
Crystallization Close to the Glass 
Transition: Dynamic heterogeneities

do not precede crystallization

Sven Dorosz

(in collaboration with Tanja Schillling)

Theory of Soft Condensed Matter, 

University of Luxembourg,  Luxembourg    

1Thursday, July 25, 13



Mono disperse systems of hard sheres 
present a liquid to solid phase transition

Rintoul, Md. and Torquato, S., 1996, PRL 77, 20, 4198-4201.
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Even at moderate overcompressions 
the early stages of the cluster 

formation are still studied and different 
mechanisms are discussed. 

J. Russo and H. Tanaka, Scientific Reports 2, 505 (2012)
T. Schilling, H.J. Schöpe, M. Oettel, G. Opletal, I. Snook, Phys. Rev. Lett. 105, 025701 (2010)
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What happens if we overcompress the system even 
further?

Will there be modified pathway to the final equilibrium 
ground state (fcc lattice) because of

the slowing down of the dynamics and caging effects? 

E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, M. E. Cates and P. N. Pusey, Phys. Rev. Lett., 2009, 103, 135704
C. Valeriani, E. Sanz, E. Zaccarelli, W. C. K. Poon, M. E. Cates and P. N. Pusey, JPCM, 2011, 23, 194117.
E. Sanz, C. Valeriani, E. Zaccarelli, W. C. K. Poon, P. N. Pusey and M. E. Cates, Phys. Rev. Lett., 2011, 4.
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I will choose a system of
monodisperse hard ellipsoids 

instead of monodisperse hard spheres.
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Monodisperse Hard Ellipsoids

Gerardo Odriozola, J. Chem. Phys. 136, 134505 (2012)
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NPT ensemble

Brownian dynamics and produces the same behaviour on long time-scales[20–22]. The system

consisted of N = 10386 prolate hard ellipsoids with an aspect ratio of a/b = 1.25, where a

is the length of the axis of symmetry and b is the length of any axis in the perpendicular

plane. To simplify notation, we introduce the dimensionless pressure P ∗ = P 8ab2

kBT (where

kB is Boltzmann’s constant). The coexistence pressure is P ∗ = 14.34 and the coexistence

volume fractions of the fluid is ηcoexf = 0.515 resp. the crystal is ηcoexc = 0.544[3].

We studied suspensions at constant external pressures P ∗ = 27 . . . 30, P ∗ = 40 and P ∗ = 50.

The corresponding chemical potential differences between the supersaturated melt and the

stable crystalline phase range from |∆µ| = 0.57 kBT
particle to |∆µ| = 1.08 kBT

particle . In FIG. 1

we illustrate the state points studied here (diamonds) within simulation data for (a) the

equation of state for our system as well as (b) the chemical potential difference between the

overcompressed melt and the stable crystal.
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FIG. 1: (a) Equation of state for prolate ellipsoids, aspect ratio a/b = 1.25. (b) Chemical

potential difference ∆µ between the overcompressed melt and the stable crystal. The

diamonds indicate the overcompressions for which we studied the crystallization process.

During the simulation we monitored the volume fraction η and the local q6q6-bond orienta-
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potential difference ∆µ between the overcompressed melt and the stable crystal. The

diamonds indicate the overcompressions for which we studied the crystallization process.
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D. Frenkel, B. M. Mulder and J. P. Mctague, Molecular Crystals and Liquid Crystals, 1985, 123, 119–128.

7Thursday, July 25, 13



Preparation process
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Dynamical Properties

where Ylm (!rij) are the spherical harmonics and !rij is the position vector between ellipsoid

i and its neighbor j. In order to identify local fcc-, hcp- or rcp-structures l is set to 6. A

vector !q6(i) is assigned to each ellipsoid, the elements m = −l . . . l of which are defined as

qlm(i) :=
q̄lm(i)

(

∑l
m=−l |q̄lm(i)|

)1/2
. (1)

We call an ellipsoid i “crystalline”, if it has more than eight neighbours nb with rij < 1.5 b

and !q6(i) · !q6
∗(j) > 0.7. We computed the distributions of !q6(i) · !q6

∗(j) in the bulk liquid,

the bulk crystal and for crystallites embedded in a liquid to verify that this criterion, albeit

isotropic, works in a solution of anisotropic particles. As the aspect ratio is moderate and

as we quench into the rotator phase, the q6q6-method suffices to detect the crystallites.

We started all simulation runs from a liquid configuration at a volume fraction η = 0.567.

At t = 0, the pressure was instantaneously set to a value in the range P ∗ = 27 . . . 50. The

systems responded and slowly relaxed to higher volume fractions. After ≈ 106 MC steps,

the volume fraction reached a plateau value for each simulation run that we present here.

III. RESULTS

A. Dynamics of the supersaturated melt

After the volume fraction of each system had relaxed to a plateau value, we computed the

average mean-squared displacement of the particles in the melt

〈∆s2(t)〉 = 〈(!ri(t)− !ri(0))
2〉

where !ri(t) is the position of particle i at time t and the average is taken only over particles

that are “liquid-like”, i.e. not crystalline according to their q6q6-bond order. (We have labeled

the distance travelled as s rather than r because we will later introduce another quantity

that we call ∆r.) We also computed the self part of the intermediate scattering function of

the liquid-like particles

6

Fs(q, t) =

〈

1

N

N
∑

i

exp[i!q(!ri(t)− !ri(0))]

〉

10000 1e+05 1e+06 1e+07 1e+08
MCsteps

0.1

1

<Δ
s2 >

y ~ x
y ~ x0.7 

10000 1e+05 1e+06 1e+07
MCsteps

0

0.2

0.4

0.6

0.8

1

F s(q
m

ax
, M

C
st

ep
s)

P*=27
P*=30
P*=40
P*=50

(a) (b)

FIG. 2: (a) Mean-squared displacement 〈∆s2〉 as a function of simulation time for different

values of pressure P ∗. In addition a linear growth law and a sub diffusive power law are

plotted for comparison. (b) Dynamic structure factor as a function of simulation time for

different values of P ∗. qmax corresponds to the first maximum of the static structure factor

S(q).

From the data shown in FIG. 2 we infer that the simulation runs at lower values of pressure

P ∗ ≤ 30 are “equilibrated” in the meta-stable liquid basin: The mean squared displacement is

linear as a function of simulation time, and the local relaxation times are short in comparison

to the induction time for crystal growth (see FIG. 3, discussion follows below). Runs at

P ∗ ≥ 40 converge to a plateau in volume fraction but the system is far from equilibrium.

The mean-squared displacement is sub-diffusive and the dynamic structure factor decays

according to the stretched exponential behaviour that is typical for glass forming systems

[25].

B. Crystallization process

The time evolution of the total number of crystalline particles is presented in FIG. 3 for

several typical simulation runs. In the case of P ∗ = 27, there is a long induction time after

7

subdiffusive regime slow relaxation
previous work on the glass like dyanmics in P. Pfleiderer et al 2008 EPL 84 16003
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FIG. 1: (a) Equation of state for prolate ellipsoids, aspect ratio a/b = 1.25. (b) Chemical

potential difference ∆µ between the overcompressed melt and the stable crystal. The
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Crystallization process

where Ylm (!rij) are the spherical harmonics and !rij is the position vector between ellipsoid

i and its neighbor j. In order to identify local fcc-, hcp- or rcp-structures l is set to 6. A

vector !q6(i) is assigned to each ellipsoid, the elements m = −l . . . l of which are defined as
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q̄lm(i)

(
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. (1)

We call an ellipsoid i “crystalline”, if it has more than eight neighbours nb with rij < 1.5 b

and !q6(i) · !q6
∗(j) > 0.7. We computed the distributions of !q6(i) · !q6

∗(j) in the bulk liquid,

the bulk crystal and for crystallites embedded in a liquid to verify that this criterion, albeit

isotropic, works in a solution of anisotropic particles. As the aspect ratio is moderate and

as we quench into the rotator phase, the q6q6-method suffices to detect the crystallites.

We started all simulation runs from a liquid configuration at a volume fraction η = 0.567.

At t = 0, the pressure was instantaneously set to a value in the range P ∗ = 27 . . . 50. The

systems responded and slowly relaxed to higher volume fractions. After ≈ 106 MC steps,

the volume fraction reached a plateau value for each simulation run that we present here.

III. RESULTS

A. Dynamics of the supersaturated melt

After the volume fraction of each system had relaxed to a plateau value, we computed the

average mean-squared displacement of the particles in the melt

〈∆s2(t)〉 = 〈(!ri(t)− !ri(0))
2〉

where !ri(t) is the position of particle i at time t and the average is taken only over particles

that are “liquid-like”, i.e. not crystalline according to their q6q6-bond order. (We have labeled

the distance travelled as s rather than r because we will later introduce another quantity

that we call ∆r.) We also computed the self part of the intermediate scattering function of

the liquid-like particles

6

long induction time  vs. immediate growth
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Snapshots of the system
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Structural and dynamical preconditions 
for crystallization

Short time mobility
Voronoi volume
Orientational correlations
Structure
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Short time mobility

taken from refs. [27, 28]). At equal overcompression, the nucleation rate densities for the two

systems coincide within the errorbars. We conclude that, at these moderate aspect ratios,

the orientational degree of freedom of the ellipsoids does neither have a strong influence on

the interfacial tension nor on the crystallization process.

C. Dynamic Heterogeneities and Crystallization

In the rest of this paper, we focus on the dynamical structure of those regions in the melt

that are about to crystallize. From each trajectory, we picked the first cluster of ellipsoids

with nb > 5 that reached a size of 500 particles and studied the properties of these particles

backwards in time. The question we would like to address here is whether we can see any

difference in the dynamics of these particles as compared to the rest of the system just before

crystallization sets in. (We relaxed the criterion for crystallinity here from nb > 8 to nb > 5

in order to take particles on the surface of a cluster into account. This allows us to analyse

our data also with respect to the surface effect discussed in ref. [16, 18])

We define the mobility of a particle i at a time t as the distance

∆ri(t) = |!ri(t)− !ri(t−∆t)|

where ∆t = 5 · 105 MC steps. This time-interval is short compared to the time-scales of the

crystallization process (see e.g. FIG. 3). FIG. 6 shows the distribution of

∆r :=
1

N

∑

i

∆ri

Data for the surrounding liquid, which is not going to crystallize soon, is shown as circles.

The squares present the mobilities of those particles that are going to crystallize, taken just

before crystallization sets in when for the last time less than 25 crystalline particles appear

in this region. The number of crystalline particles increases irreversibly afterwards. There

is no difference between the two distributions that would allow for an identification of the

region that is going to crystallize. The hypothesis that the most mobile particles crystallize

first, because they sample their phase space most rapidly, is not supported by our data.
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Voronoi volume

C.H.Roycroft, Chaos, 2009, 19, 041111
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Orientational correlations

For hard spheres it has been reported that the mobility is enhanced at the surface of the

crystalline cluster[16, 18]. To test for this effect, we computed the mobility when 80% of

the particles had crystallized, but we only took particles at the surface of the crystallite into

account (i.e. with nb ≤ 8). In contrast to refs. [16, 18], for low pressures we find a shift to

lower mobilities, and at higher pressures no shift at all.

This observation is consistent with an analysis of the single particle free volume via Voronoi

decomposition. FIG. 7 shows the distribution of the volumnia of the Voronoi cells of all par-

ticles in the surrounding liquid (circles) in comparison to those that are about to crystallize

(squares) and those that are at the surface of the crystal, once it has formed (crosses). We

observe no increase in the single particle free volume at the interface of the crystallite. There

is no evidence of the modified crystallization process described in ref. [16].
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FIG. 6: Mobility in the surrounding liquid (circles) in comparison to the mobility of

particles that are going to crystallize (squares) and of the particles at the surface of the

crystal, once the crystallite has formed (crosses). The unit of length is b.

As the absolute distance travelled by a particle is not related to its likelyhood to crystallize,

we now ask whether regions of orientationally correlated motion tend to crystallize faster

than other regions. We define

cos(θ) :=
∆"ri(t) ·∆"rj(t)

|∆"ri(t)| · |∆"rj(t)|
,

11
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Structure

Brownian dynamics and produces the same behaviour on long time-scales[20–22]. The system

consisted of N = 10386 prolate hard ellipsoids with an aspect ratio of a/b = 1.25, where a

is the length of the axis of symmetry and b is the length of any axis in the perpendicular

plane. To simplify notation, we introduce the dimensionless pressure P ∗ = P 8ab2

kBT (where

kB is Boltzmann’s constant). The coexistence pressure is P ∗ = 14.34 and the coexistence

volume fractions of the fluid is ηcoexf = 0.515 resp. the crystal is ηcoexc = 0.544[3].

We studied suspensions at constant external pressures P ∗ = 27 . . . 30, P ∗ = 40 and P ∗ = 50.

The corresponding chemical potential differences between the supersaturated melt and the

stable crystalline phase range from |∆µ| = 0.57 kBT
particle to |∆µ| = 1.08 kBT

particle . In FIG. 1

we illustrate the state points studied here (diamonds) within simulation data for (a) the

equation of state for our system as well as (b) the chemical potential difference between the

overcompressed melt and the stable crystal.
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FIG. 1: (a) Equation of state for prolate ellipsoids, aspect ratio a/b = 1.25. (b) Chemical

potential difference ∆µ between the overcompressed melt and the stable crystal. The

diamonds indicate the overcompressions for which we studied the crystallization process.

During the simulation we monitored the volume fraction η and the local q6q6-bond orienta-

tional order parameter [23, 24]. For an ellipsoid i with n(i) neighbours, the relative local

bond orientation is characterized by

q̄lm(i) :=
1

n(i)

n(i)
∑

j=1

Ylm ("rij) ,
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Conclusion

• crystallizing particles were studied backwards in 
time for their structural as well as dynamical 
properties 

• no modification because of to the emerging glassy 
dynamics were found. 

• the two mechanisms are acting on independent 
time scales.

• transition described by spinodal decomposition

17Thursday, July 25, 13



Acknowledgements

• Tanja Schilling and Kurt Binder

• Financial supported by the National Research 
Fund, Luxembourg co-funded under the Marie 
Curie Actions of the European Commission (FP7-
COFUND) and under the project FRPTECD. 

• Computer simulations presented in this paper 
were carried out using the HPC facility of the 
University of Luxembourg.

18Thursday, July 25, 13


