Weighted Banzhaf power and interaction indexes through weighted approximations of games

Pierre Mathonet and Jean-Luc Marichal

University of Luxembourg Mathematics Research Unit, FSTC

Linz 2011

Cooperative games and pseudo-Boolean functions

Cooperative games

The set of players : $N = \{1, ..., n\}$. Game : $f: 2^N \to \mathbb{R}$. For a coalition S of players f(S) is the *worth* of S (usually $f(\emptyset) = 0$, not additive).

Pseudo-Boolean functions

These are functions $f:\{0,1\}^n \to \mathbb{R}$.

We identify $S \subseteq N$ and $\mathbf{1}_S \in \{0,1\}^n$, for example

$$S = \{2,4\} \subset N = \{1,2,3,4\} \mapsto \mathbf{1}_S = (0,1,0,1).$$

So, games are pseudo-Boolean functions. Such functions can be written

$$f(\mathbf{x}) = \sum_{S \subseteq N} f(S) \prod_{i \in S} x_i \prod_{i \in N \setminus S} (1 - x_i) = \sum_{S \subseteq N} a(S) \prod_{i \in S} x_i.$$

Multilinear extensions (Owen, 1972)

$$ar{f}:[0,1]^n o\mathbb{R}:\mathbf{x}\mapsto\sum_{S\subset N}a(S)\prod_{i\in S}x_i.$$

The cube

Power indexes

Problem: Find the real influence/power of a player on the game (to share the benefits, or simply to analyze the game).

The Shapley power index (L.S. Shapley 1953):

$$\phi_{\operatorname{Sh}}(f,i) = \sum_{T \not\equiv i} \frac{(n-t-1)! \, t!}{n!} \Delta^i f(T),$$

where

$$\Delta^i f(T) = f(T \cup i) - f(T \setminus i)$$

is the discrete derivative of f with respect to i at T.

The Banzhaf power index (J. Banzhaf 1965):

$$\phi_{\mathrm{B}}(f,i) = \frac{1}{2^{n-1}} \sum_{T \not\ni i} \Delta^i f(T).$$

There exist many axiomatic characterizations.

Interaction indexes I

Problem: The *influence* of a pair of players i, j is not the sum of their respective powers because of the *interactions*. Here we review concepts of interactions.

The Banzhaf interaction index (Owen (1972), Murofushi-Soneda (1993))

$$I_{\mathrm{B}}(f,\{i,j\}) = \frac{1}{2^{n-2}} \sum_{T \subset N \setminus \{i,j\}} (f(T \cup ij) - f(T \cup i) - f(T \cup j) + f(T)).$$

Note that, for $T \subseteq N \setminus \{i, j\}$,

$$\begin{array}{lcl} \Delta^{ij} f(T) & = & f(T \cup ij) - f(T \cup i) - f(T \cup j) + f(T) \\ & = & (f(T \cup ij) - f(T)) - (f(T \cup i) - f(T)) - (f(T \cup j) - f(T)) \\ & = & (f(T \cup ij) - f(T \cup j)) - (f(T \cup i) - f(T)). \end{array}$$

For
$$f(\mathbf{x}) = \sum_{T \subseteq N} a(T) \prod_{i \in T} x_i$$
 and $S \subseteq N$,

$$\Delta^{S} f(\mathbf{x}) = \sum_{T \supseteq S} a(T) \prod_{i \in T \setminus S} x_{i}$$

Interaction indexes II

To measure the interaction among players in coalition S:

The Banzhaf interaction index of S (Roubens (1996))

$$I_{\mathrm{B}}(f,S) = \frac{1}{2^{n-s}} \sum_{T \subset N \setminus S} \Delta^{S} f(T).$$

The Shapley interaction index of S (Grabisch (1997))

$$I_{\mathrm{Sh}}(f,S) = \sum_{T \subset N \setminus S} \frac{(n-t-s)!t!}{(n-s+1)!} \Delta^S f(T).$$

Probabilistic interaction index of S (Grabisch, Roubens, see also Fujimoto, Kojadinovic, Marichal (2006))

$$I(f,S) = \sum_{T \subset N \setminus S} p_T^S \Delta^S f(T),$$

with $p_T^S \ge 0$ and $\sum_T p_T^S = 1$. Expected values of derivatives.

Alternative expressions of interactions

Expressions in terms of the Möbius transform

$$I_{\mathrm{B}}(f,S) = \sum_{T\supseteq S} \left(\frac{1}{2}\right)^{t-s} \mathsf{a}(T),$$

$$I_{\operatorname{Sh}}(f,S) = \sum_{T\supseteq S} \frac{1}{t-s+1} a(T).$$

In terms of the derivatives of the Owen extension \bar{f}

$$I_{\mathrm{B}}(f,S) = (D^{S}\bar{f})(\frac{1}{2},\ldots,\frac{1}{2}) = \int_{[0,1]^{n}} D^{S}\bar{f}(\mathbf{x}) d\mathbf{x},$$

$$I_{\mathrm{Sh}}(f,S) = \int_{[0,1]} D^S \overline{f}(x,\ldots,x) \, dx.$$

We will interpret these integrals at the end of the talk.

Main properties

Alternative representations

The map $f \mapsto (I_B(f, S) : S \subseteq N)$ is a linear bijection :

$$\bar{f}(\mathbf{x}) = \sum_{S \subseteq N} I_B(f, S) \prod_{i \in S} \left(x_i - \frac{1}{2}\right).$$

Symmetry-anonymity

If $\pi \in S_n$ and $\pi(f)(x_1,\ldots,x_n) = f(x_{\pi(1)},\ldots,x_{\pi(n)})$, then

$$I(\pi(f),\pi(S))=I(f,S).$$

Dummy players

A player i is dummy in f if $f(T \cup i) = f(T) + f(i) - f(\emptyset)$ for $T \subseteq N \setminus i$. If i is dummy, then

$$I(f,i) = f(i) - f(\emptyset)$$
 and $I(f,S) = 0 \quad \forall S \ni i, S \neq \{i\}.$

Some axiomatic characterizations use these properties.

Banzhaf power index and linear model

Rmk: If $\ell(\mathbf{x}) = \ell_{\varnothing} + \ell_1 x_1 + \cdots + \ell_n x_n$, we have $I_B(\ell, i) = \ell_i$.

Alternative definition of a power index

Given a pseudo-Boolean f, consider a linear model for f:

$$f_1(\mathbf{x}) = a_\varnothing + a_1x_1 + \cdots + a_nx_n$$

Define the power of i in f by a_i .

Least squares method : find f_1 that minimizes

$$\sum_{\mathbf{x}\in\{0,1\}^n} (f(\mathbf{x})-g(\mathbf{x}))^2$$

among all linear models g.

Note that this means that all the coalitions are on the same footing.

Theorem (Hammer-Holzman (1992))

In the solution of the least squares problem, $a_i = I_B(f, i)$.

Note that we could have used the model $f_{1,i}(\mathbf{x}) = a_{\varnothing} + a_i x_i$

Banzhaf interaction index and multi-linear model

The setting

 V_k : space of pseudo-Boolean functions of degree k at most

$$V_k = \{g : g(\mathbf{x}) = \sum_{S \subseteq N, s \leqslant k} c(S) \prod_{i \in S} x_i \}.$$

For each f, find $f_k \in V_k$ that minimizes $\sum_{\mathbf{x} \in \{0,1\}^n} (f(\mathbf{x}) - g(\mathbf{x}))^2$ among all $g \in V_k$.

Theorem (Grabisch-Marichal-Roubens (2000))

We have $f_k = \sum_{s \leqslant k} a_k(S) \prod_{i \in S} x_i$ with

$$a_k(S) = a(S) + (-1)^{k-s} \sum_{T \supset S, t > k} {t-s-1 \choose k-s} \left(\frac{1}{2}\right)^{t-s} a(T).$$

$$a_s(S) = I_B(f, S)$$
 (!).

The new recipe

To compute $I_B(f, S)$

- Look at the cardinality of S: s = |S|;
- Find the best approximation of f by a function of degree at most s;
- Collect the coefficient of this approximation along the monomial $\prod_{i \in S} x_i$ in this approximation.

Remarks:

- **1** The function $\mathbf{x} \mapsto \prod_{i \in S} x_i$ is the unanimity function w.r.t. S.
- 2 In this setting, all the coalitions are on the same footing, they are equally likely to form.

Weighted least squares

w(S): the probability that coalition S forms: w(S) = Pr(C = S).

Under independence

$$p_i = \Pr(C \ni i) = \sum_{S \ni i} w(S) \in (0,1)$$
 and

$$w(S) = \prod_{i \in S} p_i \prod_{i \in N \setminus S} (1 - p_i).$$

Associated weighted least squares problem

Find the unique $f_k \in V_k$ that minimizes the (squared) distance

$$\sum_{\mathbf{x} \in \{0,1\}^n} w(\mathbf{x}) \big(f(\mathbf{x}) - g(\mathbf{x}) \big)^2 = \sum_{S \subseteq N} w(S) \big(f(S) - g(S) \big)^2$$

among all functions $g \in V_k$.

Rmk : The distance is associated to the inner product $\langle f,g\rangle=\sum_{\mathbf{x}\in\{0,1\}^n}w(\mathbf{x})f(\mathbf{x})g(\mathbf{x})$, and w is defined by $\mathbf{p}=(p_1,\ldots,p_n)$.

First solution of the least squares problem

The use of independence Guoli Ding et al (2010)

$$B_k = \{v_S : S \subseteq N, s \leqslant k\}$$
, where $v_S \colon \{0,1\}^n \to \mathbb{R}$ is given by

$$v_{S}(\mathbf{x}) = \prod_{i \in S} \frac{x_{i} - p_{i}}{\sqrt{p_{i}(1 - p_{i})}} = \sum_{T \subseteq S} \frac{\prod_{i \in S \setminus T} (-p_{i})}{\prod_{i \in S} \sqrt{p_{i}(1 - p_{i})}} \prod_{i \in T} x_{i}$$

forms an orthonormal basis for V_k .

The projection

$$f_k = \sum_{\substack{T \subseteq N \\ t < k}} \langle f, v_T \rangle v_T.$$

The index

$$I_{\mathrm{B},\mathbf{p}}(f,S) = \frac{\langle f, v_S \rangle}{\prod_{i \in S} \sqrt{p_i(1-p_i)}}$$

First properties

The index characterizes the projection:

 $f_k \in V_k$ is the best kth approximation of f iff

$$I_{B,p}(f,S) = I_{B,p}(f_k,S) \quad \forall S : s \leqslant k.$$

(Hint : this is equivalent to $\langle f, v_S \rangle = \langle f_k, v_S \rangle$.)

The map $f \mapsto I_{B,p}(f,S)$ is linear.

The map $f \mapsto (I_{B,p}(f,S) : S \subseteq N)$ is a bijection

$$f_k(\mathbf{x}) = \sum_{T \subseteq N, t \leqslant k} I_{B,\mathbf{p}}(f,T) \prod_{i \in T} (x_i - p_i), \quad k = n \quad (!)$$

The index and the multilinear extension of f:

$$I_{\mathrm{B},\mathbf{p}}(f,S)=(D^S\overline{f})(\mathbf{p})$$

Explicit formulas

From
$$f(\mathbf{x}) = \sum_{T \subseteq N} a(T) \prod_{i \in T} x_i$$

Explicit expression of the index

$$I_{\mathrm{B},\mathbf{p}}(f,S) = \sum_{T \supseteq S} a(T) \prod_{i \in T \setminus S} p_i$$

Proof : Just compute the derivatives of \bar{f} .

Explicit expression of the approximation

$$f_k(\mathbf{x}) = \sum_{S \subset N, s \leqslant k} a_k(S) \prod_{i \in S} x_i$$

$$a_k(S) = a(S) + (-1)^{k-s} \sum_{T \supseteq S, t > k} {t-s-1 \choose k-t} \left(\prod_{i \in T \setminus S} p_i\right) a(T)$$

Proof : Use expression of f_k and $I_{B,p}(f,S)$, expand and do some algebra.

The index as an expected value

An expected value of the discrete derivative

$$I_{\mathrm{B},\mathbf{p}}(f,S) = E(\Delta^{S}f) = \sum_{\mathbf{x} \in \{0,1\}^{n}} w(\mathbf{x}) \Delta^{S}f(\mathbf{x}).$$

Proof : Use $\Delta^S f(\mathbf{x}) = \sum_{T \supseteq S} a(T) \prod_{i \in T \setminus S} x_i$, independence and explicit formula for $I_{B,\mathbf{p}}(f,S)$.

An average (As a probabilistic interaction index)

$$I_{\mathrm{B},\mathbf{p}}(f,S) = \sum_{T \subset N \setminus S} p_T^S (\Delta^S f)(T),$$

where
$$p_T^S = \Pr(T \subseteq C \subseteq S \cup T) = \prod_{i \in T} p_i \prod_{i \in (N \setminus (S \cup T))} (1 - p_i)$$
.

Interpretation:
$$p_T^S = Pr(C = S \cup T \mid C \supseteq S) = Pr(C = T \mid C \subseteq N \setminus S)$$

Further properties

Null players

A player i is *null* for f if $f(T \cup i) = f(T)$ for all $T \subseteq N \setminus i$. If S contains a null player then $I_{B,p}(f,S) = 0$.

Dummy coalitions

 $D \subseteq N$ is dummy for f if $f(T) = f(T \cap D) + f(T \cap (N \setminus D)) - f(\emptyset)$ for every $T \subseteq N$.

If D is dummy for f, if $K \cap D \neq \emptyset$ and $K \setminus D \neq \emptyset$: $I_{B,p}(f,K) = 0$.

Symmetry of the index

An index I is symmetric if $I(\pi(f), \pi(S)) = I(f, S)$ for all permutations π . $I_{B,p}$ is symmetric if and only w or is symmetric i.e. $p_1 = \cdots = p_n$.

Back to Banzhaf and Shapley

A link with the Banzhaf index

$$I_{\mathrm{B},\mathbf{p}'}(f,S) = \sum_{T\supseteq S} I_{\mathrm{B},\mathbf{p}}(f,T) \prod_{i\in T\setminus S} (p_i'-p_i), \quad \mathsf{set}\ p_i\ \mathsf{or}\ p_i'\ \mathsf{to}\ frac12 \quad (!)$$

Another link with the Banzhaf index

$$I_{\mathrm{B}}(f,S) = \int_{[0,1]^n} D^{S} \bar{f}(\mathbf{p}) d\mathbf{p} = \int_{[0,1]^n} I_{\mathrm{B},\mathbf{p}}(f,S) d\mathbf{p}$$

 ${\sf Proof}: \ {\sf Just} \ {\sf use} \ {\sf explicit} \ {\sf expressions} \ {\sf and} \ {\sf integrate}.$

Interpretation: take an average over **p** if it is not known.

A link with the Shapley index

$$I_{\mathrm{Sh}}(f,S) = \int_0^1 D^S \overline{f}(p,\ldots,p) \, dp = \int_0^1 I_{\mathrm{B},(p,\ldots,p)}(f,S) \, dp.$$

Interpretation: average if the players behave in the same (unknown) way.

Thanks for your attention

arxiv:1001.3052