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Abstract. In cooperative game theory, various kinds of power indexes are used
to measure the influence that a given player has on the outcomeof the game or
to define a way of sharing the benefits of the game among the players. The best
known power indexes are due to Shapley [15, 16] and Banzhaf [1, 5] and there
are many other examples of such indexes in the literature.
When one is concerned by the analysis of the behavior of players in a game, the
information provided by power indexes might be far insufficient, for instance due
to the lack of information on how the players interact withinthe game. The notion
of interaction indexwas then introduced to measure an interaction degree among
players in coalitions; see [13, 12, 7, 8, 14, 10, 6] for the definitions and axiomatic
characterizations of the Shapley and Banzhaf interaction indexes as well as many
others.
In addition to the axiomatic characterizations the Shapleypower index and the
Banzhaf power and interaction indexes were shown to be solutions of simple
least squares approximation problems (see [2] for the Shapley index, [11] for the
Banzhaf power index and [9] for the Banzhaf interaction index).
We generalize the non-weighted approach of [11, 9] by addinga weighted, prob-
abilistic viewpoint: A weightw(S) is assigned to every coalitionSof players that
represents the probability that coalitionS forms. The solution of the weighted
least squares problem associated with the probability distribution w was given
in [3, 4] in the special case when the players behave independently of each other
to form coalitions.
In this particular setting we introduce a weighted Banzhaf interaction index as-
sociated withw by considering, as in [11, 9], the leading coefficients of theap-
proximations of the game by polynomials of specified degrees. We then study the
most important properties of these weighted indexes and their relations with the
classical Banzhaf and Shapley indexes.

A cooperative gameon a finite set of playersN = {1, . . . ,n} is a set functionv: 2N →
R which assigns to each coalitionS of players a real numberv(S) representing the
worth of S.1 Identifying the subsets ofN with the elements of{0,1}n, we see that
a gamev: 2N → R corresponds to a pseudo-Boolean functionf : {0,1}n → R (the
correspondence is given byv(S) = f (1S), where1S denotes the characteristic vector of

1 Usually, the conditionv(∅) = 0 is required forv to define a game. However, we do not need
this restriction in the present work.
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S in {0,1}n). We will henceforth use the same symbol to denote both a given pseudo-
Boolean function and its underlying set function (game).

Every pseudo-Boolean functionf : {0,1}n →R can be represented by a multilinear
polynomial of degree at mostn of the form

f (x) = ∑
S⊆N

a(S)∏
i∈S

xi ,

where the set functiona: 2N →R is theMöbius transformof f .
LetGN denote the set of games onN. A power index[15] onN is a functionφ: GN×

N→R that assigns to every playeri ∈N in a gamef ∈GN his/her prospectφ( f , i) from
playing the game. Aninteraction index[10] on N is a functionI : GN ×2N → R that
measures in a gamef ∈ GN the interaction degree among the players of a coalition
S⊆ N.

For instance, theBanzhaf interaction index[10] of a coalitionS⊆ N in a game
f ∈ GN is defined by

IB( f ,S) = ∑
T⊇S

(1
2

)|T|−|S|
a(T) =

1

2n−|S| ∑
T⊆N\S

(∆Sf )(T), (1)

where theS-difference∆Sf is defined inductively by∆∅ f = f and∆Sf = ∆{i}∆S\{i} f
for i ∈ S, with ∆{i} f (x) = f (x | xi = 1)− f (x | xi = 0). TheBanzhaf power index[5] of
a playeri ∈ N in a gamef ∈ GN is then given byφB( f , i) = IB( f ,{i}).

Let us now introduce a weighted least squares approximationproblem which gen-
eralizes the one considered in [11, 9]. Fork ∈ {0, . . . ,n}, denote byVk the set of all
multilinear polynomialsg: {0,1}n →R of degree at mostk, that is of the form

g(x) = ∑
S⊆N
|S|6k

c(S)∏
i∈S

xi , c(S) ∈ R.

We also consider a weight functionw: {0,1}n → ]0,∞[. For every pseudo-Boolean
function f : {0,1}n → R, we define thebest kth approximation of fas the unique mul-
tilinear polynomialfk ∈Vk that minimizes the squared distance

∑
x∈{0,1}n

w(x)
(

f (x)−g(x)
)2

= ∑
S⊆N

w(S)
(

f (S)−g(S)
)2

(2)

among all functionsg∈Vk.
Clearly, we can assume without loss of generality that the weightsw(S) are (mul-

tiplicatively) normalized so that∑S⊆N w(S) = 1. We then immediately see that the
weights define a probability distribution over 2N and we can interpretw(S) as the prob-
ability that coalitionS forms, that is,w(S) = Pr(C = S), whereC denotes a random
coalition.

In the special case of equiprobability, the approximation above reduces to standard
least squares, and a closed form expression of the approximation fk of f was given in
[11, 9] and it was shown that, writing

fk(x) = ∑
S⊆N
|S|6k

ak(S)∏
i∈S

xi , (3)
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we have
IB( f ,S) = a|S|(S). (4)

ThusIB( f ,S) is exactly the coefficient of the monomial∏i∈Sxi in the best approxima-
tion of f by a multilinear polynomial of degree at most|S|.

Now, suppose that the players behave independently of each other to form coali-
tions, which means that the events(C ∋ i), for i ∈ N, are independent. Under this as-
sumption, the weight functionw is completely determined by the vectorp=(p1, . . . , pn),
wherepi = Pr(C∋ i) = ∑S∋i w(S) (we assume 0< pi < 1), by the formula

w(S) =∏
i∈S

pi ∏
i∈N\S

(1− pi).

In this particular setting, the weighted approximation problem was presented and solved
in [3] and [4, Theorem 4] by noticing that the distance in (2) is the naturalL2-distance
associated with the measurew, with respect to the inner product

〈 f ,g〉 = ∑
x∈{0,1}n

w(x) f (x)g(x),

and that the functions

vS: {0,1}n → R : x 7→∏
i∈S

xi − pi
√

pi(1− pi)

form an orthonormal basis of the vector space of pseudo-Boolean functions.
Using these functions, we immediately obtain thatfk is of the form (3) where

ak(S) = ∑
T⊇S
|T|6k

∏i∈T\S(−pi)

∏i∈T

√

pi(1− pi)
〈 f ,vT〉.

Using this solution, we define the index by analogy with (4).

Definition 1. The weighted Banzhaf interaction index associated to w is

IB,p : GN ×2N →R : ( f ,S) 7→ IB,p( f ,S) = a|S|(S) =
〈 f ,vS〉

∏i∈S

√

pi(1− pi)
.

Then we show that most of the properties of the standard Banzhaf index can be gener-
alized to the weighted index. For instance, Formula (1) is a particular case of

IB,p( f ,S) = ∑
T⊇S

a(T) ∏
i∈T\S

pi = ∑
T⊆N\S

pS
T (∆

Sf )(T),

wherepS
T = Pr(T ⊆C⊆ S∪T) = ∏i∈T pi ∏i∈(N\S)\T(1− pi).

This shows that the weighted Banzhaf interaction index belongs to the class of prob-
abilistic interaction indexes introduced in [6], and we canmoreover provide a nice in-
terpretation of the probabilitiespS

T as conditional probabilities.
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We then analyze the behaviour of the index with respect to null or dummy players
or more generally to dummy coalitions, and we show how to compute the weighted
Banzhaf index in terms of Owen’s multilinear extension̄f of the gamef . We also
provide conversion formulas between the indexes corresponding to different weights,
and show how to recoverf from the weighted Banzhaf index.

Finally, we show that the standard Banzhaf index is the average of the weighted
Banzhaf indexes over all the possible weights and that the Shapley index is the average
of the weighted Banzhaf indexes over all possible symmetricweights.
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