On perfect, amicable, and sociable chains

Jean-Luc Marichal

Applied Mathematics Unit, University of Luxembourg 162A, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg jean-luc.marichal[at]uni.lu

Revised version, September 22, 2000*

Abstract

Let $\mathbf{x} = (x_0, \dots, x_{n-1})$ be an *n*-chain, i.e., an *n*-tuple of non-negative integers < n. Consider the operator $s: \mathbf{x} \mapsto \mathbf{x}' = (x'_0, \dots, x'_{n-1})$, where x'_j represents the number of j's appearing among the components of \mathbf{x} . An *n*-chain \mathbf{x} is said to be perfect if $s(\mathbf{x}) = \mathbf{x}$. For example, (2,1,2,0,0) is a perfect 5-chain. Analogously to the theory of perfect, amicable, and sociable numbers, one can define from the operator s the concepts of amicable pair and sociable group of chains. In this paper we give an exhaustive list of all the perfect, amicable, and sociable chains.

Keywords: Partitions of integers; Finite integer sequences. 2000 Mathematics Subject Classification: 05A17, 11B83, 11P81.

1 Introduction

Let $n \ge 1$ be an integer and let $N := \{0, 1, \dots, n-1\}$. An *n*-chain is an *n*-tuple

$$\mathbf{x} = (x_0, x_1, \dots, x_{n-1}),$$

with $x_i \in N$ for all $i \in N$. Since such an *n*-tuple can be viewed as a mapping from N into itself, the set of all *n*-chains will be denoted N^N , and its cardinality is $|N^N| = n^n$.

Let 2^N represent the set of all subsets of N. For any $j \in N$, define $S_j : N^N \to 2^N$ as

$$S_j(\mathbf{x}) := \{ i \in N \mid x_i = j \}.$$

Clearly, for any $\mathbf{x} \in N^N$, $\{S_j(\mathbf{x}) \mid j \in N\}$ is a partition of N. We then say that $\mathbf{x} \in N^N$ is a *perfect chain* if

$$x_j = |S_j(\mathbf{x})|, \quad j \in N.$$

In other terms, $\mathbf{x} \in N^N$ is a perfect chain if, for any $j \in N$, x_j represents the number of *j*'s occuring in $\{x_0, x_1, \ldots, x_{n-1}\}$. For instance

$$\mathbf{x} = (2, 1, 2, 0, 0)$$

^{*}As this paper was accepted for publication, the author found out that the main problem (Theorem 4) was already addressed and solved by Sallows and Eijkhout [5]; see also [3, 4, 6].

is a perfect 5-chain.

We say that $\mathbf{x}, \mathbf{x}' \in N^N$ ($\mathbf{x} \neq \mathbf{x}'$) form a pair of *amicable chains* if

$$\begin{aligned} x'_j &= |S_j(\mathbf{x})|, \qquad j \in N, \\ x_j &= |S_j(\mathbf{x}')|, \qquad j \in N. \end{aligned}$$

For instance

$$\mathbf{x} = (2, 3, 0, 1, 0, 0)$$
 and $\mathbf{x}' = (3, 1, 1, 1, 0, 0)$

form a pair of amicable 6-chains.

Now, consider the counting operator $s: N^N \to \{0, 1, \dots, n\}^N$ defined by $\mathbf{x}' = s(\mathbf{x})$ with

$$x'_j = |S_j(\mathbf{x})|, \qquad j \in N.$$

Given an integer $l \ge 3$, we say that the chains $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(l-1)} \in N^N$, satisfying

$$\mathbf{x}^{(k+1)} = s(\mathbf{x}^{(k)}), \qquad k \in \{0, \dots, l-2\},\$$

form a group of *l* sociable chains if they are distinct and $s(\mathbf{x}^{(l-1)}) = \mathbf{x}^{(0)}$. For instance

$$\mathbf{x}^{(0)} = (3, 3, 0, 0, 1, 0, 0), \quad \mathbf{x}^{(1)} = (4, 1, 0, 2, 0, 0, 0), \quad \mathbf{x}^{(2)} = (4, 1, 1, 0, 1, 0, 0)$$

form a group of three sociable 7-chains.

Notice that these concepts present some analogies with perfect, amicable, and sociable numbers, see e.g. [2, 7]. Consider the function $s(n) = \sigma(n) - n$, where σ denotes the divisor sum function. A positive integer n is said to be perfect if s(n) = n. For example, 6 is perfect. Two positive integers m and n are said to be amicable if s(m) = n and s(n) = m. For example, 220 and 284 are amicable. An *l*-tuple $(l \ge 3)$ of positive integers (n_0, \ldots, n_{l-1}) , satisfying $n_{k+1} = s(n_k)$ for all k, is a sociable group if these integers are distinct and $s(n_{l-1}) = n_0$. For example, (12 496, 14 288, 15 472, 14 536, 14 264) is a group of 5 sociable numbers.

The main aim of this paper is to determine all the perfect, amicable, and sociable chains. These are gathered in Theorem 4 below. We also investigate the counting operator and point out some of its properties.

The outline of this paper is as follows. In Section 2 we determine conditions under which the iterates of the counting operator are well defined. In Section 3 the results are presented of an exhaustive computation of all the perfect, amicable, and sociable chains. Finally, Section 4 is devoted to a description of the range of the counting operator and its iterates.

2 Preliminary results

In this section we investigate the counting operator s introduced above as well as its iterates. We first observe that this operator does not always range in N^N . For example, if n = 4, we have

$$s(2,2,2,2) = (0,0,4,0) \notin N^N.$$

We thus need to restrict the domain of s to chains \mathbf{x} such that each element of the infinite sequence

$$\mathbf{x}, s(\mathbf{x}), s(s(\mathbf{x})), s(s(s(\mathbf{x}))), \ldots$$

belongs to N^N . The following results deal with this issue.

Lemma 1. Let $\mathbf{x} \in N^N$ and $\mathbf{x}' = s(\mathbf{x})$. Then

$$\sum_{j \in N} x'_j = n, \tag{1}$$

$$\sum_{j \in N} j x'_j = \sum_{j \in N} x_j.$$
⁽²⁾

Proof. Since $\{S_j(\mathbf{x}) \mid j \in N\}$ is a partition of N, we simply have

$$\sum_{j \in N} x'_j = \sum_{j \in N} |S_j(\mathbf{x})| = |N| = n,$$

and, by counting in two ways,

$$\sum_{j \in N} x_j = \sum_{j \in N} \sum_{i \in S_j(\mathbf{x})} x_i = \sum_{j \in N} \sum_{i \in S_j(\mathbf{x})} j = \sum_{j \in N} j |S_j(\mathbf{x})| = \sum_{j \in N} j x'_j.$$

Lemma 2. Let $\mathbf{x} \in N^N$. The following statements hold:

- (i) $s(\mathbf{x}) \in N^N$ if and only if x_0, \ldots, x_{n-1} are not all equal. (ii) If $s(\mathbf{x}) \in N^N$ then $s(s(\mathbf{x})) \in N^N$ if and only if x_0, \ldots, x_{n-1} are not all distinct. (iii) If $s(\mathbf{x}), s(s(\mathbf{x})) \in N^N$ then $s(s(s(\mathbf{x}))) \in N^N$ if and only if $n \ge 4$.
- (iii)

Proof. (i) Easy.

(*ii*) Setting $\mathbf{x}' := s(\mathbf{x})$ and $\mathbf{x}'' := s(\mathbf{x}')$, we have

$$\mathbf{x}'' \in N^N \Leftrightarrow x'_0, \dots, x'_{n-1} \text{ are not all equal} \quad (by (i))$$
$$\Leftrightarrow \mathbf{x}' \neq (1, \dots, 1) \quad (by \text{ Eq. } (1))$$
$$\Leftrightarrow \{x_0, \dots, x_{n-1}\} \neq N.$$

(*iii*) By (*i*) and (*ii*), the numbers x_0, \ldots, x_{n-1} are neither all equal nor all distinct, and hence $n \ge 3$. Now set $\mathbf{x}' := s(\mathbf{x}), \mathbf{x}'' := s(\mathbf{x}')$, and $\mathbf{x}''' := s(\mathbf{x}'')$. By (*ii*), we have

$$\mathbf{x}''' \in N^N \iff \{x'_0, \dots, x'_{n-1}\} \neq N.$$

However we have

$$\begin{aligned} \{x'_0, \dots, x'_{n-1}\} &= N \quad \Rightarrow \quad \sum_{j \in N} x'_j = \sum_{j \in N} j \\ \Rightarrow \quad n = \frac{n(n-1)}{2} \qquad (\text{by Eq. (1)}) \\ \Rightarrow \quad n = 3 \end{aligned}$$

and

$$n = 3 \Rightarrow \{x'_0, x'_1, x'_2\} = \{0, 1, 2\} = N.$$

Thus Lemma 2 is proved.

Let \mathcal{N} denote the set of all *n*-chains whose components are neither all equal nor all distinct. One can readily see that $|\mathcal{N}| = n^n - n! - n$. Moreover, we have the following result, which immediately follows from Lemma 2.

Proposition 3. Let $\mathbf{x} \in N^N$. Then all the chains $s(\mathbf{x}), s(s(\mathbf{x})), s(s(s(\mathbf{x}))), \ldots$ belong to N^N if and only if $\mathbf{x} \in \mathcal{N}$ and $n \ge 4$. In that case, all these chains belong to \mathcal{N} .

From now on we will assume that $n \ge 4$. Let \mathbb{N} denote the set of non-negative integers. According to Proposition 3 we can construct from any $\mathbf{x} \in \mathcal{N}$ an infinite sequence of chains $(\mathbf{x}^{(k)})_{k \in \mathbb{N}}$ in the following way:

$$\begin{cases} \mathbf{x}^{(0)} = \mathbf{x}, \\ \mathbf{x}^{(k+1)} = s(\mathbf{x}^{(k)}), \quad k \in \mathbb{N}. \end{cases}$$
(3)

Since \mathcal{N} is a finite set, this sequence is eventually periodic. That is, there exist $k_0, l \in \mathbb{N}$ $(l \ge 1)$ such that

$$\mathbf{x}^{(k+l)} = \mathbf{x}^{(k)} \qquad \forall k \ge k_0.$$
(4)

If the chains $\mathbf{x}^{(k)}, \ldots, \mathbf{x}^{(k+l-1)}$ are distinct and such that $\mathbf{x}^{(k+l)} = \mathbf{x}^{(k)}$, we say that they form a *circuit* of length *l*. Of course, determining perfect (resp. amicable, sociable) chains amounts to identifying all the circuits of length 1 (resp. $2, \geq 3$).

3 Exhaustive computation of perfect, amicable, and sociable chains

In the present section we calculate all the perfect, amicable, and sociable chains. These are given in Theorem 4 below.

Assume that $\mathbf{x}^{(k_0)} \in \mathcal{N}$ belongs to a circuit. By Proposition 3, we have $\mathbf{x}^{(k)} \in \mathcal{N}$ for all $k \ge k_0$. Furthermore, by Eq. (1) and (2), we have

$$\sum_{j \in N} x_j^{(k)} = n \qquad \forall k \ge k_0, \tag{5}$$

$$\sum_{j \in N} j x_j^{(k)} = n \qquad \forall k \ge k_0.$$
(6)

These identities imply trivially

$$x_0^{(k)} = \sum_{j=1}^{n-1} (j-1) x_j^{(k)} \qquad \forall k \ge k_0.$$
(7)

Moreover, we have

$$x_0^{(k)} \ge 1 \qquad \forall k \ge k_0. \tag{8}$$

Indeed, if $x_0^{(k)} = 0$ for some $k \ge k_0$ then, by Eq. (7), we have $x_2^{(k)} = \cdots = x_{n-1}^{(k)} = 0$. By Eq. (5) we then have $x_1^{(k)} = n$, a contradiction.

Theorem 4. Let || denote a list, possibly empty, of zeroes. The perfect chains are:

$$(1, 2, 1, 0)$$
 (9)

$$(2, 0, 2, 0)$$
 (10)

$$(2, 1, 2, 0, 0) \tag{11}$$

$$(n-4,2,1||1,0,0,0), \qquad n \ge 7.$$
 (12)

The pairs of amicable chains are:

$$(2,3,0,1,0,0), \quad (3,1,1,1,0,0) \tag{13}$$

$$(n-4,3,0,0||0,1,0,0), (n-3,1,0,1||1,0,0,0), n \ge 8.$$
 (14)

The unique group of sociable chains is:

 $(3,3,0,0,1,0,0), \quad (4,1,0,2,0,0,0), \quad (4,1,1,0,1,0,0).$ (15)

There is no group of more than 3 sociable chains.

Proof. Let $\mathbf{x}^{(k_0)} \in \mathcal{N}$ belong to a circuit. Choose $k \ge k_0$ such that $x_0^{(k+1)} \le x_0^{(k)}$. Such a k exists for otherwise $\mathbf{x}^{(k_0)}$ would not belong to a circuit.

Set $p := x_0^{(k)}$. By Eq. (8), we have $1 \leq p \leq n-1$. Moreover, since $0 \in S_p(\mathbf{x}^{(k)})$, we have

$$x_p^{(k+1)} = |S_p(\mathbf{x}^{(k)})| \ge 1.$$

Using Eq. (7), we have

$$x_0^{(k+1)} = \sum_{j=1}^{n-1} (j-1) \, x_j^{(k+1)} \ge (p-1) + \sum_{\substack{j=1\\j \ne p}}^{n-1} (j-1) \, x_j^{(k+1)},$$

and hence,

$$1 \ge 1 + x_0^{(k+1)} - p \ge \sum_{\substack{j=1\\j \ne p}}^{n-1} (j-1) \, x_j^{(k+1)} \ge 0, \tag{16}$$

implying $x_0^{(k+1)} = p$ or $x_0^{(k+1)} = p - 1$. We now investigate these two cases separately.

1. Case $x_0^{(k+1)} = p$.

By Eq. (16), we have

$$x_j^{(k+1)} = 0 \qquad \forall j \in N \setminus \{0, 1, 2, p\}$$

(a) *Case* p = 1.

Using Eq. (7) and (5), we obtain $x_2^{(k+1)} = 1$ and $x_1^{(k+1)} = n - 2$, so that $\mathbf{x}^{(k+1)} = (1, n - 2, 1 \parallel)$

and
$$\{x_1^{(k)}, \dots, x_{n-1}^{(k)}\} = \{2, 1, \dots, 1, 0\}$$
. By Eq. (6), we have

$$n = \sum_{i \in \mathbb{N}} j \, x_j^{(k)} \ge 2 + \sum_{i=2}^{n-2} j = \frac{1}{2} (n-2)(n-1) + 1,$$

that is n = 4. This leads to the circuit (9).

(b) Case p = 2. Using Eq. (7) and (5), we obtain $x_2^{(k+1)} = 2$ and $x_1^{(k+1)} = n - 4$, so that $\mathbf{x}^{(k+1)} = (2, n - 4, 2 \parallel)$

and $\{x_1^{(k)}, \ldots, x_{n-1}^{(k)}\} = \{2, 1, \ldots, 1, 0, 0\}$. By Eq. (6), we have

$$n = \sum_{j \in N} j \, x_j^{(k)} \ge 2 + \sum_{j=2}^{n-3} j = \frac{1}{2}(n-3)(n-2) + 1,$$

that is $n \in \{4, 5\}$. This leads to the circuits (10) and (11).

(c) Case $p \ge 3$. By Eq. (7), we have

$$p = x_2^{(k+1)} + (p-1) x_p^{(k+1)},$$

which implies $x_2^{(k+1)} = x_p^{(k+1)} = 1$. By Eq. (5), we then have $x_1^{(k+1)} = n - p - 2$, and hence

$$\mathbf{x}^{(k+1)} = (\underbrace{p, n-p-2, 1 \| 1}_{p+1} \|),$$

with $n \ge p+2$.

i. Case $n = p + 2 \ (\geq 5)$. We have

$$\mathbf{x}^{(k+1)} = (n-2, 0, 1||1, 0), \quad \mathbf{x}^{(k+2)} = (n-3, 2, 0||1, 0).$$

For n = 5, we get the circuit (11). For $n \ge 6$, we have

$$\mathbf{x}^{(k+3)} = (n-3, 1, 1 \| 1, 0, 0), \quad \mathbf{x}^{(k+4)} = (n-4, 3, 0 \| 1, 0, 0).$$

For n = 6, n = 7 and $n \ge 8$, we get the circuits (13), (15) and (14) respectively.

ii. Case $n = p + 3 \ (\ge 6)$. We have

$$\mathbf{x}^{(k+1)} = (n-3, 1, 1 \| 1, 0, 0),$$

which leads to a previous case.

iii. Case $n = p + 4 \ (\ge 7)$. We have

$$\mathbf{x}^{(k+1)} = (n-4, 2, 1 \| 1, 0, 0, 0),$$

which leads to the circuit (12).

iv. Case $n = p + 5 \ (\geq 8)$. We have

$$\mathbf{x}^{(k+1)} = (n - 5, 3, 1 \| 1, 0, 0, 0, 0).$$

For n = 8, we get the circuit (14). For $n \ge 9$, we have

$$\mathbf{x}^{(k+2)} = (n-4, 2, 0, 1 \| 1, 0, 0, 0, 0),$$

retrieving the circuit (12).

v. Case $n = p + r \ (\ge 3 + r)$, with $r \ge 6$. We have

$$\mathbf{x}^{(k+1)} = (\underbrace{n-r, r-2, 1 \| 1}_{n-r+1} \|).$$

If n - r < r - 2 then

$$\mathbf{x}^{(k+2)} = (\underbrace{\frac{n-r+1}{n-4,2,0\|1}\|1}_{r-1}\|),$$

which leads to a previous case. If n - r = r - 2 then

$$\mathbf{x}^{(k+2)} = (\underbrace{n-4, 2, 0 \| 2}_{n-r+1} \|), \quad \mathbf{x}^{(k+3)} = (n-3, 0, 2 \| 1, 0, 0, 0),$$

which leads to a previous case. If n - r > r - 2 then

$$\mathbf{x}^{(k+2)} = (\underbrace{\frac{r-1}{n-4,2,0\|1}\|1}_{n-r+1}\|),$$

which leads to a previous case.

2. Case $x_0^{(k+1)} = p - 1$.

By Eq. (16), we have

$$x_j^{(k+1)} = 0 \qquad \forall j \in N \setminus \{0, 1, p\},$$

with $p = x_0^{(k+1)} + 1 \ge 2$. Using Eq. (5) and (7), we obtain $x_p^{(k+1)} = 1$ and $x_1^{(k+1)} = n - p$, so that

$$\mathbf{x}^{(k+1)} = (\underbrace{p-1, n-p \| 1}_{p+1} \|).$$

(a) Case p = 2. We have

$$\mathbf{x}^{(k+1)} = (1, n-2, 1 \|),$$

that is a case previously encountered.

- (b) Case $p \ge 3$.
 - i. Case $n = p + 1 \ (\ge 4)$. We have

$$\mathbf{x}^{(k+1)} = (n-2, 1||1),$$

which leads to a previous case.

ii. Case $n = p + r \ (\ge 3 + r)$, with $r \ge 2$. We have

$$\mathbf{x}^{(k+1)} = (\underbrace{n-r-1, r \, \| 1}_{n-r+1} \|).$$

If n - r - 1 < r then

$$\mathbf{x}^{(k+2)} = (\underbrace{\frac{n-r}{n-3,1\|1}\|1}_{r+1}\|),$$

which leads to a previous case. If n - r - 1 = r then

$$\mathbf{x}^{(k+2)} = (\underbrace{n-3, 1 \| 2}_{n-r} \|),$$

which leads to a previous case. If n - r - 1 > r then

$$\mathbf{x}^{(k+2)} = (\underbrace{\frac{r+1}{n-3,1\|1\|1\|1}}_{n-r+1}\|),$$

which leads to a previous case.

Theorem 4 is now proved.

Corollary 5. Any circuit of length ≥ 2 contains the chain $(n - 4, 3 \| 1, 0, 0)$.

Before closing this section, we present the following open problem. For any $\mathbf{x} \in \mathcal{N}$, we denote by $\mathcal{C}(\mathbf{x})$ the circuit obtained from the infinite sequence $(\mathbf{x}^{(k)})_{k \in \mathbb{N}}$. The question then arises of determining the length of the non-periodic part of this sequence; that is, the number of elements that do not belong to $\mathcal{C}(\mathbf{x})$:

$$\Psi(\mathbf{x}) := \min\{k \in \mathbb{N} \mid \mathbf{x}^{(k)} \in \mathcal{C}(\mathbf{x})\}.$$

Interestingly enough, the following sequence:

$$\psi(n) := \max_{\mathbf{x} \in \mathcal{N}} \Psi(\mathbf{x}), \qquad n \ge 4,$$

We conjecture that the elements of this sequence can be arbitrary large; that is, for any $M \ge 3$ there exists $n \ge 4$ such that $\psi(n) \ge M$.

4 Range of the counting operator and its iterates

For any $k \in \mathbb{N}$, let $s^{(k)}$ denote the kth iterate of the operator s. It is clear that we have

$$s^{(k+1)}(\mathcal{N}) \subseteq s^{(k)}(\mathcal{N}), \qquad k \in \mathbb{N}.$$

In this final section we intend to describe the subset $s^{(k)}(\mathcal{N})$ for each $k \in \mathbb{N}$. The case k = 1 is dealt with in the next proposition.

Proposition 6. We have

$$s(\mathcal{N}) = \left\{ \mathbf{x} \in \mathcal{N} \, \Big| \, \sum_{j \in N} x_j = n \right\}.$$

Proof. (⊆) Follows from Eq. (1). (⊇) Let $\mathbf{x} \in \mathcal{N}$ such that $\sum_{j \in N} x_j = n$. Setting

$$\mathbf{z} := (\underbrace{0, \dots, 0}_{x_0}, \underbrace{1, \dots, 1}_{x_1}, \dots, \underbrace{n-1, \dots, n-1}_{x_{n-1}}),$$

we have $\mathbf{z} \in \mathcal{N}$ and $s(\mathbf{z}) = \mathbf{x}$, and hence $\mathbf{x} \in s(\mathcal{N})$.

Let the operator $r: s(\mathcal{N}) \to \mathcal{N}$ be defined by

$$r(\mathbf{x}) = (\underbrace{0, \dots, 0}_{x_0}, \underbrace{1, \dots, 1}_{x_1}, \dots, \underbrace{n-1, \dots, n-1}_{x_{n-1}}).$$

Let Π_N be the set of all the permutations on N and define the operator $q: \mathcal{N} \to \mathcal{N}$ by

$$q(\mathbf{x}) = (x_{\nu(0)}, \dots, x_{\nu(n-1)})_{\mathbf{x}}$$

where $\nu \in \Pi_N$ is such that $x_{\nu(0)} \leq \cdots \leq x_{\nu(n-1)}$. One can easily see that $s \circ r = \text{id}$ and $r \circ s = q$, thus showing that s is not invertible.

For any $\pi \in \Pi_N$, we define $r_{\pi} : s(\mathcal{N}) \to \mathcal{N}$ by

$$r_{\pi}(\mathbf{x}) = (r(\mathbf{x})_{\pi(0)}, \dots, r(\mathbf{x})_{\pi(n-1)}).$$

For any $\mathbf{x} \in s(\mathcal{N})$, we clearly have $s^{(-1)}(\mathbf{x}) = \{r_{\pi}(\mathbf{x}) \mid \pi \in \Pi_N\}$. Moreover, we have the following result.

Proposition 7. For any $k \in \mathbb{N}$, we have

$$s^{(k+1)}(\mathcal{N}) = \Big\{ \mathbf{x} \in s^{(k)}(\mathcal{N}) \, \Big| \, \exists \, \pi_1, \dots, \pi_k \in \Pi_N : \sum_{j \in N} (r_{\pi_1} \circ \dots \circ r_{\pi_k})(\mathbf{x})_j = n \Big\}.$$

Proof. We proceed by induction over $k \in \mathbb{N}$. By Proposition 6, the result holds for k = 0. Assume that it also holds for $k = 0, \ldots, K - 1$, with a given $K \ge 1$. We now show that it still holds for k = K.

 (\subseteq) Let $\mathbf{x} \in s^{(K+1)}(\mathcal{N})$. Take $\pi_K \in \Pi_N$ and set $\mathbf{z} := r_{\pi_K}(\mathbf{x})$. We have $\mathbf{x} = s(\mathbf{z})$ and hence $\mathbf{z} \in s^{(K)}(\mathcal{N})$. By induction hypothesis, there exist $\pi_1, \ldots, \pi_{K-1} \in \Pi_N$ such that

$$\sum_{j\in N} (r_{\pi_1} \circ \cdots \circ r_{\pi_K})(\mathbf{x})_j = \sum_{j\in N} (r_{\pi_1} \circ \cdots \circ r_{\pi_{K-1}})(\mathbf{z})_j = n.$$

 (\supseteq) Let $\mathbf{x} \in s^{(K)}(\mathcal{N})$ and assume that there exist $\pi_1, \ldots, \pi_K \in \Pi_N$ such that

$$\sum_{j\in N} (r_{\pi_1} \circ \cdots \circ r_{\pi_K})(\mathbf{x})_j = n$$

We only have to prove that $\mathbf{x} \in \{s(\mathbf{z}) \mid \mathbf{z} \in s^{(K)}(\mathcal{N})\}$. Set $\mathbf{z} := r_{\pi_K}(\mathbf{x})$. We have $\mathbf{x} = s(\mathbf{z})$ and hence $\mathbf{z} \in s^{(K-1)}(\mathcal{N})$. Moreover, we have

$$\sum_{j\in N} (r_{\pi_1} \circ \cdots \circ r_{\pi_{K-1}})(\mathbf{z})_j = \sum_{j\in N} (r_{\pi_1} \circ \cdots \circ r_{\pi_K})(\mathbf{x})_j = n,$$

and hence $\mathbf{z} \in s^{(K)}(\mathcal{N})$ by induction hypothesis.

The case k = 2 is particularly interesting. One can easily see that, for any $\mathbf{x} \in \mathcal{N}$ and any $j \in N$, $s^{(2)}(\mathbf{x})_j$ represents the number of distinct values occuring j times in $\{x_0, \ldots, x_{n-1}\}$. Moreover, we have the following proposition.

Proposition 8. We have

$$s^{(2)}(\mathcal{N}) = \Big\{ \mathbf{x} \in s(\mathcal{N}) \, \Big| \, \sum_{j \in N} j \, x_j = n \Big\}.$$

Proof. For any $\pi \in \Pi_N$, we have

$$\sum_{j \in N} r_{\pi}(\mathbf{x})_j = \sum_{j \in N} j \, x_j.$$

We then conclude by Proposition 7.

Now, from the identity

$$\left|\left\{\mathbf{x}\in\mathbb{N}^n\,\middle|\,\sum_{j=1}^n j\,x_j=n\right\}\right|=P(n),$$

where P(n) is the number of unrestricted partitions of the integer n (see e.g. [1]), we can easily show that $|s^{(2)}(\mathcal{N})| = P(n) - 2$. Similarly, from the well-known identity

$$\left|\left\{\mathbf{x}\in\mathbb{N}^n\,\middle|\,\sum\limits_{j=1}^n x_j=n\right\}\right|=\binom{2n-1}{n},$$

we can readily see that $|s(\mathcal{N})| = \binom{2n-1}{n} - n - 1.$

Finally, from the identities $r \circ s = q$ and $r \circ s^{(2)} = q \circ s$, we clearly have

$$r(s(\mathcal{N})) = \{ \mathbf{x} \in \mathcal{N} \mid x_0 \leqslant \cdots \leqslant x_{n-1} \}, r(s^{(2)}(\mathcal{N})) = \{ \mathbf{x} \in \mathcal{N} \mid \sum_{j \in N} x_j = n \text{ and } x_0 \leqslant \cdots \leqslant x_{n-1} \},$$

and, since r is an injection, we have

$$|r(s(\mathcal{N}))| = |s(\mathcal{N})|$$
 and $|r(s^{(2)}(\mathcal{N}))| = |s^{(2)}(\mathcal{N})|.$

References

- M. Abramowitz and I.A. Stegun (Eds.), "Unrestricted partitions", §24.2.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, p. 825, 1972.
- [2] H. Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970) 423–429.
- [3] S. Kahan, A curious sequence, *Math. Gaz.* **48** (5) (1975) 290–292.
- [4] M. McKay and M.S. Waterman, Self-descriptive strings, Math. Gaz. 66 (435) (1982) 1–4.
- [5] L. Sallows and V. Eijkhout, Co-descriptive strings, Math. Gaz. 70 (451) (1986) 1–10.
- [6] J. Sauerberg and L. Shu, The long and the short on counting sequences, Amer. Math. Monthly 104 (4) (1997) 306–317.
- [7] H.J.J. te Riele, Computation of all amicable pairs below 10¹⁰, Math. Comp. 47 (1986) 361–368.