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Abstract

We characterize the class of ordinaly stable, continuous, neutral (symmetric)
and monotonic aggregators together with the class of associative or decomposable,
continuous, neutral and monotonic aggregation operators which are stable for any
positive linear transformation.

Keywords : logical connectives; aggregation functions; ordinal and interval scales; sta-
bility.

Introduction

Let us assume that a set of a finite number of elements (x1, . . . , xm) ∈ [0, 1]m is given
according to some scale type as defined by Stevens [8]– see also Coombs [2] and Roberts
[7]. One of the main problems for the definition of an appropriate aggregation function
M(x1, . . . , xm) ∈ [0, 1] in the field of multifactorial evaluation for the construction of
multiple-criterion aggregation connective corresponds to the stability of the aggregators.

Let us suppose the admissible transformations related to the scale type are functions
φ : [0, 1] → [0, 1]. Stability of M is assumed if M [φ(x1), . . . , φ(xm)] = φM(x1, . . . , xm).

Two particular scale types are considered : the continuous ordinal scale and the
interval scale where the corresponding admissible transformations φ are respectively the
continuous strictly increasing transformations (called the family Φ) and the positive
linear transformations.

The main difficulty for this kind of functions is the lack of a representation theorem
for M analogous to those given by Kolmogorov [5] and Nagumo [6] for generalized means
or by Aczèl [1] for associative aggregators.

The main aim in this paper is to characterize two important classes of aggregation
functions : the ordinaly stable aggregators and the connectives which preserve the sta-
bility for positive linear transformations.

1 Basic definitions

We consider a vector (x1, . . . , xm) ∈ [0, 1]m and we are willing to substitute to that
vector a single value M(x1, . . . , xm) ∈ [0, 1] using the aggregation operator M .

The operator is called
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C-operator if M is continuous in the arguments x1, . . . , xm.

N -operator if M is neutral (commutative, symmetric), i.e. independant of the labels :

M(x1, . . . , xm) = M(xi1 , . . . , xim)

where (i1, . . . , im) = σ(1, . . . , m) and σ represents a permutation operation.

M -operator if M is monotonic, which means that

x′i > xi implies M(x1, . . . , x
′
i, . . . , xm) ≥ M(x1, . . . , xi, . . . , xm)

CNM -operator if M is a continuous, neutral and monotonic operator.

S-operator if M is strictly monotonic (strict), which means that

x′i > xi implies M(x1, . . . , x
′
i, . . . , xm) > M(x1, . . . , xi, . . . , xm)

I-operator if M is idempotent , i.e. if M satisfies

M(x, . . . , x) = x, for all x ∈ [0, 1]

A-operator if M is associative. In that case, aggregation of only two arguments can be
canonically extended to any finite number of arguments :

M(x1, x2, x3) = M(x1, M(x2, x3)) = M(M(x1, x2), x3)

M(x1, . . . , xm) = M(M(x1, . . . , xm−1), xm).

D-operator if M is decomposable (see Kolmogorov (1930), Nagumo (1930)), i.e. each
element of a subgroup of elements to be aggregated can be substituted to its partial
aggregation without change :

M (m)(x1, . . . , xm) = M (m)(x̄, . . . , x̄︸ ︷︷ ︸
k times

, xk+1, . . . , xm)

with x̄ = M (k)(x1, . . . , xk).

SO-operator if M is ordinaly stable, which means that

M(φ(x1), . . . , φ(xm)) = φM(x1, . . . , xm)

where φ ∈ Φ is a continuous strictly increasing function : [0, 1] → [0, 1].

SPL-operator if M is stable for any admissible positive linear transformation. In that
case :

M(αx1 + t, . . . , αxm + t) = αM(x1, . . . , xm) + t,
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α > 0, αxk + t ∈ [0, 1], for all k ∈ {1, . . . ,m} and αM(x1, . . . , xm) + t ∈ [0, 1].

SSI-operator if M is stable for any admissible similarity . This property means that

M(αx1, . . . , αxm) = αM(x1, . . . , xm),

α > 0, αxk ∈ [0, 1], for all k ∈ {1, . . . ,m}, and αM(x1, . . . , xm) ∈ [0, 1].

STR-operator if M is stable for any admissible translation. In that case :

M(x1 + t, . . . , xm + t) = M(x1, . . . , xm) + t

xk + t ∈ [0, 1], for all k ∈ {1, . . . , m} and M(x1, . . . , xm) + t ∈ [0, 1].

2 Characterization of ordinaly stable CNM opera-

tors

Theorem 1 (SO)− CNM operators are characterized by the family of connectives
M(x1, . . . , xm) equal to one of its components xr, r being independant from (x1, . . . , xm).

Proof. The sufficiency part is evident. The necessary part is proved in three steps.

(1) Let us consider (z1, . . . , zm) ∈ [0, 1]m, z1 < z2 < · · · < zm.
If M(z1, . . . , zm) = 0, we shall prove that z1 = 0. Suppose that z1 > 0 and consider

ψi(x) = x1/i, for all x ∈ [0, 1], i ∈ N0 = {1, 2, . . .}. ψi belongs to the family Φ.

M [ψi(z1), . . . , ψi(zm)] = ψi {M(z1, . . . , zm)} = ψi(0) = 0, ∀i ∈ N0

and
lim
i→∞

M [ψi(z1), . . . , ψi(zm)] = 0.

Due to the continuity,

lim
i→∞

M [ψi(z1), . . . , ψi(zm)] = M
[
lim
i→∞

ψi(z1), . . . , lim
i→∞

ψi(zm)
]

= M(1, . . . , 1), because z1 > 0.

M(1, . . . , 1) = 0 and monotonicity imply M(x1, . . . , xm) = 0, for all (x1, . . . , xm) ∈ [0, 1]m

and 0 = M(φ(x1), . . . , φ(xm)) = φ [M(x1, . . . , xm)] = φ(0), for all φ ∈ Φ, which is not
supposed to be the case.

If M(z1 . . . zm) = 1, we can prove with similar arguments thats zm = 1.

(2) Let us now consider (z1, . . . , zm) ∈ (0, 1)m, z0 = 0 < z1 < · · · < zm < zm+1 = 1.
From the preceding results : 0 < M(z1, . . . , zm) < 1.
We shall prove first that there exists one r ∈ {0, 1, . . . , m} such that M(z1, . . . , zm) =

zr using the fact that M(z1, . . . , zm) < 1. We consider

ψ∗i (x) = (zj+1 − zj)

(
x− zj

zj+1 − zj

)i

+ zj if x ∈ [zj, zj+1) , j = 0, . . . , m.
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ψ∗i (z`) = z`, for all ` ∈ {0, . . . , m} and ψ∗i ∈ Φ.
Moreover,

lim
i→∞

ψ∗i (x) = zr if x ∈ [zr, zr+1), r = 0, . . . , m.

M(z1, . . . , zm) < 1 implies that there exists one r ∈ {0, . . . ,m} such that
M(z1, . . . , zm) ∈ [zr, zr+1) and

M(z1, . . . , zm) = M [ψ∗i (z1), . . . , ψ
∗
i (zm)] = ψ∗i {M(z1, . . . , zm)}, ∀i ∈ N0 and

M(z1, . . . , zm) = lim
i→∞

ψ∗i {M(z1, . . . , zm)} = zr.

We can prove, using similar arguments, that there exists the same r ∈ {1, . . . , m+1}
such that M(z1, . . . , zm) = zr if M(z1, . . . , zm) > 0.

Finally, for any (z1 < · · · < zm) ∈ (0, 1)m, there exists one corresponding r ∈
{1, . . . , m} such that M(z1, . . . , zm) = zr.

(3) We shall now prove that M(x1, . . . , xm) = xr, r ∈ {1, . . . , m}, where r corresponds
to the index obtained in (2), for any vector (x1, . . . , xm) ∈ [0, 1]m.

M being neutral, we can reorder (x1, . . . , xm) : x1 ≤ · · · ≤ xm without changing the
connective M value.

Let us consider χ(x), a non decreasing and continuous function on [0, 1] such that
χ(zj) = xj, ∀j ∈ {1, . . . , m} (see Fig. 1).
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Figure 1

It is always possible to build χi ∈ Φ such that limi→∞ χi(x) = χ(x), for all x ∈ [0, 1].
Due to ordinal stability and results from (2),

M [χi(z1), . . . , χi(zm)] = χi [M(z1, . . . , zm)] = χi(zr).

lim
i→∞

M [χi(z1), . . . , χi(zm)] = lim
i→∞

χi(zr) = xr.
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Finally, continuity gives

M(x1, . . . , xm) = M [χ(z1), . . . , χ(zm)] = M
[
lim
i→∞

χi(z1), . . . , lim
i→∞

χi(zm)
]

= lim
i→∞

M [χi(z1), . . . , χi(zm)] = xr.

Corollary 1 The class of (A&SO)−CNM operators or (D&SO)−CNM operators
are reduced to

M(x1, . . . , xm) =
[
min

i
xi

]
or

[
max

i
xi

]
.

Proof. Evident because x(r) is not associative nor decomposable for r 6= 1,m, if
x(1) ≤ · · · ≤ x(m).

3 Characterization of associative or decomposable

(SPL)− CNM operators

It is known from results of Fung and Fu [4] and Dubois and Prade [3] that (A&I)−
CNM operators are characterized by

M(x1, . . . , xm) = median(min
i

xi, max
i

xi, α), α ∈ [0, 1] .

The class of (D&I) − CNM operators has not been identified up to now but from
results due to Kolmogorov [5] and Nagumo [6], we already know that the class of
(D&I&S)− CNM operators correspond to the generalized means

M(x1, . . . , xm) = f−1

[
1

m

∑

i

f(xi)

]

where f is any continuous strictly monotonic function on [0, 1].
If STR property is added, the class of generalized means can be reduced to (see

Nagumo [6])

M(x1, . . . , xm) =

[
1

m

∑

i

xi

]
or

[
1

λ
log

(
1

m

∑

i

eλxi

)]
, λ 6= 0

when SSI property is introduced, the restriction is focused on (see Nagumo [6])

M(x1, . . . , xm) =




(∏

i

xi

)1/m

 or




(
1

m

∑

i

xλ
i

)1/λ

 , λ 6= 0.

We shall characterize two classes of connectives : the (A&SPL) − CNM and
(D&SPL)− CNM operators.

Let us first prove some lemmas.
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Lemma 1 The (SPL)− CNM operators are idempotent.

Proof. We consider αi > 0 such that limi→∞ αi = 0, i ∈ N0.

M(αix1, . . . , αixm) = αiM(x1, . . . , xm) (stability).

Using continuity,
M(0, . . . , 0) = 0

and
M(t, . . . , t) = t (stability).

Lemma 2 For any (SPL) operator and m = 2, we have

M(x1, x2) = θx1 + (1− θ)x2 if 0 ≤ x1 ≤ x2 ≤ 1 and θ ∈ [0, 1] .

Proof. Consider x1 ≤ x2,

M(x1, x2)− x1 = M(0, x2 − x1) = (x2 − x1)M(0, 1) (stability).

Finally, M(x1, x2) = θx1 + (1− θ)x2, with θ = 1−M(0, 1).

Lemma 3 For any (D&I)− CNM operator,

M(x1, . . . , xm) = M(p.x1, . . . , p.xm), with p ∈ N0.

Proof.

M(p.x1, . . . , p.xm) = M(x1, . . . , x1︸ ︷︷ ︸
p times

, . . . , xm, . . . , xm︸ ︷︷ ︸
p times

) (notation)

= M(x1, . . . , xm, . . . , x1, . . . , xm) (commutativity)

= M(m.M(x1, . . . , xm), . . . , m.M(x1, . . . , xm)) (decomposability)

= M(x1, . . . , xm) (idempotency).

Theorem 2 (i) (A&SPL)− CNM operators correspond to the class of

M(x1, . . . , xm) =
[
min

i
xi

]
or

[
max

i
xi

]
.

(ii) (D&SPL)− CNM operators correspond to the class of

M(x1, . . . , xm) =
[
min

i
xi

]
or

[
max

i
xi

]
or

[
1

m

∑

i

xi

]
.
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Proof. Sufficient part of the theorem is evident. Let us turn to the necessary part.

Let us consider first (i).
Associativity implies :

M(z1, M(z2, z3)) = M(M(z1, z2), z3).

If z1 ≤ z2 ≤ z3, lemma 2 gives

θz1 + θ(1− θ)z2 + (1− θ)2z3 = θ2z1 + θ(1− θ)z2 + (1− θ)z3

or
θ(1− θ)(z3 − z1) = 0 , for all z3 ≥ z1.

As a consequence, θ = 0 or 1 and M(x1, x2) = min(x1, x2) ∨max(x1, x2).
The same values for θ are still obtained in a recurrent way for m > 2.

We turn now to (ii)
(ii-1) : Let us first prove that for m = 3,

M(x1, x2, x3) =
θ2x1 + θ(1− θ)x2 + (1− θ)2x3

θ2 + θ(1− θ) + (1− θ)2
, (x1 ≤ x2 ≤ x3) ∈ [0, 1]3 , θ ∈ [0, 1]

M(x1, x2, x3) = M(2.x1, 2.x2, 2.x3) (lemma 3)

= M(x1, x2, x1, x3, x2, x3) (commutativity)

= M(2.M(x1, x2), 2.M(x1, x3), 2.M(x2, x3)) (decomposability)

= M(θx1 + (1− θ)x2, θx1 + (1− θ)x3, θx2 + (1− θ)x3) (lemmas 2 & 3)

M(x) = M(x1, x2, x3) = M(xA)

= M


(x1, x2, x3)




θ θ 0
1− θ 0 θ

0 1− θ 1− θ





 = M(x(1)).

x
(1)
1 ≤ x

(1)
2 ≤ x

(1)
3 since x1 ≤ x2 ≤ x3 and lemma 2.

By iteration, M(x) = M(xAi) = M(x(i)) with x
(i)
1 ≤ x

(i)
2 ≤ x

(i)
3 , ∀i ∈ N0.

The diagonalization of A gives

lim
i→∞

Ai =
1

D




θ2 θ2 θ2

θ(1− θ) θ(1− θ) θ(1− θ)
(1− θ)2 (1− θ)2 (1− θ)2


 , D = θ2 + θ(1− θ) + (1− θ)2.

Finally,

M(x) = lim
i→∞

M(x(i)) = M
(
x lim

i→∞
Ai

)
= M

(
3.

θ2x1 + θ(1− θ)x2 + (1− θ)2x3

D

)

=
θ2x1 + θ(1− θ)x2 + (1− θ)2x3

D
(idempotency, see lemma 1).
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(ii-2) : We now prove that θ ∈ {1, 0, 1/2}, i.e.

M(x1, x2) = min(x1, x2) or max(x1, x2) or
(

x1 + x2

2

)
.

Let us consider 0 ≤ z1 ≤ z2 ≤ z3 ≤ 1.
Decomposability implies

M(z1, z2, z3) = M [M(z1, z3),M(z1, z3), z2] .

If M(z1, z3) ≤ z2,

θ2z1 + θ(1− θ)z2 + (1− θ)2z3 = θ2M(z1, z3) + θ(1− θ)M(z1, z3) + (1− θ)2z2

or (1− θ)(1− 2θ)(z3 − z2) = 0.
As a consequence, θ = 1 or 1/2.
If M(z1, z3) ≥ z2,

θ2z1 + θ(1− θ)z2 + (1− θ)2z3 = θ2z2 + θ(1− θ)M(z1, z3) + (1− θ)2M(z1, z3),

or θ(1− 2θ)(z2 − z1) = 0.
We can conclude that θ ∈ {0, 1, 1/2}.

(ii-3) : We finally prove in a recurrent way that

M(x1, . . . , xm) =
[
min

i
xi

]
or

[
max

i
xi

]
or

[
1

m

∑

i

xi

]
.

Suppose 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ 1, m ≥ 3.

M(x1, . . . , xm) = M [(m− 1).x1, . . . , (m− 1).xm]

= M [x1, x2, . . . , xm−1, x1, x2, . . . , xm−2, xm, . . . , x2, . . . , xm]

= M [(m− 1).M(x1, . . . , xm−1), . . . , (m− 1).M(x2, . . . , xm)]

= M [M(x1, . . . , xm−1), . . . ,M(x2, . . . , xm)] .

Using recurrency,

M(x1, . . . , xm) = M [(x1, . . . , xm)Am×m] = M(x
(1)
1 , . . . , x(1)

m )

where
Am×m = Amin, m×m or Amax, m×m or Amean, m×m,

and

Amin, m×m =




1 . . . . . . . . . 1 0
1

0
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Amax, m×m =




0

1
0 1 . . . . . . . . . 1




Amean, m×m =
1

m− 1




0
1

0
1

0




Due to monotonicity,

x
(1)
1 = M(x1, . . . , xm−2, xm−1) ≤ x

(1)
2 = M(x1, . . . , xm−2, xm)

and x
(1)
1 ≤ · · · ≤ x(1)

m .
By iteration,

M(x1, . . . , xm) = M [(x1, . . . , xm)Am×m] = M
[
(x1, . . . , xm)Ai

m×m

]

= M(x
(i)
1 , . . . , x(i)

m ), for all i ∈ N0

with x
(i)
1 ≤ · · · ≤ x(i)

m .
It is easily shown that

lim
i→∞

Ai
min, m×m =




1 . . . 1

0




lim
i→∞

Ai
max, m×m =




0

1 . . . 1




lim
i→∞

Ai
mean, m×m =

1

m




1 · · · 1
...

...
1 · · · 1




Consequently,

M(x1, . . . , xm) = lim
i→∞

M
[
(x1, . . . , xm)Ai

m×m

]
= M

[
(x1, . . . , xm)A∞

m×m

]

where

A∞
m×m =

[
lim
i→∞

Ai
min, m×m

]
or

[
lim
i→∞

Ai
max, m×m

]
or

[
lim
i→∞

Ai
mean, m×m

]

Corollary 2 The class of (D&S&SPL)− CNM operators is reduced to

M(x1, . . . , xm) =
1

m

∑
xi.

Proof. Evident.
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