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Abstract

Let x = (x0, . . . , xn−1) be an n-chain, i.e., an n-tuple of non-negative integers < n.
Consider the operator s : x 7→ x′ = (x′0, . . . , x′n−1), where x′j represents the number
of j’s appearing among the components of x. An n-chain x is said to be perfect if
s(x) = x. For example, (2,1,2,0,0) is a perfect 5-chain. Analogously to the theory
of perfect, amicable, and sociable numbers, one can define from the operator s the
concepts of amicable pair and sociable group of chains. In this paper we give an
exhaustive list of all the perfect, amicable, and sociable chains.
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1 Introduction

Let n > 1 be an integer and let N := {0, 1, . . . , n− 1}. An n-chain is an n-tuple

x = (x0, x1, . . . , xn−1),

with xi ∈ N for all i ∈ N . Since such an n-tuple can be viewed as a mapping from N into
itself, the set of all n-chains will be denoted NN , and its cardinality is |NN | = nn.

Let 2N represent the set of all subsets of N . For any j ∈ N , define Sj : NN → 2N as

Sj(x) := {i ∈ N | xi = j}.
Clearly, for any x ∈ NN , {Sj(x) | j ∈ N} is a partition of N .

We then say that x ∈ NN is a perfect chain if

xj = |Sj(x)|, j ∈ N.

In other terms, x ∈ NN is a perfect chain if, for any j ∈ N , xj represents the number of
j’s occuring in {x0, x1, . . . , xn−1}. For instance

x = (2, 1, 2, 0, 0)

∗As this paper was accepted for publication, the author found out that the main problem (Theorem 4)
was already addressed and solved by Sallows and Eijkhout [5]; see also [3, 4, 6].
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is a perfect 5-chain.
We say that x,x′ ∈ NN (x 6= x′) form a pair of amicable chains if

x′j = |Sj(x)|, j ∈ N,
xj = |Sj(x

′)|, j ∈ N.

For instance
x = (2, 3, 0, 1, 0, 0) and x′ = (3, 1, 1, 1, 0, 0)

form a pair of amicable 6-chains.
Now, consider the counting operator s : NN → {0, 1, . . . , n}N defined by x′ = s(x) with

x′j = |Sj(x)|, j ∈ N.

Given an integer l > 3, we say that the chains x(0),x(1), . . . ,x(l−1) ∈ NN , satisfying

x(k+1) = s(x(k)), k ∈ {0, . . . , l − 2},
form a group of l sociable chains if they are distinct and s(x(l−1)) = x(0). For instance

x(0) = (3, 3, 0, 0, 1, 0, 0), x(1) = (4, 1, 0, 2, 0, 0, 0), x(2) = (4, 1, 1, 0, 1, 0, 0)

form a group of three sociable 7-chains.
Notice that these concepts present some analogies with perfect, amicable, and sociable

numbers, see e.g. [2, 7]. Consider the function s(n) = σ(n) − n, where σ denotes the
divisor sum function. A positive integer n is said to be perfect if s(n) = n. For example,
6 is perfect. Two positive integers m and n are said to be amicable if s(m) = n and
s(n) = m. For example, 220 and 284 are amicable. An l-tuple (l > 3) of positive integers
(n0, . . . , nl−1), satisfying nk+1 = s(nk) for all k, is a sociable group if these integers are
distinct and s(nl−1) = n0. For example, (12 496, 14 288, 15 472, 14 536, 14 264) is a group
of 5 sociable numbers.

The main aim of this paper is to determine all the perfect, amicable, and sociable chains.
These are gathered in Theorem 4 below. We also investigate the counting operator and
point out some of its properties.

The outline of this paper is as follows. In Section 2 we determine conditions under
which the iterates of the counting operator are well defined. In Section 3 the results are
presented of an exhaustive computation of all the perfect, amicable, and sociable chains.
Finally, Section 4 is devoted to a description of the range of the counting operator and its
iterates.

2 Preliminary results

In this section we investigate the counting operator s introduced above as well as its iterates.
We first observe that this operator does not always range in NN . For example, if n = 4,
we have

s(2, 2, 2, 2) = (0, 0, 4, 0) /∈ NN .

We thus need to restrict the domain of s to chains x such that each element of the
infinite sequence

x, s(x), s(s(x)), s(s(s(x))), . . .

belongs to NN . The following results deal with this issue.

2



Lemma 1. Let x ∈ NN and x′ = s(x). Then

∑

j∈N

x′j = n, (1)

∑

j∈N

j x′j =
∑

j∈N

xj. (2)

Proof. Since {Sj(x) | j ∈ N} is a partition of N , we simply have

∑

j∈N

x′j =
∑

j∈N

|Sj(x)| = |N | = n,

and, by counting in two ways,

∑

j∈N

xj =
∑

j∈N

∑

i∈Sj(x)

xi =
∑

j∈N

∑

i∈Sj(x)

j =
∑

j∈N

j |Sj(x)| = ∑

j∈N

j x′j.

Lemma 2. Let x ∈ NN . The following statements hold:
(i) s(x) ∈ NN if and only if x0, . . . , xn−1 are not all equal.

(ii) If s(x) ∈ NN then s(s(x)) ∈ NN if and only if x0, . . . , xn−1 are not all distinct.
(iii) If s(x), s(s(x)) ∈ NN then s(s(s(x))) ∈ NN if and only if n > 4.

Proof. (i) Easy.
(ii) Setting x′ := s(x) and x′′ := s(x′), we have

x′′ ∈ NN ⇔ x′0, . . . , x
′
n−1 are not all equal (by (i))

⇔ x′ 6= (1, . . . , 1) (by Eq. (1))

⇔ {x0, . . . , xn−1} 6= N.

(iii) By (i) and (ii), the numbers x0, . . . , xn−1 are neither all equal nor all distinct, and
hence n > 3. Now set x′ := s(x), x′′ := s(x′), and x′′′ := s(x′′). By (ii), we have

x′′′ ∈ NN ⇔ {x′0, . . . , x′n−1} 6= N.

However we have

{x′0, . . . , x′n−1} = N ⇒ ∑

j∈N

x′j =
∑

j∈N

j

⇒ n =
n(n− 1)

2
(by Eq. (1))

⇒ n = 3

and
n = 3 ⇒ {x′0, x′1, x′2} = {0, 1, 2} = N.

Thus Lemma 2 is proved.

Let N denote the set of all n-chains whose components are neither all equal nor all
distinct. One can readily see that |N | = nn − n! − n. Moreover, we have the following
result, which immediately follows from Lemma 2.
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Proposition 3. Let x ∈ NN . Then all the chains s(x), s(s(x)), s(s(s(x))), . . . belong to
NN if and only if x ∈ N and n > 4. In that case, all these chains belong to N .

From now on we will assume that n > 4. Let N denote the set of non-negative integers.
According to Proposition 3 we can construct from any x ∈ N an infinite sequence of chains
(x(k))k∈N in the following way:

{
x(0) = x,
x(k+1) = s(x(k)), k ∈ N.

(3)

Since N is a finite set, this sequence is eventually periodic. That is, there exist k0, l ∈ N
(l > 1) such that

x(k+l) = x(k) ∀k > k0. (4)

If the chains x(k), . . . ,x(k+l−1) are distinct and such that x(k+l) = x(k), we say that they
form a circuit of length l. Of course, determining perfect (resp. amicable, sociable) chains
amounts to identifying all the circuits of length 1 (resp. 2, > 3).

3 Exhaustive computation of perfect, amicable, and

sociable chains

In the present section we calculate all the perfect, amicable, and sociable chains. These are
given in Theorem 4 below.

Assume that x(k0) ∈ N belongs to a circuit. By Proposition 3, we have x(k) ∈ N for all
k > k0. Furthermore, by Eq. (1) and (2), we have

∑

j∈N

x
(k)
j = n ∀k > k0, (5)

∑

j∈N

j x
(k)
j = n ∀k > k0. (6)

These identities imply trivially

x
(k)
0 =

n−1∑

j=1

(j − 1) x
(k)
j ∀k > k0. (7)

Moreover, we have
x

(k)
0 > 1 ∀k > k0. (8)

Indeed, if x
(k)
0 = 0 for some k > k0 then, by Eq. (7), we have x

(k)
2 = · · · = x

(k)
n−1 = 0. By

Eq. (5) we then have x
(k)
1 = n, a contradiction.

Theorem 4. Let ‖ denote a list, possibly empty, of zeroes.
The perfect chains are:

(1, 2, 1, 0) (9)

(2, 0, 2, 0) (10)

(2, 1, 2, 0, 0) (11)

(n− 4, 2, 1‖1, 0, 0, 0), n > 7. (12)
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The pairs of amicable chains are:

(2, 3, 0, 1, 0, 0), (3, 1, 1, 1, 0, 0) (13)

(n− 4, 3, 0, 0‖0, 1, 0, 0), (n− 3, 1, 0, 1‖1, 0, 0, 0), n > 8. (14)

The unique group of sociable chains is:

(3, 3, 0, 0, 1, 0, 0), (4, 1, 0, 2, 0, 0, 0), (4, 1, 1, 0, 1, 0, 0). (15)

There is no group of more than 3 sociable chains.

Proof. Let x(k0) ∈ N belong to a circuit. Choose k > k0 such that x
(k+1)
0 6 x

(k)
0 . Such a k

exists for otherwise x(k0) would not belong to a circuit.
Set p := x

(k)
0 . By Eq. (8), we have 1 6 p 6 n− 1. Moreover, since 0 ∈ Sp(x

(k)), we have

x(k+1)
p = |Sp(x

(k))| > 1.

Using Eq. (7), we have

x
(k+1)
0 =

n−1∑

j=1

(j − 1) x
(k+1)
j > (p− 1) +

n−1∑

j=1
j 6=p

(j − 1) x
(k+1)
j ,

and hence,

1 > 1 + x
(k+1)
0 − p >

n−1∑

j=1
j 6=p

(j − 1) x
(k+1)
j > 0, (16)

implying x
(k+1)
0 = p or x

(k+1)
0 = p− 1. We now investigate these two cases separately.

1. Case x
(k+1)
0 = p.

By Eq. (16), we have

x
(k+1)
j = 0 ∀j ∈ N \ {0, 1, 2, p}.

(a) Case p = 1.

Using Eq. (7) and (5), we obtain x
(k+1)
2 = 1 and x

(k+1)
1 = n− 2, so that

x(k+1) = (1, n− 2, 1‖)
and {x(k)

1 , . . . , x
(k)
n−1} = {2, 1, . . . , 1, 0}. By Eq. (6), we have

n =
∑

j∈N

j x
(k)
j > 2 +

n−2∑

j=2

j =
1

2
(n− 2)(n− 1) + 1,

that is n = 4. This leads to the circuit (9).

(b) Case p = 2.

Using Eq. (7) and (5), we obtain x
(k+1)
2 = 2 and x

(k+1)
1 = n− 4, so that

x(k+1) = (2, n− 4, 2‖)
and {x(k)

1 , . . . , x
(k)
n−1} = {2, 1, . . . , 1, 0, 0}. By Eq. (6), we have

n =
∑

j∈N

j x
(k)
j > 2 +

n−3∑

j=2

j =
1

2
(n− 3)(n− 2) + 1,

that is n ∈ {4, 5}. This leads to the circuits (10) and (11).
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(c) Case p > 3.

By Eq. (7), we have

p = x
(k+1)
2 + (p− 1) x(k+1)

p ,

which implies x
(k+1)
2 = x(k+1)

p = 1. By Eq. (5), we then have x
(k+1)
1 = n− p− 2,

and hence
x(k+1) = (p, n− p− 2, 1‖1︸ ︷︷ ︸

p + 1

‖),

with n > p + 2.

i. Case n = p + 2 (> 5).
We have

x(k+1) = (n− 2, 0, 1‖1, 0), x(k+2) = (n− 3, 2, 0‖1, 0).

For n = 5, we get the circuit (11). For n > 6, we have

x(k+3) = (n− 3, 1, 1‖1, 0, 0), x(k+4) = (n− 4, 3, 0‖1, 0, 0).

For n = 6, n = 7 and n > 8, we get the circuits (13), (15) and (14)
respectively.

ii. Case n = p + 3 (> 6).
We have

x(k+1) = (n− 3, 1, 1‖1, 0, 0),

which leads to a previous case.

iii. Case n = p + 4 (> 7).
We have

x(k+1) = (n− 4, 2, 1‖1, 0, 0, 0),

which leads to the circuit (12).

iv. Case n = p + 5 (> 8).
We have

x(k+1) = (n− 5, 3, 1‖1, 0, 0, 0, 0).

For n = 8, we get the circuit (14). For n > 9, we have

x(k+2) = (n− 4, 2, 0, 1‖1, 0, 0, 0, 0),

retrieving the circuit (12).

v. Case n = p + r (> 3 + r), with r > 6.
We have

x(k+1) = (n− r, r − 2, 1‖1︸ ︷︷ ︸
n− r + 1

‖).

If n− r < r − 2 then

x(k+2) = (

n− r + 1︷ ︸︸ ︷
n− 4, 2, 0‖1 ‖1︸ ︷︷ ︸

r − 1

‖),
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which leads to a previous case.
If n− r = r − 2 then

x(k+2) = (n− 4, 2, 0‖2︸ ︷︷ ︸
n− r + 1

‖), x(k+3) = (n− 3, 0, 2‖1, 0, 0, 0),

which leads to a previous case.
If n− r > r − 2 then

x(k+2) = (

r − 1︷ ︸︸ ︷
n− 4, 2, 0‖1 ‖1︸ ︷︷ ︸

n− r + 1

‖),

which leads to a previous case.

2. Case x
(k+1)
0 = p− 1.

By Eq. (16), we have

x
(k+1)
j = 0 ∀j ∈ N \ {0, 1, p},

with p = x
(k+1)
0 +1 > 2. Using Eq. (5) and (7), we obtain x(k+1)

p = 1 and x
(k+1)
1 = n−p,

so that
x(k+1) = (p− 1, n− p‖1︸ ︷︷ ︸

p + 1

‖).

(a) Case p = 2.

We have
x(k+1) = (1, n− 2, 1‖),

that is a case previously encountered.

(b) Case p > 3.

i. Case n = p + 1 (> 4).
We have

x(k+1) = (n− 2, 1‖1),

which leads to a previous case.

ii. Case n = p + r (> 3 + r), with r > 2.
We have

x(k+1) = (n− r − 1, r ‖1︸ ︷︷ ︸
n− r + 1

‖).

If n− r − 1 < r then

x(k+2) = (

n− r︷ ︸︸ ︷
n− 3, 1‖1 ‖1︸ ︷︷ ︸

r + 1

‖),

which leads to a previous case.
If n− r − 1 = r then

x(k+2) = (n− 3, 1‖2︸ ︷︷ ︸
n− r

‖),
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which leads to a previous case.
If n− r − 1 > r then

x(k+2) = (

r + 1︷ ︸︸ ︷
n− 3, 1‖1 ‖1︸ ︷︷ ︸

n− r + 1

‖),

which leads to a previous case.

Theorem 4 is now proved.

Corollary 5. Any circuit of length > 2 contains the chain (n− 4, 3‖1, 0, 0).

Before closing this section, we present the following open problem. For any x ∈ N ,
we denote by C(x) the circuit obtained from the infinite sequence (x(k))k∈N. The question
then arises of determining the length of the non-periodic part of this sequence; that is, the
number of elements that do not belong to C(x):

Ψ(x) := min{k ∈ N | x(k) ∈ C(x)}.

Interestingly enough, the following sequence:

ψ(n) := max
x∈N

Ψ(x), n > 4,

has a rather strange behavior. Its first values (for 4 6 n 6 44) are: 3, 4, 7, 4, 7, 7, 7, 6, 7,
6, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8.

We conjecture that the elements of this sequence can be arbitrary large; that is, for any
M > 3 there exists n > 4 such that ψ(n) > M .

4 Range of the counting operator and its iterates

For any k ∈ N, let s(k) denote the kth iterate of the operator s. It is clear that we have

s(k+1)(N ) ⊆ s(k)(N ), k ∈ N.

In this final section we intend to describe the subset s(k)(N ) for each k ∈ N. The case
k = 1 is dealt with in the next proposition.

Proposition 6. We have

s(N ) =
{
x ∈ N

∣∣∣ ∑
j∈N

xj = n
}
.

Proof. (⊆) Follows from Eq. (1).
(⊇) Let x ∈ N such that

∑
j∈N xj = n. Setting

z := (0, . . . , 0︸ ︷︷ ︸
x0

, 1, . . . , 1︸ ︷︷ ︸
x1

, . . . , n− 1, . . . , n− 1︸ ︷︷ ︸
xn−1

),

we have z ∈ N and s(z) = x, and hence x ∈ s(N ).
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Let the operator r : s(N ) → N be defined by

r(x) = (0, . . . , 0︸ ︷︷ ︸
x0

, 1, . . . , 1︸ ︷︷ ︸
x1

, . . . , n− 1, . . . , n− 1︸ ︷︷ ︸
xn−1

).

Let ΠN be the set of all the permutations on N and define the operator q : N → N by

q(x) = (xν(0), . . . , xν(n−1)),

where ν ∈ ΠN is such that xν(0) 6 · · · 6 xν(n−1). One can easily see that s ◦ r = id and
r ◦ s = q, thus showing that s is not invertible.

For any π ∈ ΠN , we define rπ : s(N ) → N by

rπ(x) = (r(x)π(0), . . . , r(x)π(n−1)).

For any x ∈ s(N ), we clearly have s(−1)(x) = {rπ(x) | π ∈ ΠN}. Moreover, we have the
following result.

Proposition 7. For any k ∈ N, we have

s(k+1)(N ) =
{
x ∈ s(k)(N )

∣∣∣∃π1, . . . , πk ∈ ΠN :
∑

j∈N
(rπ1 ◦ · · · ◦ rπk

)(x)j = n
}
.

Proof. We proceed by induction over k ∈ N. By Proposition 6, the result holds for k = 0.
Assume that it also holds for k = 0, . . . , K − 1, with a given K > 1. We now show that it
still holds for k = K.
(⊆) Let x ∈ s(K+1)(N ). Take πK ∈ ΠN and set z := rπK

(x). We have x = s(z) and hence
z ∈ s(K)(N ). By induction hypothesis, there exist π1, . . . , πK−1 ∈ ΠN such that

∑

j∈N

(rπ1 ◦ · · · ◦ rπK
)(x)j =

∑

j∈N

(rπ1 ◦ · · · ◦ rπK−1
)(z)j = n.

(⊇) Let x ∈ s(K)(N ) and assume that there exist π1, . . . , πK ∈ ΠN such that

∑

j∈N

(rπ1 ◦ · · · ◦ rπK
)(x)j = n.

We only have to prove that x ∈ {s(z) | z ∈ s(K)(N )}. Set z := rπK
(x). We have x = s(z)

and hence z ∈ s(K−1)(N ). Moreover, we have

∑

j∈N

(rπ1 ◦ · · · ◦ rπK−1
)(z)j =

∑

j∈N

(rπ1 ◦ · · · ◦ rπK
)(x)j = n,

and hence z ∈ s(K)(N ) by induction hypothesis.

The case k = 2 is particularly interesting. One can easily see that, for any x ∈ N and any
j ∈ N , s(2)(x)j represents the number of distinct values occuring j times in {x0, . . . , xn−1}.
Moreover, we have the following proposition.

Proposition 8. We have

s(2)(N ) =
{
x ∈ s(N )

∣∣∣ ∑
j∈N

j xj = n
}
.
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Proof. For any π ∈ ΠN , we have

∑

j∈N

rπ(x)j =
∑

j∈N

j xj.

We then conclude by Proposition 7.

Now, from the identity

∣∣∣
{
x ∈ Nn

∣∣∣
n∑

j=1
j xj = n

}∣∣∣ = P (n),

where P (n) is the number of unrestricted partitions of the integer n (see e.g. [1]), we can
easily show that |s(2)(N )| = P (n)− 2. Similarly, from the well-known identity

∣∣∣
{
x ∈ Nn

∣∣∣
n∑

j=1
xj = n

}∣∣∣ =
(

2n−1
n

)
,

we can readily see that |s(N )| =
(

2n−1
n

)
− n− 1.

Finally, from the identities r ◦ s = q and r ◦ s(2) = q ◦ s, we clearly have

r(s(N )) = {x ∈ N | x0 6 · · · 6 xn−1},
r(s(2)(N )) =

{
x ∈ N

∣∣∣ ∑
j∈N

xj = n and x0 6 · · · 6 xn−1

}
,

and, since r is an injection, we have

|r(s(N ))| = |s(N )| and |r(s(2)(N ))| = |s(2)(N )|.
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