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Abstract
Let x = (zg,...,2Zn—1) be an n-chain, i.e., an n-tuple of non-negative integers < n.
Consider the operator s : x — x' = (z(,...,¥;,_1), where z; represents the number

of j’s appearing among the components of x. An n-chain x is said to be perfect if
s(x) = x. For example, (2,1,2,0,0) is a perfect 5-chain. Analogously to the theory
of perfect, amicable, and sociable numbers, one can define from the operator s the
concepts of amicable pair and sociable group of chains. In this paper we give an
exhaustive list of all the perfect, amicable, and sociable chains.
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1 Introduction
Let n > 1 be an integer and let N := {0,1,...,n — 1}. An n-chain is an n-tuple

X = (:L‘nyl: s al‘n—1>7

with z; € N for all ¢ € N. Since such an n-tuple can be viewed as a mapping from N into
itself, the set of all n-chains will be denoted N, and its cardinality is |N"| = n".
Let 2V represent the set of all subsets of N. For any j € N, define S; : NV — 2% as

Si(x)={ie N |z, =j}

Clearly, for any x € NV, {S;(x) | j € N} is a partition of N.
We then say that x € NV is a perfect chain if

z; =|5;(x)[,  jeN.
In other terms, x € NV is a perfect chain if, for any j € N, x; represents the number of
j’s occuring in {zg, x1,...,T,—1}. For instance
x=(2,1,2,0,0)

*As this paper was accepted for publication, the author found out that the main problem (Theorem 4)
was already addressed and solved by Sallows and Eijkhout [5]; see also [3, 4, 6].



is a perfect 5-chain.
We say that x,x’ € NV (x # x') form a pair of amicable chains if

For instance
x =(2,3,0,1,0,0) and x' = (3,1,1,1,0,0)

form a pair of amicable 6-chains.

Now, consider the counting operator s : N¥ — {0,1,...,n}" defined by x’ = s(x) with
x; = |9;(x)[, jeN.
Given an integer [ > 3, we say that the chains x(@, x™M .. x(=1) ¢ NV gatisfying

xF) = g(x®), ked{0,...,1—2},
form a group of [ sociable chains if they are distinct and s(x!~1) = x(). For instance
x?'=(3,3,0,0,1,0,0), x'V'=(4,1,0,2,0,0,0), x® =(4,1,1,0,1,0,0)

form a group of three sociable 7-chains.

Notice that these concepts present some analogies with perfect, amicable, and sociable
numbers, see e.g. [2, 7]. Consider the function s(n) = o(n) — n, where o denotes the
divisor sum function. A positive integer n is said to be perfect if s(n) = n. For example,
6 is perfect. Two positive integers m and n are said to be amicable if s(m) = n and
s(n) = m. For example, 220 and 284 are amicable. An [-tuple (I > 3) of positive integers
(ng,...,n_1), satisfying nx,1 = s(ng) for all k, is a sociable group if these integers are
distinct and s(n;_1) = ng. For example, (12 496, 14 288, 15 472, 14 536, 14 264) is a group
of 5 sociable numbers.

The main aim of this paper is to determine all the perfect, amicable, and sociable chains.
These are gathered in Theorem 4 below. We also investigate the counting operator and
point out some of its properties.

The outline of this paper is as follows. In Section 2 we determine conditions under
which the iterates of the counting operator are well defined. In Section 3 the results are
presented of an exhaustive computation of all the perfect, amicable, and sociable chains.
Finally, Section 4 is devoted to a description of the range of the counting operator and its
iterates.

2 Preliminary results

In this section we investigate the counting operator s introduced above as well as its iterates.
We first observe that this operator does not always range in NV. For example, if n = 4,
we have

5(2,2,2,2) = (0,0,4,0) ¢ NV,

We thus need to restrict the domain of s to chains x such that each element of the

infinite sequence
X, $(x), s(s(x)), s(s(s(x))), . ..

belongs to NV. The following results deal with this issue.
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Lemma 1. Let x € NV and x' = s(x). Then

Zx; = n, (1)

JEN
dojry = Y (2)
JEN JEN

Proof. Since {S;(x) | j € N} is a partition of N, we simply have

> 7= ISix)=|N|=n,

JEN JEN

and, by counting in two ways,

Z$jzz Z l’i:Z Z j:Zj‘Sj(XH:Zj:C;.

jJEN JEN i€S;(x) JEN i€S;(x) JEN JEN
]
Lemma 2. Let x € NV. The following statements hold:
(i) s(x) € NN if and only if xo, ..., 2,1 are not all equal.
(i) If s(x) € NN then s(s(x)) € NV if and only if zo, ..., 7,1 are not all distinct.
(ii7)  If s(x), s(s(x)) € N then s(s(s(x))) € NV if and only if n > 4.
Proof. (i) Easy.
(77) Setting x" := s(x) and x” := s(x’), we have
x"e NV & 2,...,2, ,arenot all equal  (by (4))
e X£(...1)  (byEq (1)
4 {l’o,. .. ,Infl} # N.
(7i1) By (¢) and (77), the numbers xy, . .., x,_1 are neither all equal nor all distinct, and
hence n > 3. Now set x' := s(x), x" := s(x’), and X" := s(x”). By (ii), we have
x"e NY < {a),...,2), } #N.
However we have
{24,...,2,_ 1} =N = Zx; = Zj
jEN jEN
n(n —1
= ="y g (1)
= n=3
and
n=3 = {xp )25} ={0,1,2} = N.
Thus Lemma 2 is proved. O

Let N denote the set of all n-chains whose components are neither all equal nor all
distinct. Ome can readily see that |[N| = n™ — n! — n. Moreover, we have the following
result, which immediately follows from Lemma 2.



Proposition 3. Let x € NV. Then all the chains s(x), s(s(x)), s(s(s(x))), ... belong to
NY if and only if x € N and n > 4. In that case, all these chains belong to N.

From now on we will assume that n > 4. Let N denote the set of non-negative integers.
According to Proposition 3 we can construct from any x € A an infinite sequence of chains
(x®))pen in the following way:

x0 = x,
{x<k+l> “ox®), ke (3)

Since N is a finite set, this sequence is eventually periodic. That is, there exist ko, € N
(I > 1) such that
xF0 = x®) k> k. (4)

If the chains x®), ... x*+=1 are distinct and such that x*t) = x*) we say that they
form a circuit of length . Of course, determining perfect (resp. amicable, sociable) chains
amounts to identifying all the circuits of length 1 (resp. 2, > 3).

3 Exhaustive computation of perfect, amicable, and
sociable chains

In the present section we calculate all the perfect, amicable, and sociable chains. These are
given in Theorem 4 below.

Assume that x*) € A/ belongs to a circuit. By Proposition 3, we have x*) € N for all
k > ko. Furthermore, by Eq. (1) and (2), we have

S al = n Wk k, (5)
jJEN
s (R)
dojxy) = n VkZ=k (6)
JEN
These identities imply trivially
n—1
20 =3 -1 vk >k (7)
j=1
Moreover, we have
2P =1 Yk >k (8)
Indeed, if x(()k) = 0 for some k > kg then, by Eq. (7), we have xgk) =... = xnk_)l = 0. By
Eq. (5) we then have 2" = n, a contradiction.

Theorem 4. Let || denote a list, possibly empty, of zeroes.
The perfect chains are:

1,2,1,0) (9
2,0,2,0) (1
2,1,2,0,0)

(
(
(
(n—4,2,1)1,0,0,0), n>T7.

—~
—_ =
N =
S N N N
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The pairs of amicable chains are:

(2,3,0,1,0,0), (3,1,1,1,0,0) (13)

(n—4,3,0,0[0,1,0,0), (n—3,1,0,1{/1,0,0,0), n > 8. (14)
The unique group of sociable chains is:

(3,3,0,0,1,0,0), (4,1,0,2,0,0,0), (4,1,1,0,1,0,0). (15)
There is no group of more than 3 sociable chains.

Proof. Let xko) e N/ belong to a circuit. Choose k > kg such that :U(kﬂ) < a:(()k). Such a k
exists for otherwise x*) would not belong to a circuit.
Set p := xé ) By Eq. (8), we have 1 < p < n — 1. Moreover, since 0 € S,(x), we have

) = 15,(xW)| > 1.

Using Eq. (7), we have

n—1
k+1 . k+1 k+1
2 =3 -1 > (p-1) +Z z
j=1
J#p
and hence,
n—1
121428 —p=> 3G -1z >0, (16)
j=1
J#p
(k-+1) (k+1) _ . .
implying x; =por x, — 1. We now investigate these two cases separately.
1. Case xékﬂ) =p.

By Eq. (16), we have
2 =0 vjieN\{0,1,2,p}.
(a) Case p=1.
Using Eq. (7) and (5), we obtain 28 =1 and 2™ = n — 2, so that
x* ) = (1,n - 2,1]))
and {x&k), o ,xff_)l} ={2,1,...,1,0}. By Eq. (6), we have

n—2

. . 1
nzzjxg.’“/HZJ—Q(n—Q)(n—1)+1,

jEN =2
that is n = 4. This leads to the circuit (9).
(b) Case p = 2.
Using Eq. (7) and (5), we obtain 2 =2 and 2" = n — 4, so that

xH) = (2,0 —4,2]))
and {x&k),...,xgkzl} ={2,1,...,1,0,0}. By Eq. (6), we have
n:ij§ 2+Z]_7 3)(n—2)+1,
jEN

that is n € {4,5}. This leads to the circuits (10) and (11).
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(¢) Casep > 3.
By Eq. (7), we have
p=ay 4 (p— 1)t
which implies xékﬂ) = 931(9’““) = 1. By Eq. (5), we then have xgkﬂ) =n-—p-—2,
and hence
X(kJrl) = (p7n —pP— 27 1H1 H)7

p+1

with n > p + 2.

i. Casen=p+2(=5).
We have

X(kJrl) = (n - 27 07 1||17 0)7 X(k+2) = (n - 37 27 0||17 0)
For n =5, we get the circuit (11). For n > 6, we have
x5+ = (n —3,1,11,0,0), x**Y = (n—4,3,0/1,0,0).

For n = 6, n = 7 and n > 8, we get the circuits (13), (15) and (14)
respectively.
ii. Casen=p+3(=6).
We have
x* ) = (n - 3,1,1|/1,0,0),
which leads to a previous case.
iii. Casen=p+4(=7).
We have
x* ) = (n —4,2,1|]1,0,0,0),
which leads to the circuit (12).
iv. Casen=p+5(=8).
We have
x* ) = (n - 5,3,1/]1,0,0,0,0).

For n = 8, we get the circuit (14). For n > 9, we have
x5 = (n — 4,2,0,1|/1,0,0,0,0),

retrieving the circuit (12).
v. Casen=p+r (=3+r), withr > 6.

We have
x*HD) = (n — e — 2,11 ).
n—r+1
Ifn—r <r—2then
n—r+1

—_——
<k +2) — (n—4,2,0(1|1|),
ro1




which leads to a previous case.
If n—r =1r—2then

X2 = (n = 4,2,012]), x** = (n~3,0,2]1,0,0,0),
—
n—r+1

which leads to a previous case.
If n—r>r—2then
r—1
X(k+2) = (Tl - 47 270“1 Hl H)7
n—r+1

which leads to a previous case.

2. Case x(()kH) =p—1
By Eq. (16), we have
A =0 vje N\{0,1,p},
with p = xékﬂ)—i—l > 2. Using Eq. (5) and (7), we obtain xg““) =1and xﬁ’““) =n-—p,
so that
xF = (p—1,n —pl|1 |).
—_———

p+1

(a) Casep=2.
We have
X(k+1) = (1,” - 27 1“)7
that is a case previously encountered.
(b) Case p > 3.

i. Casen=p+1(=4).
We have
x" = (n - 2,11),

which leads to a previous case.
ii. Casen=p+r (=3+r), withr > 2.

We have
xFH) = (n—r—1,71]).
—_———

n—r+1
Ifn—r—1<rthen
n—r
x = (n =3, 1|11 ])),
r+1
which leads to a previous case.

Ifn—r—1=r then
X<k+2) = (n_371||2||)7
N———’

n—r



which leads to a previous case.
Ifn—7r—1>rthen

r—+1
—_—~
x2) = (n =3, 1|11 ),
—_———
n—r+1
which leads to a previous case.
Theorem 4 is now proved. O]

Corollary 5. Any circuit of length > 2 contains the chain (n — 4,3||1,0,0).

Before closing this section, we present the following open problem. For any x € N,
we denote by C(x) the circuit obtained from the infinite sequence (x*))zen. The question
then arises of determining the length of the non-periodic part of this sequence; that is, the
number of elements that do not belong to C(x):

U(x) := min{k € N | x® € C(x)}.
Interestingly enough, the following sequence:

[ >
P(n) : max U(x), n =4,

has a rather strange behavior. Its first values (for 4 < n < 44) are: 3,4,7,4,7,7,7,6, 7,
6,7, 7,7,6,7,7,7,7,7,7,77,7,7,7,7,7,7,7,7,7,7,88,8,8,8,8,8, 8, 8, 8.

We conjecture that the elements of this sequence can be arbitrary large; that is, for any
M > 3 there exists n > 4 such that ¥(n) > M.

4 Range of the counting operator and its iterates
For any k € N, let s denote the kth iterate of the operator s. It is clear that we have
sEFD(N) C sB(N), ke N.

In this final section we intend to describe the subset s*)(N) for each k € N. The case
k =1 is dealt with in the next proposition.

Proposition 6. We have
S(N):{XEN’ > xj:n}.

JEN

Proof. (C) Follows from Eq. (1).
(2) Let x € N such that > ;c vy x; = n. Setting

z:=(0,...,0,1,....1,....n—1,...,n—1),
—— ——
Lo L1 Ln—1
we have z € N and s(z) = x, and hence x € s(N). O



Let the operator r : s(N) — N be defined by

r(x)=(0,...,0,1,...,1,....n—1,...,n—1).

Zo € Tn—1

Let ITy be the set of all the permutations on N and define the operator ¢ : NV — A by

Q(X) = (Iu(0)7 cee ,xu(n—n),

where v € Ily is such that z,) < -+ < Zyn-1). One can easily see that s or = id and

r o s = q, thus showing that s is not invertible.
For any 7 € Iy, we define r; : s(N') — N by

T2(X) = (1(X)x(0), - - - "(X)w(n—-1))-

For any x € s(N), we clearly have s(~Y(x) = {r;(x) | # € IIy}. Moreover, we have the
following result.

Proposition 7. For any k € N, we have

S(kJrl)(N) = {X € S(k)(N> ‘ dmy,..me €1l Z (7"771 ©:--0 rﬂ'k)(x)j = n}

JEN

Proof. We proceed by induction over k& € N. By Proposition 6, the result holds for & = 0.
Assume that it also holds for £k =0,..., K — 1, with a given K > 1. We now show that it
still holds for k = K.

(C) Let x € sEFV(N). Take 7x € Iy and set z := 7., (x). We have x = 5(z) and hence
z € s')(N). By induction hypothesis, there exist m,...,7x_; € Iy such that

Z(TWI ©---0 TWK)(X)j = Z(TWI ©0--+0 TWK71)(Z)j =n.

jEN jEN
(D) Let x € s®)(N) and assume that there exist 7, ..., 7x € Il such that

S (rm 0+ 0 T ) (X); = 1.

JEN

We only have to prove that x € {s(z) | z € s")(N)}. Set z := r,,.(x). We have x = s(z)
and hence z € s"~Y(N). Moreover, we have

Z(Tﬂl ©---0 TWK71)<Z>J' - Z(rm ©---0 TWK)(X>j =n,

jEN jEN
and hence z € s¥)(N) by induction hypothesis. O

The case k = 2 is particularly interesting. One can easily see that, for any x € N and any
j € N, s¥(x), represents the number of distinct values occuring j times in {z, ..., 2z, 1}
Moreover, we have the following proposition.

Proposition 8. We have
SOW) = {xesN)| © jz; =n}.

JEN



Proof. For any 7 € Ily, we have

Yo ra(x); =D jwy

JEN JEN
We then conclude by Proposition 7. [

Now, from the identity
HX eN" ’é:ljxj = n}‘ = P(n),

where P(n) is the number of unrestricted partitions of the integer n (see e.g. [1]), we can
easily show that |s®(N)| = P(n) — 2. Similarly, from the well-known identity

fxew| £, =} = (),

we can readily see that |s(N)| = (2"_1> —n—1

n

Finally, from the identities 7 o s = ¢ and 7 0 s = g o s, we clearly have

r(s(NV)) = {xeN|zg<- <zpl,
70(5(2)(./\/’)) - {XEN’ > xj=mn and zg < --- <£En—1},

JEN

and, since r is an injection, we have
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