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Abstract

The well-known bilateral filter is used to smooth

noisy images while keeping their edges. This filter is

commonly used with Gaussian kernel functions with-

out real justification. The choice of the kernel functions

has a major effect on the filter behavior. We propose

to use exponential kernels with L1 distances instead of

Gaussian ones. We derive Stein’s Unbiased Risk Esti-

mate to find the optimal parameters of the new filter and

compare its performance with the conventional one. We

show that this new choice of the kernels has a compara-

ble smoothing effect but with sharper edges due to the

faster, smoothly decaying kernels.

1. Introduction

Image denoising is a common image restoration pro-

cedure. The main challenge is to find a good image

denoising technique that removes noise while preserv-

ing image features such as edges and texture. Over

the past three decades, many algorithms have been pro-

posed. One common approach is to use the bilateral

filter (BF) [7]. This filter is a weighted average of the

local neighborhood pixels. The weighting is based on

the product of two kernel functions; one spatial using

the distance between the location of the center pixel and

the location of the neighboring pixels. The second ker-

nel is radiometric, and uses the distance between the in-

tensity of the center pixel and the intensity of the neigh-

boring pixels. Each weighting kernel is controlled by

a parameter determining its width. These kernels are

commonly chosen to be Gaussian functions with mean

zero. Stein’s Unbiased Risk Estimate (SURE) has been

used to find the optimal widths of the Gaussians, i.e.,

their standard deviations [6], [4], [1]; the objective be-

ing to find a trade-off between image smoothing and

edge preservation while minimizing SURE risk func-

tion, an estimator of the mean square error (MSE) be-

tween the noisy image and the filtered one.

As mentioned by Elad [2], as long as the kernel func-

tions used in the BF are smoothly decaying and sym-

metric, they can be chosen in place of the Gaussian

functions. However, very little work exists using bi-

lateral filters with a different kernel. In [3], Farsiu et al.

used an exponential kernel in their implementation of

the BF, but no justification was given for this choice.

It is clear that an adequate choice of the kernels may

lead to a good filter performance. We further argue that

a faster decaying kernel would ensure sharper edges

while smoothing the rest of the image. The question

is whether exponential kernels fall under this category.

We propose in this paper to answer this question. We

thus compare the performance of the BF using Gaussian

kernels, that we refer to as BFGauss, and the BF using

exponential kernels, that we refer to as BFexp. We de-

rive the SURE risk function for BFexp in order to find

the filter optimal parameters. Our simulations show that

for different levels of noise, BFexp consistently gives a

lower or equal MSE and always provides a final image

that is visually better. Given that BFexp and BFGauss
are computationally comparable, in view of our results,

BFexp is at least similar to BFGauss.

The paper is organized as follows: in Section 2

we briefly review the BF and give the formulation for

BFexp. In Section 3, we present the corresponding pa-

rameter estimation. We give a comparison of the two

filters in Section 4. We present our simulations in Sec-

tion 5. Finally, we summarize this paper in Section 6.
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2. Review of bilateral filtering

Let x be an (m × n) noise-free image degraded by

added zero-mean white Gaussian noise w of variance

σ2 and of the same size. The observed corrupted image

y is given by

y = x+w. (1)

The BF recovers the original image x by a nonlinear fil-

tering that replaces the noisy intensity value yp at each

pixel location p with a weighted average of the neigh-

boring pixels q, i.e., q ∈ N (p), such that:

x̂p =

∑

q∈N (p)

fS(p,q)fR(p,q) · yq

∑

q∈N (p)

fS(p,q)fR(p,q)
. (2)

The weighting kernel fS(p,q) is based on the distance

between p and q, and fR(p,q) is based on a radiomet-

ric distance, i.e., the difference between the two pixel

intensities yp and yq. We write the final filtered image

as x̂ = BF (y,θ) with x̂ = [x̂p]p∈[1:m]×[1:n] and θ

being the vector containing the filter parameters. The

two kernels have to verify two properties: 1) symmetry,

and 2) smooth decay. Conventionally, these functions

are taken as Gaussians with an L2 norm (Euclidean dis-

tance) and parameterized by (λg, βg) . That is BFGauss
is defined by:















fS(p,q) = exp

(

−
‖ p− q ‖22

2λg

)

fR(p,q) = exp

(

−
|yp − yq|

2

2βg

) (3)

Another choice for the kernels is the exponential func-

tion with an L1 norm (Manhattan distance). The base

of the exponential defines the width of the kernel and

needs to be in the interval ]0, 1[ to verify Property 2).

The resulting BFexp is defined by:

{

fS(p,q) = a‖p−q‖1

e = exp (‖ p− q ‖1 · ln ae)

fR(p,q) = b|yp−yq|
e = exp (|yp − yq| · ln be)

(4)

with 0 < ae, be < 1. For the sake of comparison, we

similarly define the bounded parameters of BFGauss as

ag = e
− 1

2λg , and bg = e
− 1

2βg . Comparing the two

filters BFGauss and BFexp passes through comparing

the two parameter vectors θg = [ag, bg]
T , and θe =

[ae, be]
T . We note that the main difference between the

kernels is in the square in the exponent of the Gaussian

kernels, that we will see in Section 4, plays a role in the

difference in performance.

3. Parameter estimation for bilateral filter-

ing

The quality of the denoised image x̂ is very depen-

dent on the choice of the filter parameters, θ in general.

To optimally set these parameters, we use SURE as an

unbiased estimator of the MSE, obtained from the ob-

served noisy image y. Indeed, the quality of the denois-

ing technique is measured by:

MSE(x̂) =
1

mn
‖ x− x̂ ‖22 . (5)

An unbiased estimator of (3) is given in [6], and defined

as the following SURE risk function:

Rθ =
1

mn
‖ y − x̂ ‖22 −σ2 + 2

σ2

mn
divy {x̂} , (6)

where divy {x̂} is the divergence of the denoising filter

BF (e.g., BFGauss or BFexp) with respect to the ob-

served image such that:

divy {x̂} =
∑

l∈[1:m]×[1:n]

∂x̂l

∂ŷl

. (7)

Finding the optimal θ follows as: θ̂ = argmin
θ

R̂θ . In

practice, the noise variance σ2 can easily be estimated

from the observed data.

In case of BFGauss, (3) is given in [6]. We herein give

the derivation for the case of the proposed BFexp. We

first define fSR(p,q) = a
‖p−q‖1

e b
|yp−yq|
e , then:

∂x̂p

∂yp

=

∂


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= ln be











∑

q∈N (p)

fSR(p,q)sign(yp − yq)yq
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q∈N (p)

fSR(p,q)






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− ln be
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

×
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q∈N (p)

fSR(p,q)yq
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where sign(·) is the sign function. We thus find the op-

timal θe that ensures the best possible denoising using

BFexp. Similarly we find the optimal θg that ensures

the best possible denoising using BFGauss.

4. Comparison of the two bilateral filters
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(a) Exponential kernel (b) Gaussian kernel

Figure 1. Exponential and Gaussian ker-

nels.

Both exponential and Gaussian kernel functions are

symmetric and smoothly decaying functions as depicted

in Figure 1. However, the decay of the exponential ker-

nel is faster which should achieve sharper edges.

BF is about finding a trade-off between the parameters;

spacial and radiometric. These parameters, θg and θe,

control the kernels decay. Small parameter values give

a simple uniform non-adaptive filtering which is known

to degrade the image edges, and large values reduce the

smoothing effect. As illustrated in Figure 2(b), the op-

timized radiometric parameters, both bg and be, are al-

most the same for both kernels. On the other hand, the

spatial parameters shown in Figure 2(a) of the Gaussian

kernel decrease by increasing the noise level compared

to the exponential. Thus, the exponential kernel leads

to sharper edges (Figure 4(d)) than the Gaussian kernel

illustrated in Figure 4(c).

5. Experimental results

In our experiments we illustrate the performance of

the BF using the proposed kernel compared to the stan-

dard Gaussian kernel. First, we ran a Monte-Carlo

simulation over 50 normalized noisy images by adding

white Gaussian noise with a noise variance varying

from 1% to 10%. At each noise level, we denoise the

images by a BF with the proposed exponential kernel

and the standard Guassian kernel. The spatial and radio-

metric smoothing parameters for both kernels were op-

timized based on the SURE approach. In Figure. 3, the

average root mean square error (RMSE) for both ker-

nels is illustrated, where we can see that the proposed
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Figure 2. Optimized parameters: (a) spa-

tial, (b) radiometric.

BFexp performs better than the standard BFGauss for

this ’cameraman’ example. Moreover, the proposed

kernel shows it superiority over the standard Gaussian

where it leads to a visual improvement in denoising re-

sults as shown in Figure. 4.

Next, we tested our algorithm on a 1D signal by

adding a noise of variance σ = 0.05. As illustrated

in Figure 5, the exponential kernel BFexp illustrated in

blue, gives a result that is closer to the original noise-

free signal, confirming its better performance.

6. Conclusion

Tomasi and Manduchi have proposed the bilateral

filter as a noise removal algorithm for images. In this

work we have proposed to use the exponential kernel as

an alternative to the standard Gaussian commonly used

by the community. We verified that the proposed kernel

is numerically better than the standard Gaussian for im-

age denoising. Moreover, we showed that the optimum

spatial and radiometric parameters provided by the ex-

ponential kernel lead to a better trade-off between blur-
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Denoising example: (a) origi-

nal image, (b) noisy image(σ=0.08), (c)-

(d) denoised images using exponential

and Gaussian kernels, respectively.(e)-(f)

zoomed patch for BFGauss and BFexp,

respectively .
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Figure 5. Illustration on denoising a 1-D

signal. See the text for explanation.
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Figure 3. RMSE of bilateral filter using ex-

ponential and Gaussian kernels .

ring and denoising, thus suppressing noise while pre-

serving edges.
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