Weighted Banzhaf power and interaction indexes through weighted approximations of games

Pierre Mathonet and Jean-Luc Marichal
University of Luxembourg
Mathematics Research Unit, FSTC

Linz 2011

Cooperative games and pseudo-Boolean functions

Cooperative games

The set of players : $N=\{1, \ldots, n\}$. Game : $f: 2^{N} \rightarrow \mathbb{R}$. For a coalition S of players $f(S)$ is the worth of S (usually $f(\varnothing)=0$, not additive).

Pseudo-Boolean functions

These are functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.
We identify $S \subseteq N$ and $1_{S} \in\{0,1\}^{n}$, for example

$$
S=\{2,4\} \subset N=\{1,2,3,4\} \mapsto \mathbf{1}_{S}=(0,1,0,1) .
$$

So, games are pseudo-Boolean functions. Such functions can be written

$$
f(\mathbf{x})=\sum_{S \subseteq N} f(S) \prod_{i \in S} x_{i} \prod_{i \in N \backslash S}\left(1-x_{i}\right)=\sum_{S \subseteq N} a(S) \prod_{i \in S} x_{i} .
$$

Multilinear extensions (Owen, 1972)

$$
\bar{f}:[0,1]^{n} \rightarrow \mathbb{R}: \mathbf{x} \mapsto \sum_{S \subseteq N} a(S) \prod_{i \in S} x_{i} .
$$

The cube

Power indexes

Problem : Find the real influence/power of a player on the game (to share the benefits, or simply to analyze the game).

The Shapley power index (L.S. Shapley 1953):

$$
\phi_{\mathrm{Sh}}(f, i)=\sum_{T \ngtr i} \frac{(n-t-1)!t!}{n!} \Delta^{i} f(T)
$$

where

$$
\Delta^{i} f(T)=f(T \cup i)-f(T \backslash i)
$$

is the discrete derivative of f with respect to i at T.

The Banzhaf power index (J. Banzhaf 1965):

$$
\phi_{\mathrm{B}}(f, i)=\frac{1}{2^{n-1}} \sum_{T \nexists i} \Delta^{i} f(T)
$$

There exist many axiomatic characterizations.

Interaction indexes I

Problem: The influence of a pair of players i, j is not the sum of their respective powers because of the interactions. Here we review concepts of interactions.

The Banzhaf interaction index (Owen (1972), Murofushi-Soneda (1993))

$$
I_{\mathrm{B}}(f,\{i, j\})=\frac{1}{2^{n-2}} \sum_{T \subset N \backslash\{i, j\}}(f(T \cup i j)-f(T \cup i)-f(T \cup j)+f(T)) .
$$

Note that, for $T \subseteq N \backslash\{i, j\}$,

$$
\begin{aligned}
\Delta^{i j} f(T) & =f(T \cup i j)-f(T \cup i)-f(T \cup j)+f(T) \\
& =(f(T \cup i j)-f(T))-(f(T \cup i)-f(T))-(f(T \cup j)-f(T)) \\
& =(f(T \cup i j)-f(T \cup j))-(f(T \cup i)-f(T)) .
\end{aligned}
$$

For $f(\mathbf{x})=\sum_{T \subseteq N} a(T) \prod_{i \in T} x_{i}$ and $S \subseteq N$,

$$
\Delta^{S} f(\mathbf{x})=\sum_{T \supseteq S} a(T) \prod_{i \in T \backslash S} x_{i}
$$

Interaction indexes II

To measure the interaction among players in coalition S :
The Banzhaf interaction index of S (Roubens (1996))

$$
I_{\mathrm{B}}(f, S)=\frac{1}{2^{n-s}} \sum_{T \subset N \backslash S} \Delta^{S} f(T) .
$$

The Shapley interaction index of S (Grabisch (1997))

$$
I_{\mathrm{Sh}}(f, S)=\sum_{T \subset N \backslash S} \frac{(n-t-s)!t!}{(n-s+1)!} \Delta^{S} f(T)
$$

Probabilistic interaction index of S (Grabisch,Roubens, see also Fujimoto, Kojadinovic, Marichal (2006))

$$
I(f, S)=\sum_{T \subset N \backslash S} p_{T}^{S} \Delta^{S} f(T)
$$

with $p_{T}^{S} \geqslant 0$ and $\sum_{T} p_{T}^{S}=1$. Expected values of derivatives.

Alternative expressions of interactions

Expressions in terms of the Möbius transform

$$
\begin{aligned}
I_{\mathrm{B}}(f, S) & =\sum_{T \supseteq S}\left(\frac{1}{2}\right)^{t-s} a(T), \\
I_{\mathrm{Sh}}(f, S) & =\sum_{T \supseteq S} \frac{1}{t-s+1} a(T) .
\end{aligned}
$$

In terms of the derivatives of the Owen extension \bar{f}

$$
\begin{gathered}
I_{\mathrm{B}}(f, S)=\left(D^{S} \bar{f}\right)\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)=\int_{[0,1]^{n}} D^{S} \bar{f}(\mathbf{x}) d \mathbf{x} \\
I_{\mathrm{Sh}}(f, S)=\int_{[0,1]} D^{S} \bar{f}(x, \ldots, x) d x .
\end{gathered}
$$

We will interpret these integrals at the end of the talk.

Main properties

Alternative representations

The map $f \mapsto\left(I_{B}(f, S): S \subseteq N\right)$ is a linear bijection :

$$
\bar{f}(\mathbf{x})=\sum_{S \subseteq N} I_{B}(f, S) \prod_{i \in S}\left(x_{i}-\frac{1}{2}\right)
$$

Symmetry-anonymity

If $\pi \in S_{n}$ and $\pi(f)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$, then

$$
I(\pi(f), \pi(S))=I(f, S)
$$

Dummy players

A player i is dummy in f if $f(T \cup i)=f(T)+f(i)-f(\varnothing)$ for $T \subseteq N \backslash i$. If i is dummy, then

$$
I(f, i)=f(i)-f(\varnothing) \quad \text { and } \quad I(f, S)=0 \quad \forall S \ni i, S \neq\{i\} .
$$

Some axiomatic characterizations use these properties.

Banzhaf power index and linear model

Rmk :If $\ell(\mathbf{x})=\ell_{\varnothing}+\ell_{1} x_{1}+\cdots+\ell_{n} x_{n}$, we have $I_{B}(\ell, i)=\ell_{i}$.
Alternative definition of a power index
Given a pseudo-Boolean f, consider a linear model for f :

$$
f_{1}(\mathbf{x})=a_{\varnothing}+a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

Define the power of i in f by a_{i}.
Least squares method : find f_{1} that minimizes

$$
\sum_{\mathbf{x} \in\{0,1\}^{n}}(f(\mathbf{x})-g(\mathbf{x}))^{2}
$$

among all linear models g.
Note that this means that all the coalitions are on the same footing.

Theorem (Hammer-Holzman (1992))

In the solution of the least squares problem, $a_{i}=I_{B}(f, i)$.
Note that we could have used the model $f_{1, i}(\mathbf{x})=a \not \alpha_{i}+a_{i} x_{i}$,

Banzhaf interaction index and multi-linear model

The setting

V_{k} : space of pseudo-Boolean functions of degree k at most

$$
V_{k}=\left\{g: g(\mathbf{x})=\sum_{S \subseteq N, s \leqslant k} c(S) \prod_{i \in S} x_{i}\right\} .
$$

For each f, find $f_{k} \in V_{k}$ that minimizes $\sum_{\mathbf{x} \in\{0,1\}^{n}}(f(\mathbf{x})-g(\mathbf{x}))^{2}$ among all $g \in V_{k}$.

Theorem (Grabisch-Marichal-Roubens (2000))

We have $f_{k}=\sum_{s \leqslant k} a_{k}(S) \prod_{i \in S} x_{i}$ with

$$
a_{k}(S)=a(S)+(-1)^{k-s} \sum_{T \supseteq s, t>k}\binom{t-s-1}{k-s}\left(\frac{1}{2}\right)^{t-s} a(T) .
$$

$$
a_{s}(S)=I_{B}(f, S)
$$

The new recipe

To compute $I_{B}(f, S)$

- Look at the cardinality of $S: s=|S|$;
- Find the best approximation of f by a function of degree at most s;
- Collect the coefficient of this approximation along the monomial $\prod_{i \in S} x_{i}$ in this approximation.

Remarks :

(1) The function $\mathbf{x} \mapsto \prod_{i \in S} x_{i}$ is the unanimity function w.r.t. S.
(2) In this setting, all the coalitions are on the same footing, they are equally likely to form.

Weighted least squares

$w(S)$: the probability that coalition S forms : $w(S)=\operatorname{Pr}(C=S)$.

Under independence

$$
\begin{aligned}
p_{i}=\operatorname{Pr}(C \ni i)=\sum_{S \ni i} w(S) \in(0,1) \text { and } \\
\qquad w(S)=\prod_{i \in S} p_{i} \prod_{i \in N \backslash S}\left(1-p_{i}\right) .
\end{aligned}
$$

Associated weighted least squares problem

Find the unique $f_{k} \in V_{k}$ that minimizes the (squared) distance

$$
\sum_{\mathbf{x} \in\{0,1\}^{n}} w(\mathbf{x})(f(\mathbf{x})-g(\mathbf{x}))^{2}=\sum_{S \subseteq N} w(S)(f(S)-g(S))^{2}
$$

among all functions $g \in V_{k}$.
Rmk: The distance is associated to the inner product $\langle f, g\rangle=\sum_{\mathbf{x} \in\{0,1\}^{n}} w(\mathbf{x}) f(\mathbf{x}) g(\mathbf{x})$, and w is defined by $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.

First solution of the least squares problem

The use of independence Guoli Ding et al (2010)
$B_{k}=\left\{v_{S}: S \subseteq N, s \leqslant k\right\}$, where $v_{S}:\{0,1\}^{n} \rightarrow \mathbb{R}$ is given by

$$
v_{S}(\mathbf{x})=\prod_{i \in S} \frac{x_{i}-p_{i}}{\sqrt{p_{i}\left(1-p_{i}\right)}}=\sum_{T \subseteq S} \frac{\prod_{i \in S \backslash T}\left(-p_{i}\right)}{\prod_{i \in S} \sqrt{p_{i}\left(1-p_{i}\right)}} \prod_{i \in T} x_{i}
$$

forms an orthonormal basis for V_{k}.

The projection

$$
f_{k}=\sum_{\substack{T \subseteq N \\ t \leqslant k}}\left\langle f, v_{T}\right\rangle v_{T}
$$

The index

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=\frac{\left\langle f, v_{S}\right\rangle}{\prod_{i \in S} \sqrt{p_{i}\left(1-p_{i}\right)}}
$$

First properties

The index characterizes the projection :
$f_{k} \in V_{k}$ is the best k th approximation of f iff

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=I_{\mathrm{B}, \mathbf{p}}\left(f_{k}, S\right) \quad \forall S: s \leqslant k .
$$

(Hint : this is equivalent to $\left\langle f, v_{s}\right\rangle=\left\langle f_{k}, v_{S}\right\rangle$. .)
The map $f \mapsto I_{\mathrm{B}, \mathbf{p}}(f, S)$ is linear.
The map $f \mapsto\left(I_{\mathrm{B}, \mathrm{p}}(f, S): S \subseteq N\right)$ is a bijection

$$
\begin{equation*}
f_{k}(\mathbf{x})=\sum_{T \subseteq N, t \leqslant k} I_{\mathrm{B}, \mathbf{p}}(f, T) \prod_{i \in T}\left(x_{i}-p_{i}\right), \quad k=n \tag{!}
\end{equation*}
$$

The index and the multilinear extension of f :

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=\left(D^{S} \bar{f}\right)(\mathbf{p})
$$

Explicit formulas

From $f(\mathbf{x})=\sum_{T \subseteq N} a(T) \prod_{i \in T} x_{i}$
Explicit expression of the index

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=\sum_{T \supseteq S} a(T) \prod_{i \in T \backslash S} p_{i}
$$

Proof : Just compute the derivatives of \bar{f}.

Explicit expression of the approximation
$f_{k}(\mathbf{x})=\sum_{S \subseteq N, s \leqslant k} a_{k}(S) \prod_{i \in S} x_{i}$

$$
a_{k}(S)=a(S)+(-1)^{k-s} \sum_{T \supseteq S, t>k}\binom{t-s-1}{k-t}\left(\prod_{i \in T \backslash S} p_{i}\right) a(T)
$$

Proof: Use expression of f_{k} and $I_{\mathrm{B}, \mathbf{p}}(f, S)$, expand and do some algebra.

An expected value of the discrete derivative

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=E\left(\Delta^{S} f\right)=\sum_{\mathbf{x} \in\{0,1\}^{n}} w(\mathbf{x}) \Delta^{S} f(\mathbf{x})
$$

Proof: Use $\Delta^{S} f(\mathbf{x})=\sum_{T \supseteq S} a(T) \prod_{i \in T \backslash S} x_{i}$, independence and explicit formula for $I_{\mathrm{B}, \mathbf{p}}(f, S)$.

An average (As a probabilistic interaction index)

$$
I_{\mathrm{B}, \mathbf{p}}(f, S)=\sum_{T \subseteq N \backslash S} p_{T}^{S}\left(\Delta^{S} f\right)(T)
$$

where $p_{T}^{S}=\operatorname{Pr}(T \subseteq C \subseteq S \cup T)=\prod_{i \in T} p_{i} \prod_{i \in(N \backslash(S \cup T))}\left(1-p_{i}\right)$.
Interpretation : $p_{T}^{S}=\operatorname{Pr}(C=S \cup T \mid C \supseteq S)=\operatorname{Pr}(C=T \mid C \subseteq N \backslash S)$

Further properties

Null players

A player i is null for f if $f(T \cup i)=f(T)$ for all $T \subseteq N \backslash i$.
If S contains a null player then $I_{\mathrm{B}, \mathbf{p}}(f, S)=0$.

Dummy coalitions

$D \subseteq N$ is dummy for f if $f(T)=f(T \cap D)+f(T \cap(N \backslash D))-f(\varnothing)$ for every $T \subseteq N$.
If D is dummy for f, if $K \cap D \neq \varnothing$ and $K \backslash D \neq \varnothing: I_{\mathrm{B}, \mathbf{p}}(f, K)=0$.

Symmetry of the index

An index I is symmetric if $I(\pi(f), \pi(S))=I(f, S)$ for all permutations π. $l_{\mathrm{B}, \mathrm{p}}$ is symmetric if and only w or is symmetric i.e. $p_{1}=\cdots=p_{n}$.

Back to Banzhaf and Shapley

A link with the Banzhaf index

$$
\begin{equation*}
I_{\mathrm{B}, \mathbf{p}^{\prime}}(f, S)=\sum_{T \supseteq S} I_{\mathrm{B}, \mathbf{p}}(f, T) \prod_{i \in T \backslash S}\left(p_{i}^{\prime}-p_{i}\right), \quad \text { set } p_{i} \text { or } p_{i}^{\prime} \text { to } \frac{1}{2} \tag{!}
\end{equation*}
$$

Another link with the Banzhaf index

$$
I_{\mathrm{B}}(f, S)=\int_{[0,1]^{n}} D^{S} \bar{f}(\mathbf{p}) d \mathbf{p}=\int_{[0,1]^{n}} I_{\mathrm{B}, \mathbf{p}}(f, S) d \mathbf{p}
$$

Proof : Just use explicit expressions and integrate.
Interpretation: take an average over \mathbf{p} if it is not known.

A link with the Shapley index

$$
I_{\mathrm{Sh}}(f, S)=\int_{0}^{1} D^{S} \bar{f}(p, \ldots, p) d p=\int_{0}^{1} I_{\mathrm{B},(p, \ldots, p)}(f, S) d p
$$

Interpretation : average if the players behave in the same (unknown) way.

Thanks for your attention

arxiv:1001.3052

