),
$$

$\alpha>0, \alpha x_{k} \in[0,1]$, for all $k \in\{1, \ldots, m\}$, and $\alpha M\left(x_{1}, \ldots, x_{m}\right) \in[0,1]$.
$S T R$-operator if M is stable for any admissible translation. In that case :

$$
M\left(x_{1}+t, \ldots, x_{m}+t\right)=M\left(x_{1}, \ldots, x_{m}\right)+t
$$

$x_{k}+t \in[0,1]$, for all $k \in\{1, \ldots, m\}$ and $M\left(x_{1}, \ldots, x_{m}\right)+t \in[0,1]$.

2 Characterization of ordinaly stable $C N M$ operators

Theorem $1(S O)-C N M$ operators are characterized by the family of connectives $M\left(x_{1}, \ldots, x_{m}\right)$ equal to one of its components x_{r}, r being independant from $\left(x_{1}, \ldots, x_{m}\right)$.

Proof. The sufficiency part is evident. The necessary part is proved in three steps.
(1) Let us consider $\left(z_{1}, \ldots, z_{m}\right) \in[0,1]^{m}, z_{1}<z_{2}<\cdots<z_{m}$.

If $M\left(z_{1}, \ldots, z_{m}\right)=0$, we shall prove that $z_{1}=0$. Suppose that $z_{1}>0$ and consider $\psi_{i}(x)=x^{1 / i}$, for all $x \in[0,1], i \in N_{0}=\{1,2, \ldots\} . \psi_{i}$ belongs to the family Φ.

$$
M\left[\psi_{i}\left(z_{1}\right), \ldots, \psi_{i}\left(z_{m}\right)\right]=\psi_{i}\left\{M\left(z_{1}, \ldots, z_{m}\right)\right\}=\psi_{i}(0)=0, \quad \forall i \in N_{0}
$$

and

$$
\lim _{i \rightarrow \infty} M\left[\psi_{i}\left(z_{1}\right), \ldots, \psi_{i}\left(z_{m}\right)\right]=0
$$

Due to the continuity,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} M\left[\psi_{i}\left(z_{1}\right), \ldots, \psi_{i}\left(z_{m}\right)\right] & =M\left[\lim _{i \rightarrow \infty} \psi_{i}\left(z_{1}\right), \ldots, \lim _{i \rightarrow \infty} \psi_{i}\left(z_{m}\right)\right] \\
& =M(1, \ldots, 1), \text { because } z_{1}>0
\end{aligned}
$$

$M(1, \ldots, 1)=0$ and monotonicity imply $M\left(x_{1}, \ldots, x_{m}\right)=0$, for all $\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ and $0=M\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)\right)=\phi\left[M\left(x_{1}, \ldots, x_{m}\right)\right]=\phi(0)$, for all $\phi \in \Phi$, which is not supposed to be the case.

If $M\left(z_{1} \ldots z_{m}\right)=1$, we can prove with similar arguments thats $z_{m}=1$.
(2) Let us now consider $\left(z_{1}, \ldots, z_{m}\right) \in(0,1)^{m}$, $z_{0}=0<z_{1}<\cdots<z_{m}<z_{m+1}=1$.

From the preceding results : $0<M\left(z_{1}, \ldots, z_{m}\right)<1$.
We shall prove first that there exists one $r \in\{0,1, \ldots, m\}$ such that $M\left(z_{1}, \ldots, z_{m}\right)=$ z_{r} using the fact that $M\left(z_{1}, \ldots, z_{m}\right)<1$. We consider

$$
\psi_{i}^{*}(x)=\left(z_{j+1}-z_{j}\right)\left(\frac{x-z_{j}}{z_{j+1}-z_{j}}\right)^{i}+z_{j} \text { if } x \in\left[z_{j}, z_{j+1}\right), \quad j=0, \ldots, m
$$

$\psi_{i}^{*}\left(z_{\ell}\right)=z_{\ell}$, for all $\ell \in\{0, \ldots, m\}$ and $\psi_{i}^{*} \in \Phi$.
Moreover,

$$
\lim _{i \rightarrow \infty} \psi_{i}^{*}(x)=z_{r} \text { if } x \in\left[z_{r}, z_{r+1}\right), \quad r=0, \ldots, m
$$

$M\left(z_{1}, \ldots, z_{m}\right)<1$ implies that there exists one $r \in\{0, \ldots, m\}$ such that $M\left(z_{1}, \ldots, z_{m}\right) \in\left[z_{r}, z_{r+1}\right)$ and

$$
\begin{aligned}
& M\left(z_{1}, \ldots, z_{m}\right)=M\left[\psi_{i}^{*}\left(z_{1}\right), \ldots, \psi_{i}^{*}\left(z_{m}\right)\right]=\psi_{i}^{*}\left\{M\left(z_{1}, \ldots, z_{m}\right)\right\}, \quad \forall i \in N_{0} \text { and } \\
& M\left(z_{1}, \ldots, z_{m}\right)=\lim _{i \rightarrow \infty} \psi_{i}^{*}\left\{M\left(z_{1}, \ldots, z_{m}\right)\right\}=z_{r}
\end{aligned}
$$

We can prove, using similar arguments, that there exists the same $r \in\{1, \ldots, m+1\}$ such that $M\left(z_{1}, \ldots, z_{m}\right)=z_{r}$ if $M\left(z_{1}, \ldots, z_{m}\right)>0$.

Finally, for any $\left(z_{1}<\cdots<z_{m}\right) \in(0,1)^{m}$, there exists one corresponding $r \in$ $\{1, \ldots, m\}$ such that $M\left(z_{1}, \ldots, z_{m}\right)=z_{r}$.
(3) We shall now prove that $M\left(x_{1}, \ldots, x_{m}\right)=x_{r}, r \in\{1, \ldots, m\}$, where r corresponds to the index obtained in (2), for any vector $\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$.
M being neutral, we can reorder $\left(x_{1}, \ldots, x_{m}\right): x_{1} \leq \cdots \leq x_{m}$ without changing the connective M value.

Let us consider $\chi(x)$, a non decreasing and continuous function on $[0,1]$ such that $\chi\left(z_{j}\right)=x_{j}, \forall j \in\{1, \ldots, m\}$ (see Fig. 1).

Figure 1
It is always possible to build $\chi_{i} \in \Phi$ such that $\lim _{i \rightarrow \infty} \chi_{i}(x)=\chi(x)$, for all $x \in[0,1]$. Due to ordinal stability and results from (2),

$$
\begin{gathered}
M\left[\chi_{i}\left(z_{1}\right), \ldots, \chi_{i}\left(z_{m}\right)\right]=\chi_{i}\left[M\left(z_{1}, \ldots, z_{m}\right)\right]=\chi_{i}\left(z_{r}\right) . \\
\lim _{i \rightarrow \infty} M\left[\chi_{i}\left(z_{1}\right), \ldots, \chi_{i}\left(z_{m}\right)\right]=\lim _{i \rightarrow \infty} \chi_{i}\left(z_{r}\right)=x_{r} .
\end{gathered}
$$

Finally, continuity gives

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{m}\right) & =M\left[\chi\left(z_{1}\right), \ldots, \chi\left(z_{m}\right)\right]=M\left[\lim _{i \rightarrow \infty} \chi_{i}\left(z_{1}\right), \ldots, \lim _{i \rightarrow \infty} \chi_{i}\left(z_{m}\right)\right] \\
& =\lim _{i \rightarrow \infty} M\left[\chi_{i}\left(z_{1}\right), \ldots, \chi_{i}\left(z_{m}\right)\right]=x_{r}
\end{aligned}
$$

Corollary 1 The class of $(A \& S O)-C N M$ operators or $(D \& S O)-C N M$ operators are reduced to

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\min _{i} x_{i}\right] \text { or }\left[\max _{i} x_{i}\right]
$$

Proof. Evident because $x_{(r)}$ is not associative nor decomposable for $r \neq 1, m$, if $x_{(1)} \leq \cdots \leq x_{(m)}$.

3 Characterization of associative or decomposable (SPL) - CNM operators

It is known from results of Fung and Fu [4] and Dubois and Prade [3] that ($A \& I$) $C N M$ operators are characterized by

$$
M\left(x_{1}, \ldots, x_{m}\right)=\operatorname{median}\left(\min _{i} x_{i}, \max _{i} x_{i}, \alpha\right), \quad \alpha \in[0,1] .
$$

The class of $(D \& I)-C N M$ operators has not been identified up to now but from results due to Kolmogorov [5] and Nagumo [6], we already know that the class of ($D \& I \& S$) - CNM operators correspond to the generalized means

$$
M\left(x_{1}, \ldots, x_{m}\right)=f^{-1}\left[\frac{1}{m} \sum_{i} f\left(x_{i}\right)\right]
$$

where f is any continuous strictly monotonic function on $[0,1]$.
If $S T R$ property is added, the class of generalized means can be reduced to (see Nagumo [6])

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\frac{1}{m} \sum_{i} x_{i}\right] \text { or }\left[\frac{1}{\lambda} \log \left(\frac{1}{m} \sum_{i} e^{\lambda x_{i}}\right)\right], \quad \lambda \neq 0
$$

when SSI property is introduced, the restriction is focused on (see Nagumo [6])

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\left(\prod_{i} x_{i}\right)^{1 / m}\right] \text { or }\left[\left(\frac{1}{m} \sum_{i} x_{i}^{\lambda}\right)^{1 / \lambda}\right], \quad \lambda \neq 0 .
$$

We shall characterize two classes of connectives : the $(A \& S P L)-C N M$ and ($D \& S P L$) $-C N M$ operators.

Let us first prove some lemmas.

Lemma 1 The (SPL)-CNM operators are idempotent.
Proof. We consider $\alpha_{i}>0$ such that $\lim _{i \rightarrow \infty} \alpha_{i}=0, i \in N_{0}$.

$$
M\left(\alpha_{i} x_{1}, \ldots, \alpha_{i} x_{m}\right)=\alpha_{i} M\left(x_{1}, \ldots, x_{m}\right) \quad \text { (stability) } .
$$

Using continuity,

$$
M(0, \ldots, 0)=0
$$

and

$$
M(t, \ldots, t)=t \quad \text { (stability })
$$

Lemma 2 For any (SPL) operator and $m=2$, we have

$$
M\left(x_{1}, x_{2}\right)=\theta x_{1}+(1-\theta) x_{2} \text { if } 0 \leq x_{1} \leq x_{2} \leq 1 \text { and } \theta \in[0,1] .
$$

Proof. Consider $x_{1} \leq x_{2}$,

$$
M\left(x_{1}, x_{2}\right)-x_{1}=M\left(0, x_{2}-x_{1}\right)=\left(x_{2}-x_{1}\right) M(0,1) \quad(\text { stability }) .
$$

Finally, $M\left(x_{1}, x_{2}\right)=\theta x_{1}+(1-\theta) x_{2}$, with $\theta=1-M(0,1)$.

Lemma 3 For any (D\&I) - CNM operator,

$$
M\left(x_{1}, \ldots, x_{m}\right)=M\left(p \cdot x_{1}, \ldots, p \cdot x_{m}\right), \text { with } p \in N_{0}
$$

Proof.

$$
\begin{aligned}
M\left(p \cdot x_{1}, \ldots, p \cdot x_{m}\right) & =M(\underbrace{x_{1}, \ldots, x_{1}}_{p \text { times }}, \ldots, \underbrace{x_{m}, \ldots, x_{m}}_{p \text { times }}) \text { (notation) } \\
& =M\left(x_{1}, \ldots, x_{m}, \ldots, x_{1}, \ldots, x_{m}\right)(\text { commutativity }) \\
& =M\left(m \cdot M\left(x_{1}, \ldots, x_{m}\right), \ldots, m \cdot M\left(x_{1}, \ldots, x_{m}\right)\right) \text { (decomposability) } \\
& =M\left(x_{1}, \ldots, x_{m}\right) \text { (idempotency) } .
\end{aligned}
$$

Theorem 2 (i) (A\&SPL) - CNM operators correspond to the class of

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\min _{i} x_{i}\right] \text { or }\left[\max _{i} x_{i}\right] .
$$

(ii) $(D \& S P L)-C N M$ operators correspond to the class of

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\min _{i} x_{i}\right] \text { or }\left[\max _{i} x_{i}\right] \text { or }\left[\frac{1}{m} \sum_{i} x_{i}\right] .
$$

Proof. Sufficient part of the theorem is evident. Let us turn to the necessary part.
Let us consider first (i).
Associativity implies :

$$
M\left(z_{1}, M\left(z_{2}, z_{3}\right)\right)=M\left(M\left(z_{1}, z_{2}\right), z_{3}\right) .
$$

If $z_{1} \leq z_{2} \leq z_{3}$, lemma 2 gives

$$
\theta z_{1}+\theta(1-\theta) z_{2}+(1-\theta)^{2} z_{3}=\theta^{2} z_{1}+\theta(1-\theta) z_{2}+(1-\theta) z_{3}
$$

or

$$
\theta(1-\theta)\left(z_{3}-z_{1}\right)=0, \quad \text { for all } z_{3} \geq z_{1}
$$

As a consequence, $\theta=0$ or 1 and $M\left(x_{1}, x_{2}\right)=\min \left(x_{1}, x_{2}\right) \vee \max \left(x_{1}, x_{2}\right)$.
The same values for θ are still obtained in a recurrent way for $m>2$.
We turn now to (ii)
(ii-1) : Let us first prove that for $m=3$,

$$
M\left(x_{1}, x_{2}, x_{3}\right)=\frac{\theta^{2} x_{1}+\theta(1-\theta) x_{2}+(1-\theta)^{2} x_{3}}{\theta^{2}+\theta(1-\theta)+(1-\theta)^{2}}, \quad\left(x_{1} \leq x_{2} \leq x_{3}\right) \in[0,1]^{3}, \theta \in[0,1]
$$

$$
\begin{aligned}
M\left(x_{1}, x_{2}, x_{3}\right) & \left.=M\left(2 . x_{1}, 2 . x_{2}, 2 . x_{3}\right) \quad \text { (lemma } 3\right) \\
& =M\left(x_{1}, x_{2}, x_{1}, x_{3}, x_{2}, x_{3}\right) \quad \text { (commutativity) } \\
& =M\left(2 . M\left(x_{1}, x_{2}\right), 2 . M\left(x_{1}, x_{3}\right), 2 . M\left(x_{2}, x_{3}\right)\right) \quad \text { (decomposability) } \\
& \left.=M\left(\theta x_{1}+(1-\theta) x_{2}, \theta x_{1}+(1-\theta) x_{3}, \theta x_{2}+(1-\theta) x_{3}\right) \quad \text { (lemmas } 2 \& 3\right)
\end{aligned}
$$

$$
M(x)=M\left(x_{1}, x_{2}, x_{3}\right)=M(x A)
$$

$$
=M\left[\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{ccc}
\theta & \theta & 0 \\
1-\theta & 0 & \theta \\
0 & 1-\theta & 1-\theta
\end{array}\right)\right]=M\left(x^{(1)}\right) .
$$

$x_{1}^{(1)} \leq x_{2}^{(1)} \leq x_{3}^{(1)}$ since $x_{1} \leq x_{2} \leq x_{3}$ and lemma 2.
By iteration, $M(x)=M\left(x A^{i}\right)=M\left(x^{(i)}\right)$ with $x_{1}^{(i)} \leq x_{2}^{(i)} \leq x_{3}^{(i)}, \quad \forall i \in N_{0}$.
The diagonalization of A gives

$$
\lim _{i \rightarrow \infty} A^{i}=\frac{1}{D}\left(\begin{array}{ccc}
\theta^{2} & \theta^{2} & \theta^{2} \\
\theta(1-\theta) & \theta(1-\theta) & \theta(1-\theta) \\
(1-\theta)^{2} & (1-\theta)^{2} & (1-\theta)^{2}
\end{array}\right), \quad D=\theta^{2}+\theta(1-\theta)+(1-\theta)^{2}
$$

Finally,

$$
\begin{aligned}
M(x) & =\lim _{i \rightarrow \infty} M\left(x^{(i)}\right)=M\left(x \lim _{i \rightarrow \infty} A^{i}\right)=M\left(3 \cdot \frac{\theta^{2} x_{1}+\theta(1-\theta) x_{2}+(1-\theta)^{2} x_{3}}{D}\right) \\
& =\frac{\theta^{2} x_{1}+\theta(1-\theta) x_{2}+(1-\theta)^{2} x_{3}}{D} \text { (idempotency, see lemma 1). }
\end{aligned}
$$

(ii-2): We now prove that $\theta \in\{1,0,1 / 2\}$, i.e.

$$
M\left(x_{1}, x_{2}\right)=\min \left(x_{1}, x_{2}\right) \text { or } \max \left(x_{1}, x_{2}\right) \text { or }\left(\frac{x_{1}+x_{2}}{2}\right) .
$$

Let us consider $0 \leq z_{1} \leq z_{2} \leq z_{3} \leq 1$.
Decomposability implies

$$
M\left(z_{1}, z_{2}, z_{3}\right)=M\left[M\left(z_{1}, z_{3}\right), M\left(z_{1}, z_{3}\right), z_{2}\right] .
$$

If $M\left(z_{1}, z_{3}\right) \leq z_{2}$,

$$
\theta^{2} z_{1}+\theta(1-\theta) z_{2}+(1-\theta)^{2} z_{3}=\theta^{2} M\left(z_{1}, z_{3}\right)+\theta(1-\theta) M\left(z_{1}, z_{3}\right)+(1-\theta)^{2} z_{2}
$$

or $(1-\theta)(1-2 \theta)\left(z_{3}-z_{2}\right)=0$.
As a consequence, $\theta=1$ or $1 / 2$.
If $M\left(z_{1}, z_{3}\right) \geq z_{2}$,

$$
\theta^{2} z_{1}+\theta(1-\theta) z_{2}+(1-\theta)^{2} z_{3}=\theta^{2} z_{2}+\theta(1-\theta) M\left(z_{1}, z_{3}\right)+(1-\theta)^{2} M\left(z_{1}, z_{3}\right)
$$

or $\theta(1-2 \theta)\left(z_{2}-z_{1}\right)=0$.
We can conclude that $\theta \in\{0,1,1 / 2\}$.
(ii-3) : We finally prove in a recurrent way that

$$
M\left(x_{1}, \ldots, x_{m}\right)=\left[\min _{i} x_{i}\right] \text { or }\left[\max _{i} x_{i}\right] \text { or }\left[\frac{1}{m} \sum_{i} x_{i}\right] .
$$

Suppose $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m} \leq 1, m \geq 3$.

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{m}\right) & =M\left[(m-1) \cdot x_{1}, \ldots,(m-1) \cdot x_{m}\right] \\
& =M\left[x_{1}, x_{2}, \ldots, x_{m-1}, x_{1}, x_{2}, \ldots, x_{m-2}, x_{m}, \ldots, x_{2}, \ldots, x_{m}\right] \\
& =M\left[(m-1) \cdot M\left(x_{1}, \ldots, x_{m-1}\right), \ldots,(m-1) \cdot M\left(x_{2}, \ldots, x_{m}\right)\right] \\
& =M\left[M\left(x_{1}, \ldots, x_{m-1}\right), \ldots, M\left(x_{2}, \ldots, x_{m}\right)\right] .
\end{aligned}
$$

Using recurrency,

$$
M\left(x_{1}, \ldots, x_{m}\right)=M\left[\left(x_{1}, \ldots, x_{m}\right) A_{m \times m}\right]=M\left(x_{1}^{(1)}, \ldots, x_{m}^{(1)}\right)
$$

where

$$
A_{m \times m}=A_{\min , m \times m} \text { or } A_{\max , m \times m} \text { or } A_{\text {mean }, m \times m}
$$

and

$$
A_{\min , m \times m}=\left(\begin{array}{llllll}
1 & \ldots & \ldots & \ldots & 1 & 0 \\
& & & & & 1 \\
& & & & & \\
& & 0 & & & \\
& & & & &
\end{array}\right)
$$

$$
\begin{aligned}
& A_{\text {max, } m \times m}=\left(\begin{array}{llllllll}
\\
& & & & 0 & & & \\
\hline 1 & & & & & & \\
0 & 1 & \ldots & \ldots & \ldots & 1
\end{array}\right) \\
& A_{\text {mean }, m \times m}=\frac{1}{m-1}\left(\begin{array}{llll}
1 & & & 0 \\
& & 0 & \\
& & & 1
\end{array}\right)
\end{aligned}
$$

Due to monotonicity,

$$
x_{1}^{(1)}=M\left(x_{1}, \ldots, x_{m-2}, x_{m-1}\right) \leq x_{2}^{(1)}=M\left(x_{1}, \ldots, x_{m-2}, x_{m}\right)
$$

and $x_{1}^{(1)} \leq \cdots \leq x_{m}^{(1)}$.
By iteration,

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{m}\right) & =M\left[\left(x_{1}, \ldots, x_{m}\right) A_{m \times m}\right]=M\left[\left(x_{1}, \ldots, x_{m}\right) A_{m \times m}^{i}\right] \\
& =M\left(x_{1}^{(i)}, \ldots, x_{m}^{(i)}\right), \text { for all } i \in N_{0}
\end{aligned}
$$

with $x_{1}^{(i)} \leq \cdots \leq x_{m}^{(i)}$.
It is easily shown that

$$
\left.\begin{array}{l}
\lim _{i \rightarrow \infty} A_{\min , m \times m}^{i}=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
& 0 & \\
& &
\end{array}\right) \\
\lim _{i \rightarrow \infty} A_{\max , m \times m}^{i}=\left(\begin{array}{c}
\\
\\
\\
\\
\hline 1
\end{array} \begin{array}{ll}
\\
\hline 1 & \ldots
\end{array}\right. \\
\lim _{i \rightarrow \infty}
\end{array}\right)
$$

Consequently,

$$
M\left(x_{1}, \ldots, x_{m}\right)=\lim _{i \rightarrow \infty} M\left[\left(x_{1}, \ldots, x_{m}\right) A_{m \times m}^{i}\right]=M\left[\left(x_{1}, \ldots, x_{m}\right) A_{m \times m}^{\infty}\right]
$$

where

$$
A_{m \times m}^{\infty}=\left[\lim _{i \rightarrow \infty} A_{\min , m \times m}^{i}\right] \text { or }\left[\lim _{i \rightarrow \infty} A_{\max , m \times m}^{i}\right] \text { or }\left[\lim _{i \rightarrow \infty} A_{\text {mean }, m \times m}^{i}\right]
$$

Corollary 2 The class of $(D \& S \& S P L)-C N M$ operators is reduced to

$$
M\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m} \sum x_{i} .
$$

Proof. Evident.

References

[1] J. Aczél, Sur les opérations définies pour nombres réels, Bull. Soc. Math. France 76 (1949) 59-64.
[2] C.H. Coombs, A theory of psychological scaling, Eng. Res. Bull. 34 (1952) (University of Michigan Press, Ann Arbor, Michigan).
[3] D. Dubois and H. Prade, A review of fuzzy sets aggregation connectives, Information Sciences 36 (1985) 85-121.
[4] L.W. Fung and K.U. Fu, An axiomatical approach to rational decision making in fuzzy environment, in : L.A. Radeh et al. (Eds.), Fuzzy Sets and Their Applications to Cognitive and Decision Processes (Academic Press, New York, 1975) 227-256.
[5] A.V. Kolmogorov, Sur la notion de la moyenne, Acad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez., 12 (1930) 388-391.
[6] M. Nagumo, Über eine Klasse der Mittelwerte, Japanese Journal of Mathematics 6 (1930) 71-79.
[7] F.S. Roberts, Measurement theory with applications to decision making, utility and social sciences (Addison-Wesley, Reading, Massachusetts, 1979).
[8] S.S. Stevens, Mathematics, Measurement and Psychophysics, in : S.S; Stevens (ed.), Handbook of Experimental Psychology (Wiley, New York, 1951) 1-49.

