On perfect, amicable, and sociable chains

Jean-Luc Marichal
Applied Mathematics Unit, University of Luxembourg
162A, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
jean-luc.marichal[at]uni.lu

Revised version, September 22, 2000*

Abstract

Let $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right)$ be an n-chain, i.e., an n-tuple of non-negative integers $<n$. Consider the operator $s: \mathbf{x} \mapsto \mathbf{x}^{\prime}=\left(x_{0}^{\prime}, \ldots, x_{n-1}^{\prime}\right)$, where x_{j}^{\prime} represents the number of j 's appearing among the components of \mathbf{x}. An n-chain \mathbf{x} is said to be perfect if $s(\mathbf{x})=\mathbf{x}$. For example, $(2,1,2,0,0)$ is a perfect 5 -chain. Analogously to the theory of perfect, amicable, and sociable numbers, one can define from the operator s the concepts of amicable pair and sociable group of chains. In this paper we give an exhaustive list of all the perfect, amicable, and sociable chains.

Keywords: Partitions of integers; Finite integer sequences. 2000 Mathematics Subject Classification: 05A17, 11B83, 11P81.

1 Introduction

Let $n \geqslant 1$ be an integer and let $N:=\{0,1, \ldots, n-1\}$. An n-chain is an n-tuple

$$
\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

with $x_{i} \in N$ for all $i \in N$. Since such an n-tuple can be viewed as a mapping from N into itself, the set of all n-chains will be denoted N^{N}, and its cardinality is $\left|N^{N}\right|=n^{n}$.

Let 2^{N} represent the set of all subsets of N. For any $j \in N$, define $S_{j}: N^{N} \rightarrow 2^{N}$ as

$$
S_{j}(\mathbf{x}):=\left\{i \in N \mid x_{i}=j\right\} .
$$

Clearly, for any $\mathbf{x} \in N^{N},\left\{S_{j}(\mathbf{x}) \mid j \in N\right\}$ is a partition of N.
We then say that $\mathbf{x} \in N^{N}$ is a perfect chain if

$$
x_{j}=\left|S_{j}(\mathbf{x})\right|, \quad j \in N
$$

In other terms, $\mathbf{x} \in N^{N}$ is a perfect chain if, for any $j \in N, x_{j}$ represents the number of j 's occuring in $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$. For instance

$$
\mathbf{x}=(2,1,2,0,0)
$$

[^0]is a perfect 5 -chain.
We say that $\mathbf{x}, \mathbf{x}^{\prime} \in N^{N}\left(\mathbf{x} \neq \mathbf{x}^{\prime}\right)$ form a pair of amicable chains if
\[

$$
\begin{array}{ll}
x_{j}^{\prime}=\left|S_{j}(\mathbf{x})\right|, & j \in N, \\
x_{j}=\left|S_{j}\left(\mathbf{x}^{\prime}\right)\right|, & j \in N .
\end{array}
$$
\]

For instance

$$
\mathbf{x}=(2,3,0,1,0,0) \quad \text { and } \quad \mathbf{x}^{\prime}=(3,1,1,1,0,0)
$$

form a pair of amicable 6 -chains.
Now, consider the counting operator $s: N^{N} \rightarrow\{0,1, \ldots, n\}^{N}$ defined by $\mathbf{x}^{\prime}=s(\mathbf{x})$ with

$$
x_{j}^{\prime}=\left|S_{j}(\mathbf{x})\right|, \quad j \in N .
$$

Given an integer $l \geqslant 3$, we say that the chains $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(l-1)} \in N^{N}$, satisfying

$$
\mathbf{x}^{(k+1)}=s\left(\mathbf{x}^{(k)}\right), \quad k \in\{0, \ldots, l-2\}
$$

form a group of l sociable chains if they are distinct and $s\left(\mathbf{x}^{(l-1)}\right)=\mathbf{x}^{(0)}$. For instance

$$
\mathbf{x}^{(0)}=(3,3,0,0,1,0,0), \quad \mathbf{x}^{(1)}=(4,1,0,2,0,0,0), \quad \mathbf{x}^{(2)}=(4,1,1,0,1,0,0)
$$

form a group of three sociable 7 -chains.
Notice that these concepts present some analogies with perfect, amicable, and sociable numbers, see e.g. [2, 7]. Consider the function $s(n)=\sigma(n)-n$, where σ denotes the divisor sum function. A positive integer n is said to be perfect if $s(n)=n$. For example, 6 is perfect. Two positive integers m and n are said to be amicable if $s(m)=n$ and $s(n)=m$. For example, 220 and 284 are amicable. An l-tuple $(l \geqslant 3)$ of positive integers $\left(n_{0}, \ldots, n_{l-1}\right)$, satisfying $n_{k+1}=s\left(n_{k}\right)$ for all k, is a sociable group if these integers are distinct and $s\left(n_{l-1}\right)=n_{0}$. For example, ($\left.12496,14288,15472,14536,14264\right)$ is a group of 5 sociable numbers.

The main aim of this paper is to determine all the perfect, amicable, and sociable chains. These are gathered in Theorem 4 below. We also investigate the counting operator and point out some of its properties.

The outline of this paper is as follows. In Section 2 we determine conditions under which the iterates of the counting operator are well defined. In Section 3 the results are presented of an exhaustive computation of all the perfect, amicable, and sociable chains. Finally, Section 4 is devoted to a description of the range of the counting operator and its iterates.

2 Preliminary results

In this section we investigate the counting operator s introduced above as well as its iterates. We first observe that this operator does not always range in N^{N}. For example, if $n=4$, we have

$$
s(2,2,2,2)=(0,0,4,0) \notin N^{N}
$$

We thus need to restrict the domain of s to chains \mathbf{x} such that each element of the infinite sequence

$$
\mathbf{x}, s(\mathbf{x}), s(s(\mathbf{x})), s(s(s(\mathbf{x}))), \ldots
$$

belongs to N^{N}. The following results deal with this issue.

Lemma 1. Let $\mathbf{x} \in N^{N}$ and $\mathbf{x}^{\prime}=s(\mathbf{x})$. Then

$$
\begin{align*}
\sum_{j \in N} x_{j}^{\prime} & =n \tag{1}\\
\sum_{j \in N} j x_{j}^{\prime} & =\sum_{j \in N} x_{j} . \tag{2}
\end{align*}
$$

Proof. Since $\left\{S_{j}(\mathbf{x}) \mid j \in N\right\}$ is a partition of N, we simply have

$$
\sum_{j \in N} x_{j}^{\prime}=\sum_{j \in N}\left|S_{j}(\mathbf{x})\right|=|N|=n
$$

and, by counting in two ways,

$$
\sum_{j \in N} x_{j}=\sum_{j \in N} \sum_{i \in S_{j}(\mathbf{x})} x_{i}=\sum_{j \in N} \sum_{i \in S_{j}(\mathbf{x})} j=\sum_{j \in N} j\left|S_{j}(\mathbf{x})\right|=\sum_{j \in N} j x_{j}^{\prime} .
$$

Lemma 2. Let $\mathbf{x} \in N^{N}$. The following statements hold:
(i) $s(\mathbf{x}) \in N^{N}$ if and only if x_{0}, \ldots, x_{n-1} are not all equal.
(ii) If $s(\mathbf{x}) \in N^{N}$ then $s(s(\mathbf{x})) \in N^{N}$ if and only if x_{0}, \ldots, x_{n-1} are not all distinct.
(iii) If $s(\mathbf{x}), s(s(\mathbf{x})) \in N^{N}$ then $s(s(s(\mathbf{x}))) \in N^{N}$ if and only if $n \geqslant 4$.

Proof. (i) Easy.
(ii) Setting $\mathbf{x}^{\prime}:=s(\mathbf{x})$ and $\mathbf{x}^{\prime \prime}:=s\left(\mathbf{x}^{\prime}\right)$, we have

$$
\begin{aligned}
\mathbf{x}^{\prime \prime} \in N^{N} & \Leftrightarrow x_{0}^{\prime}, \ldots, x_{n-1}^{\prime} \text { are not all equal } \quad(\text { by }(i)) \\
& \Leftrightarrow \mathbf{x}^{\prime} \neq(1, \ldots, 1) \quad \text { (by Eq. (1)) } \\
& \Leftrightarrow\left\{x_{0}, \ldots, x_{n-1}\right\} \neq N .
\end{aligned}
$$

(iii) By (i) and (ii), the numbers x_{0}, \ldots, x_{n-1} are neither all equal nor all distinct, and hence $n \geqslant 3$. Now set $\mathbf{x}^{\prime}:=s(\mathbf{x}), \mathbf{x}^{\prime \prime}:=s\left(\mathbf{x}^{\prime}\right)$, and $\mathbf{x}^{\prime \prime \prime}:=s\left(\mathbf{x}^{\prime \prime}\right)$. By (ii), we have

$$
\mathbf{x}^{\prime \prime \prime} \in N^{N} \Leftrightarrow\left\{x_{0}^{\prime}, \ldots, x_{n-1}^{\prime}\right\} \neq N .
$$

However we have

$$
\begin{aligned}
\left\{x_{0}^{\prime}, \ldots, x_{n-1}^{\prime}\right\}=N & \Rightarrow \sum_{j \in N} x_{j}^{\prime}=\sum_{j \in N} j \\
& \Rightarrow n=\frac{n(n-1)}{2} \quad \text { (by Eq. (1)) } \\
& \Rightarrow n=3
\end{aligned}
$$

and

$$
n=3 \Rightarrow\left\{x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}=\{0,1,2\}=N
$$

Thus Lemma 2 is proved.
Let \mathcal{N} denote the set of all n-chains whose components are neither all equal nor all distinct. One can readily see that $|\mathcal{N}|=n^{n}-n!-n$. Moreover, we have the following result, which immediately follows from Lemma 2.

Proposition 3. Let $\mathbf{x} \in N^{N}$. Then all the chains $s(\mathbf{x}), s(s(\mathbf{x})), s(s(s(\mathbf{x})))$, \ldots belong to N^{N} if and only if $\mathrm{x} \in \mathcal{N}$ and $n \geqslant 4$. In that case, all these chains belong to \mathcal{N}.

From now on we will assume that $n \geqslant 4$. Let \mathbb{N} denote the set of non-negative integers. According to Proposition 3 we can construct from any $\mathbf{x} \in \mathcal{N}$ an infinite sequence of chains $\left(\mathbf{x}^{(k)}\right)_{k \in \mathbb{N}}$ in the following way:

$$
\left\{\begin{array}{l}
\mathbf{x}^{(0)}=\mathbf{x}, \tag{3}\\
\mathbf{x}^{(k+1)}=s\left(\mathbf{x}^{(k)}\right), \quad k \in \mathbb{N} .
\end{array}\right.
$$

Since \mathcal{N} is a finite set, this sequence is eventually periodic. That is, there exist $k_{0}, l \in \mathbb{N}$ $(l \geqslant 1)$ such that

$$
\begin{equation*}
\mathbf{x}^{(k+l)}=\mathbf{x}^{(k)} \quad \forall k \geqslant k_{0} . \tag{4}
\end{equation*}
$$

If the chains $\mathbf{x}^{(k)}, \ldots, \mathbf{x}^{(k+l-1)}$ are distinct and such that $\mathbf{x}^{(k+l)}=\mathbf{x}^{(k)}$, we say that they form a circuit of length l. Of course, determining perfect (resp. amicable, sociable) chains amounts to identifying all the circuits of length 1 (resp. $2, \geqslant 3$).

3 Exhaustive computation of perfect, amicable, and sociable chains

In the present section we calculate all the perfect, amicable, and sociable chains. These are given in Theorem 4 below.

Assume that $\mathbf{x}^{\left(k_{0}\right)} \in \mathcal{N}$ belongs to a circuit. By Proposition 3, we have $\mathbf{x}^{(k)} \in \mathcal{N}$ for all $k \geqslant k_{0}$. Furthermore, by Eq. (1) and (2), we have

$$
\begin{array}{cl}
\sum_{j \in N} x_{j}^{(k)}=n & \forall k \geqslant k_{0} \\
\sum_{j \in N} j x_{j}^{(k)}=n & \forall k \geqslant k_{0} \tag{6}
\end{array}
$$

These identities imply trivially

$$
\begin{equation*}
x_{0}^{(k)}=\sum_{j=1}^{n-1}(j-1) x_{j}^{(k)} \quad \forall k \geqslant k_{0} . \tag{7}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
x_{0}^{(k)} \geqslant 1 \quad \forall k \geqslant k_{0} . \tag{8}
\end{equation*}
$$

Indeed, if $x_{0}^{(k)}=0$ for some $k \geqslant k_{0}$ then, by Eq. (7), we have $x_{2}^{(k)}=\cdots=x_{n-1}^{(k)}=0$. By Eq. (5) we then have $x_{1}^{(k)}=n$, a contradiction.

Theorem 4. Let $\|$ denote a list, possibly empty, of zeroes.
The perfect chains are:

$$
\begin{align*}
& (1,2,1,0) \tag{9}\\
& (2,0,2,0) \tag{10}\\
& (2,1,2,0,0) \tag{11}\\
& (n-4,2,1 \| 1,0,0,0), \quad n \geqslant 7 \tag{12}
\end{align*}
$$

The pairs of amicable chains are:

$$
\begin{align*}
& (2,3,0,1,0,0), \quad(3,1,1,1,0,0) \tag{13}\\
& (n-4,3,0,0 \| 0,1,0,0), \quad(n-3,1,0,1 \| 1,0,0,0), \quad n \geqslant 8 . \tag{14}
\end{align*}
$$

The unique group of sociable chains is:

$$
\begin{equation*}
(3,3,0,0,1,0,0), \quad(4,1,0,2,0,0,0), \quad(4,1,1,0,1,0,0) \tag{15}
\end{equation*}
$$

There is no group of more than 3 sociable chains.
Proof. Let $\mathbf{x}^{\left(k_{0}\right)} \in \mathcal{N}$ belong to a circuit. Choose $k \geqslant k_{0}$ such that $x_{0}^{(k+1)} \leqslant x_{0}^{(k)}$. Such a k exists for otherwise $\mathbf{x}^{\left(k_{0}\right)}$ would not belong to a circuit.

Set $p:=x_{0}^{(k)}$. By Eq. (8), we have $1 \leqslant p \leqslant n-1$. Moreover, since $0 \in S_{p}\left(\mathbf{x}^{(k)}\right)$, we have

$$
x_{p}^{(k+1)}=\left|S_{p}\left(\mathbf{x}^{(k)}\right)\right| \geqslant 1 .
$$

Using Eq. (7), we have

$$
x_{0}^{(k+1)}=\sum_{j=1}^{n-1}(j-1) x_{j}^{(k+1)} \geqslant(p-1)+\sum_{\substack{j=1 \\ j \neq p}}^{n-1}(j-1) x_{j}^{(k+1)},
$$

and hence,

$$
\begin{equation*}
1 \geqslant 1+x_{0}^{(k+1)}-p \geqslant \sum_{\substack{j=1 \\ j \neq p}}^{n-1}(j-1) x_{j}^{(k+1)} \geqslant 0 \tag{16}
\end{equation*}
$$

implying $x_{0}^{(k+1)}=p$ or $x_{0}^{(k+1)}=p-1$. We now investigate these two cases separately.

1. Case $x_{0}^{(k+1)}=p$.

By Eq. (16), we have

$$
x_{j}^{(k+1)}=0 \quad \forall j \in N \backslash\{0,1,2, p\}
$$

(a) Case $p=1$.

Using Eq. (7) and (5), we obtain $x_{2}^{(k+1)}=1$ and $x_{1}^{(k+1)}=n-2$, so that

$$
\mathbf{x}^{(k+1)}=(1, n-2,1 \|)
$$

and $\left\{x_{1}^{(k)}, \ldots, x_{n-1}^{(k)}\right\}=\{2,1, \ldots, 1,0\}$. By Eq. (6), we have

$$
n=\sum_{j \in N} j x_{j}^{(k)} \geqslant 2+\sum_{j=2}^{n-2} j=\frac{1}{2}(n-2)(n-1)+1,
$$

that is $n=4$. This leads to the circuit (9).
(b) Case $p=2$.

Using Eq. (7) and (5), we obtain $x_{2}^{(k+1)}=2$ and $x_{1}^{(k+1)}=n-4$, so that

$$
\mathbf{x}^{(k+1)}=(2, n-4,2 \|)
$$

and $\left\{x_{1}^{(k)}, \ldots, x_{n-1}^{(k)}\right\}=\{2,1, \ldots, 1,0,0\}$. By Eq. (6), we have

$$
n=\sum_{j \in N} j x_{j}^{(k)} \geqslant 2+\sum_{j=2}^{n-3} j=\frac{1}{2}(n-3)(n-2)+1
$$

that is $n \in\{4,5\}$. This leads to the circuits (10) and (11).
(c) Case $p \geqslant 3$.

By Eq. (7), we have

$$
p=x_{2}^{(k+1)}+(p-1) x_{p}^{(k+1)}
$$

which implies $x_{2}^{(k+1)}=x_{p}^{(k+1)}=1$. By Eq. (5), we then have $x_{1}^{(k+1)}=n-p-2$, and hence

$$
\mathbf{x}^{(k+1)}=(\underbrace{p, n-p-2,1 \| 1}_{p+1} \|),
$$

with $n \geqslant p+2$.
i. Case $n=p+2(\geqslant 5)$.

We have

$$
\mathbf{x}^{(k+1)}=(n-2,0,1 \| 1,0), \quad \mathbf{x}^{(k+2)}=(n-3,2,0 \| 1,0)
$$

For $n=5$, we get the circuit (11). For $n \geqslant 6$, we have

$$
\mathbf{x}^{(k+3)}=(n-3,1,1 \| 1,0,0), \quad \mathbf{x}^{(k+4)}=(n-4,3,0 \| 1,0,0)
$$

For $n=6, n=7$ and $n \geqslant 8$, we get the circuits (13), (15) and (14) respectively.
ii. Case $n=p+3(\geqslant 6)$.

We have

$$
\mathbf{x}^{(k+1)}=(n-3,1,1 \| 1,0,0)
$$

which leads to a previous case.
iii. Case $n=p+4(\geqslant 7)$.

We have

$$
\mathbf{x}^{(k+1)}=(n-4,2,1 \| 1,0,0,0)
$$

which leads to the circuit (12).
iv. Case $n=p+5(\geqslant 8)$.

We have

$$
\mathbf{x}^{(k+1)}=(n-5,3,1 \| 1,0,0,0,0)
$$

For $n=8$, we get the circuit (14). For $n \geqslant 9$, we have

$$
\mathbf{x}^{(k+2)}=(n-4,2,0,1 \| 1,0,0,0,0)
$$

retrieving the circuit (12).
v. Case $n=p+r(\geqslant 3+r)$, with $r \geqslant 6$.

We have

$$
\mathbf{x}^{(k+1)}=(\underbrace{n-r, r-2,1 \| 1}_{n-r+1} \|) .
$$

If $n-r<r-2$ then

$$
\mathbf{x}^{(k+2)}=(\overbrace{r-1}^{n-r+1} \underbrace{n-1}_{r, 2,0 \| 1} \|)
$$

which leads to a previous case.
If $n-r=r-2$ then

$$
\mathbf{x}^{(k+2)}=(\underbrace{n-4,2,0 \| 2}_{n-r+1} \|), \quad \mathbf{x}^{(k+3)}=(n-3,0,2 \| 1,0,0,0),
$$

which leads to a previous case.
If $n-r>r-2$ then

$$
\mathbf{x}^{(k+2)}=(\underbrace{n-4,2,0 \| 1}_{n-r+1} \| 11)
$$

which leads to a previous case.
2. Case $x_{0}^{(k+1)}=p-1$.

By Eq. (16), we have

$$
x_{j}^{(k+1)}=0 \quad \forall j \in N \backslash\{0,1, p\}
$$

with $p=x_{0}^{(k+1)}+1 \geqslant 2$. Using Eq. (5) and (7), we obtain $x_{p}^{(k+1)}=1$ and $x_{1}^{(k+1)}=n-p$, so that

$$
\mathbf{x}^{(k+1)}=(\underbrace{p-1, n-p \| 1}_{p+1} \|) .
$$

(a) Case $p=2$.

We have

$$
\mathbf{x}^{(k+1)}=(1, n-2,1 \|),
$$

that is a case previously encountered.
(b) Case $p \geqslant 3$.
i. Case $n=p+1(\geqslant 4)$.

We have

$$
\mathbf{x}^{(k+1)}=(n-2,1 \| 1),
$$

which leads to a previous case.
ii. Case $n=p+r(\geqslant 3+r)$, with $r \geqslant 2$.

We have

$$
\mathbf{x}^{(k+1)}=(\underbrace{n-r-1, r \| 1}_{n-r+1} \|) .
$$

If $n-r-1<r$ then

$$
\mathbf{x}^{(k+2)}=(\underbrace{n-3,1 \| 1}_{r+1}\|1\|)
$$

which leads to a previous case.
If $n-r-1=r$ then

$$
\mathbf{x}^{(k+2)}=(\underbrace{n-3,1 \| 2}_{n-r} \|),
$$

which leads to a previous case.
If $n-r-1>r$ then

$$
\mathbf{x}^{(k+2)}=(\overbrace{\underbrace{n-3,1 \| 1}_{n-r+1} \| 1}^{r+1} \|),
$$

which leads to a previous case.
Theorem 4 is now proved.
Corollary 5. Any circuit of length $\geqslant 2$ contains the chain $(n-4,3 \| 1,0,0)$.
Before closing this section, we present the following open problem. For any $\mathrm{x} \in \mathcal{N}$, we denote by $\mathcal{C}(\mathbf{x})$ the circuit obtained from the infinite sequence $\left(\mathbf{x}^{(k)}\right)_{k \in \mathbb{N}}$. The question then arises of determining the length of the non-periodic part of this sequence; that is, the number of elements that do not belong to $\mathcal{C}(\mathbf{x})$:

$$
\Psi(\mathbf{x}):=\min \left\{k \in \mathbb{N} \mid \mathbf{x}^{(k)} \in \mathcal{C}(\mathbf{x})\right\} .
$$

Interestingly enough, the following sequence:

$$
\psi(n):=\max _{\mathbf{x} \in \mathcal{N}} \Psi(\mathbf{x}), \quad n \geqslant 4
$$

has a rather strange behavior. Its first values (for $4 \leqslant n \leqslant 44$) are: $3,4,7,4,7,7,7,6,7$, $6,7,7,7,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8$.

We conjecture that the elements of this sequence can be arbitrary large; that is, for any $M \geqslant 3$ there exists $n \geqslant 4$ such that $\psi(n) \geqslant M$.

4 Range of the counting operator and its iterates

For any $k \in \mathbb{N}$, let $s^{(k)}$ denote the k th iterate of the operator s. It is clear that we have

$$
s^{(k+1)}(\mathcal{N}) \subseteq s^{(k)}(\mathcal{N}), \quad k \in \mathbb{N}
$$

In this final section we intend to describe the subset $s^{(k)}(\mathcal{N})$ for each $k \in \mathbb{N}$. The case $k=1$ is dealt with in the next proposition.

Proposition 6. We have

$$
s(\mathcal{N})=\left\{\mathbf{x} \in \mathcal{N} \mid \sum_{j \in N} x_{j}=n\right\} .
$$

Proof. (\subseteq) Follows from Eq. (1).
(\supseteq) Let $\mathbf{x} \in \mathcal{N}$ such that $\sum_{j \in N} x_{j}=n$. Setting

$$
\mathbf{z}:=(\underbrace{0, \ldots, 0}_{x_{0}}, \underbrace{1, \ldots, 1}_{x_{1}}, \ldots, \underbrace{n-1, \ldots, n-1}_{x_{n-1}}),
$$

we have $\mathbf{z} \in \mathcal{N}$ and $s(\mathbf{z})=\mathbf{x}$, and hence $\mathbf{x} \in s(\mathcal{N})$.

Let the operator $r: s(\mathcal{N}) \rightarrow \mathcal{N}$ be defined by

$$
r(\mathbf{x})=(\underbrace{0, \ldots, 0}_{x_{0}}, \underbrace{1, \ldots, 1}_{x_{1}}, \ldots, \underbrace{n-1, \ldots, n-1}_{x_{n-1}}) .
$$

Let Π_{N} be the set of all the permutations on N and define the operator $q: \mathcal{N} \rightarrow \mathcal{N}$ by

$$
q(\mathbf{x})=\left(x_{\nu(0)}, \ldots, x_{\nu(n-1)}\right),
$$

where $\nu \in \Pi_{N}$ is such that $x_{\nu(0)} \leqslant \cdots \leqslant x_{\nu(n-1)}$. One can easily see that $s \circ r=\mathrm{id}$ and $r \circ s=q$, thus showing that s is not invertible.

For any $\pi \in \Pi_{N}$, we define $r_{\pi}: s(\mathcal{N}) \rightarrow \mathcal{N}$ by

$$
r_{\pi}(\mathbf{x})=\left(r(\mathbf{x})_{\pi(0)}, \ldots, r(\mathbf{x})_{\pi(n-1)}\right) .
$$

For any $\mathbf{x} \in s(\mathcal{N})$, we clearly have $s^{(-1)}(\mathbf{x})=\left\{r_{\pi}(\mathbf{x}) \mid \pi \in \Pi_{N}\right\}$. Moreover, we have the following result.

Proposition 7. For any $k \in \mathbb{N}$, we have

$$
s^{(k+1)}(\mathcal{N})=\left\{\mathbf{x} \in s^{(k)}(\mathcal{N}) \mid \exists \pi_{1}, \ldots, \pi_{k} \in \Pi_{N}: \sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{k}}\right)(\mathbf{x})_{j}=n\right\} .
$$

Proof. We proceed by induction over $k \in \mathbb{N}$. By Proposition 6, the result holds for $k=0$. Assume that it also holds for $k=0, \ldots, K-1$, with a given $K \geqslant 1$. We now show that it still holds for $k=K$.
(\subseteq) Let $\mathbf{x} \in s^{(K+1)}(\mathcal{N})$. Take $\pi_{K} \in \Pi_{N}$ and set $\mathbf{z}:=r_{\pi_{K}}(\mathbf{x})$. We have $\mathbf{x}=s(\mathbf{z})$ and hence $\mathbf{z} \in s^{(K)}(\mathcal{N})$. By induction hypothesis, there exist $\pi_{1}, \ldots, \pi_{K-1} \in \Pi_{N}$ such that

$$
\sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{K}}\right)(\mathbf{x})_{j}=\sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{K-1}}\right)(\mathbf{z})_{j}=n
$$

(\supseteq) Let $\mathbf{x} \in s^{(K)}(\mathcal{N})$ and assume that there exist $\pi_{1}, \ldots, \pi_{K} \in \Pi_{N}$ such that

$$
\sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{K}}\right)(\mathbf{x})_{j}=n
$$

We only have to prove that $\mathbf{x} \in\left\{s(\mathbf{z}) \mid \mathbf{z} \in s^{(K)}(\mathcal{N})\right\}$. Set $\mathbf{z}:=r_{\pi_{K}}(\mathbf{x})$. We have $\mathbf{x}=s(\mathbf{z})$ and hence $\mathbf{z} \in s^{(K-1)}(\mathcal{N})$. Moreover, we have

$$
\sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{K-1}}\right)(\mathbf{z})_{j}=\sum_{j \in N}\left(r_{\pi_{1}} \circ \cdots \circ r_{\pi_{K}}\right)(\mathbf{x})_{j}=n
$$

and hence $\mathbf{z} \in s^{(K)}(\mathcal{N})$ by induction hypothesis.
The case $k=2$ is particularly interesting. One can easily see that, for any $\mathbf{x} \in \mathcal{N}$ and any $j \in N, s^{(2)}(\mathbf{x})_{j}$ represents the number of distinct values occuring j times in $\left\{x_{0}, \ldots, x_{n-1}\right\}$. Moreover, we have the following proposition.

Proposition 8. We have

$$
s^{(2)}(\mathcal{N})=\left\{\mathbf{x} \in s(\mathcal{N}) \mid \sum_{j \in N} j x_{j}=n\right\} .
$$

Proof. For any $\pi \in \Pi_{N}$, we have

$$
\sum_{j \in N} r_{\pi}(\mathbf{x})_{j}=\sum_{j \in N} j x_{j} .
$$

We then conclude by Proposition 7.
Now, from the identity

$$
\left|\left\{\mathbf{x} \in \mathbb{N}^{n} \mid \sum_{j=1}^{n} j x_{j}=n\right\}\right|=P(n)
$$

where $P(n)$ is the number of unrestricted partitions of the integer n (see e.g. [1]), we can easily show that $\left|s^{(2)}(\mathcal{N})\right|=P(n)-2$. Similarly, from the well-known identity

$$
\left|\left\{\mathbf{x} \in \mathbb{N}^{n} \mid \sum_{j=1}^{n} x_{j}=n\right\}\right|=\binom{2 n-1}{n}
$$

we can readily see that $|s(\mathcal{N})|=\binom{2 n-1}{n}-n-1$.
Finally, from the identities $r \circ s=q$ and $r \circ s^{(2)}=q \circ s$, we clearly have

$$
\begin{aligned}
r(s(\mathcal{N})) & =\left\{\mathbf{x} \in \mathcal{N} \mid x_{0} \leqslant \cdots \leqslant x_{n-1}\right\}, \\
r\left(s^{(2)}(\mathcal{N})\right) & =\left\{\mathbf{x} \in \mathcal{N} \mid \sum_{j \in N} x_{j}=n \text { and } x_{0} \leqslant \cdots \leqslant x_{n-1}\right\},
\end{aligned}
$$

and, since r is an injection, we have

$$
|r(s(\mathcal{N}))|=|s(\mathcal{N})| \quad \text { and } \quad\left|r\left(s^{(2)}(\mathcal{N})\right)\right|=\left|s^{(2)}(\mathcal{N})\right| .
$$

References

[1] M. Abramowitz and I.A. Stegun (Eds.), "Unrestricted partitions", §24.2.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, p. 825, 1972.
[2] H. Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970) 423-429.
[3] S. Kahan, A curious sequence, Math. Gaz. 48 (5) (1975) 290-292.
[4] M. McKay and M.S. Waterman, Self-descriptive strings, Math. Gaz. 66 (435) (1982) 1-4.
[5] L. Sallows and V. Eijkhout, Co-descriptive strings, Math. Gaz. 70 (451) (1986) 1-10.
[6] J. Sauerberg and L. Shu, The long and the short on counting sequences, Amer. Math. Monthly 104 (4) (1997) 306-317.
[7] H.J.J. te Riele, Computation of all amicable pairs below 10^{10}, Math. Comp. 47 (1986) 361-368.

[^0]: *As this paper was accepted for publication, the author found out that the main problem (Theorem 4) was already addressed and solved by Sallows and Eijkhout [5]; see also [3, 4, 6].

