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Introduction

In many domains we are faced with the problem of aggregating a collection of numerical readings
to obtain a so-called mean or typical value. The main object of this dissertation deals with
the aggregation procedures used in multicriteria decision making problems. In such problems,
values to be aggregated are gathered in a score table and represent evaluations of alternatives
according to various criteria. Aggregation operators are proposed to obtain a global score for
each alternative taking into account the given criteria. These global scores are then exploited to
establish a recommendation or prescription.

We do not intend to cover all the range of multicriteria decision problems, but merely to
address the aggregation step. It is known that for most of the methodologies, an aggregation
step exists, but the quantities to be aggregated may differ (mainly scores, degrees of satisfaction,
preferences).

The main contribution of this thesis is the taking into consideration of interaction between
criteria. Until recently, criteria were supposed to be independent and the aggregation operator
which was often used was the weighted arithmetic mean, with all its well-known drawbacks. Such
an operator is not suitable when interacting criteria are considered. However, this problem has
been overcome by the contribution of fuzzy integrals, such as the Choquet and Sugeno integrals.
We study in detail both of these families, as well as some others.

In Chapter 1 we give some formal definitions related to the problem of aggregation. In
particular, the concept of aggregation operator (extended or not) is presented. As privileged
examples, the averaging operators are studied.

Next, we introduce briefly the general background of multicriteria decision making, especially
the aggregation phase with which we deal here.

In Chapter 2 we present a set of properties that could be required for an aggregation operator.
Actually, in deciding on the form of the aggregation operator a number of properties should be
associated with this operation. These properties are generally based on natural considerations
corresponding to the idea of an aggregated value. Three categories of properties are presented.
The first one contains some elementary properties such as the increasing monotonicity. The
second one is devoted to stability properties related to the scales used to define the input values.
The third one presents more technical conditions about the way of constructing the aggregated
value.

Chapter 3 considers some particular families of aggregation operators, as well as axiomatic
characterizations of these families on the basis of properties introduced in Chapter 2. We start
by presenting the theory of quasi-arithmetic means, which is built from either the so-called
bisymmetry equation or the decomposability condition. We extend this family by dropping the
condition of strict monotonicity. We then present the theory of associative functions, in which we
generalize some characterizations. We also study operators that are suitable for values defined
on specific scale types, especially on interval scales.

In Chapter 4 we discuss the necessity to use the concept of fuzzy measure and integral to
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deal with aggregation of interactive criteria. Two main classes of fuzzy integrals are investigated
and characterized: the Choquet and Sugeno integrals. Subfamilies of these integrals are also well
studied, and the intersection of both families is described.

Chapter 5 is concerned with formal definitions of importance indices of criteria, as well as
interaction indices between combinations of criteria. Such indices, like the Shapley interaction
index, come from a connection with game theory and allow to have a best understanding of
the interaction phenomena between criteria in multicriteria decision making problems. It is also
shown that these interaction indices, as set functions, form equivalent representations of the
fuzzy measure that weight the criteria.

In Chapter 6 we investigate the aggregation problem of interactive criteria when the input
data (scores) are cardinal in nature. The use of the Choquet integral as an aggregation operator
is justified in this context. In addition to the importance and interaction indices presented
in Chapter 5, several concepts, such as veto and favor degrees and dispersion measure, are
introduced to point out the behavioral properties of the Choquet integral and to facilitate the
interpretation of the associated fuzzy measure. The inverse problem of identification of the fuzzy
measure by means of such semantical considerations and learning data is also approached.

The difficult problem of aggregating values defined on ordinal scales is also discussed, espe-
cially through the use of the Sugeno integral, which can be viewed as the qualitative counterpart
of the Choquet integral.

Chapter 7 deals with the problem of approximation of a set function by another one having
a simpler form. Such an operation is also proposed for the particular case of fuzzy measures and
Choquet integrals. The approximation of the Choquet integral by a weighted arithmetic mean
is treated in detail.
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Chapter 1

The aggregation problem

1.1 Basic definitions

Aggregation refers to the process of combining several numerical values into a single one, so that
the final result of aggregation takes into account in a given manner all the individual values. Such
an operation is used in many well-known disciplines such as statistical or economic measurement.

For instance, suppose that several individuals form quantifiable judgements either about a
measure of an object (weight, length, area, height, volume, importance or other attributes) or
about a ratio of two such measures (how much heavier, longer, larger, taller, more important,
preferable, more meritorious etc. one object is than another). In order to reach a consensus
on these judgements, classical synthesizing functions have been proposed: arithmetic mean,
geometric mean, median and many others.

An issue of considerable interest in many areas is the aggregation of multiple criteria. In addi-
tion to the obvious case of decision making this problem arises in pattern recognition, information
retrieval, expert systems, and neural networks.

In decision making, values to be aggregated are typically preference or satisfaction degrees.
A preference degree tells to what extent an alternative a is preferred to an alternative b, and
thus is a relative appraisal. By contrast, a satisfaction degree expresses to what extent a given
alternative is satisfactory with respect to a given criterion. It is an absolute appraisal. We
elaborate on this issue in Section 1.3.

We assume that the values to be aggregated belong to numerical scales, which can be of
ordinal or cardinal type. On an ordinal scale, numbers have no other meaning that defining an
order relation on the scale, and distances or differences between values cannot be interpreted. On
a cardinal scale, distances between values are not quite arbitrary. Actually, there are several kinds
of cardinal scales: on an interval scale, where the position of the zero is a matter of convention,
values are defined up to a positive linear transformation, i.e. φ(x) = r x + s, with r > 0 (e.g.
temperatures expressed on the Celsius scale); on a ratio scale, where a true zero exists, values
are defined up to a similarity transformation, i.e. φ(x) = r x, with r > 0 (e.g. lengths expressed
in inches). We will come back on these measurement aspects in Section 2.2.

Once values are defined we can aggregate them and obtain a new value. But this can be
done in many different ways according to what is expected from the aggregation operation, what
is the nature of the values to be aggregated, and what scale types have been used. Thus, for a
given problem, any aggregation operator should not be used. In other terms, the use of a given
aggregation operator should always be justified.

1
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Now, let us introduce the concept of aggregation operator in a formal way. We make a
distinction between aggregation operators having one definite number of arguments and extended
aggregation operators defined for all number of arguments.

Let E, F be non-empty real intervals, finite or infinite. E denotes the definition set of the
values to be aggregated, and F denotes the set of the possible results of the aggregation. Usually,
E is a closed interval [a, b], or an open interval ]a, b[, or the real line IR itself. We also denote by
E◦ the interior of E, that is the corresponding open set.

Definition 1.1.1 An aggregation operator is a function M (n) : En → F , where n ∈ IN0.

For example, the arithmetic mean as an aggregation operator is defined by

AM(n)(x1, . . . , xn) =
1
n

n∑

i=1

xi.

The integer n represents the number of values to be aggregated. When no confusion can arise,
the aggregation operators will be written M instead of M (n).

Definition 1.1.2 An extended aggregation operator is a sequence M = (M (n))n∈IN0 , the n-th
element of which is an aggregation operator M (n) : En → F .

For example, the arithmetic mean as an extended aggregation operator is the sequence
(AM(n))n∈IN0 .

Of course, an extended aggregation operator is a multi-dimensional operator, which can be
viewed as a mapping

M :
⋃

n≥1

En → F.

For any n ∈ IN0 and any x ∈ En, we then have M(x) = M (n)(x).

We let An(E, F ) denote the set of all aggregation operators from En to F . Also, A(E, F )
denotes the set of all extended aggregation operators whose n-th element is in An(E, F ).

We will also use the notation Nn for the set {1, . . . , n}. When no ambiguity can arise, we
will write N instead of Nn.

In order to avoid heavy notations, we also introduce the following terminology. It will be
used all along this dissertation.

• For all k ∈ IN0 and all x ∈ E, we set k ¯ x := x, . . . , x (k times). For instance,

M(3¯ x, 2¯ y) = M(x, x, x, y, y).

• For all S, T ⊆ N , set difference of S and T is denoted by S \ T . Cardinality of sets
S, T, ... will be denoted whenever possible by corresponding lower cases s, t, ..., otherwise
by the standard notation |S|, |T |, .... Moreover, we will often omit braces for singletons,
e.g. writing v(i), S ∪ i instead of v({i}), S ∪ {i}. Also, for pairs, triples, we will write ij,
ijk instead of {i, j}, {i, j, k}, as for example S ∪ ijk.

• For any subset S ⊆ N , e
(n)
S is the characteristic vector (or incidence vector) of S, i.e. the

vector of {0, 1}n whose i-th component is 1 if and only if i ∈ S. We also introduce the
complementary characteristic vector of S ⊆ N by e

(n)
S = e

(n)
N\S .

When there is no fear of ambiguity, the superscript (n) will be omitted.
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• For any n ∈ IN0, we let Πn denote the set of all permutations of Nn. For any π ∈ Πn and
any S ⊆ N , we set π(S) := {π(i) | i ∈ S}.

• ∧, ∨ denote respectively the minimum and maximum operations.

• Given a vector (x1, . . . , xn) and a permutation π ∈ Πn, the notation [x1, . . . , xn]π means
xπ(1), . . . , xπ(n), that is, the permutation π of the indices. Moreover, we let (·) denote the
particular permutation which arranges all the elements x1, . . . , xn by increasing values:
that is, x(1) ≤ . . . ≤ x(n).

The so-called median of an odd number of values x1, . . . , x2k−1 is simply defined by

median(x1, . . . , x2k−1) := x(k).

We now give a small list of well-known aggregation operators. Special aggregation operators
will be developed in subsequent chapters. In the definitions below, x will stand for (x1, . . . , xn).

• The arithmetic mean operator AM is defined by

AM(x) =
1
n

n∑

i=1

xi. (1.1)

• For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

n∑

i=1

ωi = 1,

the weighted arithmetic mean operator WAMω and the ordered weighted averaging operator
OWAω associated to ω, are respectively defined by

WAMω(x) =
n∑

i=1

ωi xi (1.2)

OWAω(x) =
n∑

i=1

ωi x(i). (1.3)

• For any k ∈ N , the projection operator Pk and the order statistic operator OSk associated
to the k-th argument, are respectively defined by

Pk(x) = xk (1.4)
OSk(x) = x(k). (1.5)

• For any non-empty subset S ⊆ N , the partial minimum operator minS and the partial
maximum operator maxS associated to S, are respectively defined by

minS(x) = min
i∈S

xi (1.6)

maxS(x) = max
i∈S

xi. (1.7)

Since means are the most common aggregation operators, it is worth studying them in details.
The next section deals with this issue.
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1.2 The concept of mean

A considerable amount of literature about the concept of mean (or average) and the properties of
several means (like the median, the arithmetic mean, the geometric mean, the root-power mean,
the harmonic mean, etc.) has been already produced in the 19th century and has often treated
the significance and the interpretation of these specific aggregation operators.

Cauchy [23] considered in 1821 the mean of n independent variables x1, . . . , xn as a function
M(x1, . . . , xn) which should be internal to the set of xi values:

min{x1, . . . , xn} ≤ M(x1, . . . , xn) ≤ max{x1, . . . , xn}. (1.8)

Such functions are also known in literature as compensative functions (see Section 2.1.5).

The concept of mean as a numerical equalizer is usually ascribed to Chisini [26], who gives
in 1929 the following definition (p. 108):

Let y = g(x1, . . . , xn) be a function of n independent variables x1, . . . , xn representing
homogeneous quantities. A mean of x1, . . . , xn with respect to the function g is a
number M such that, if each of x1, . . . , xn is replaced by M , the function value is
unchanged, that is,

g(M, . . . , M) = g(x1, . . . , xn).

When g is considered as the sum, the product, the sum of squares, the sum of inverses, the sum
of exponentials, or is proportional to [(

∑
i x

2
i )/(

∑
i xi)]1/2 as for the duration of oscillations of a

composed pendulum of n elements of same weights, the solution of Chisini’s equation corresponds
respectively to the arithmetic mean, the geometric mean, the quadratic mean, the harmonic
mean, the exponential mean and the antiharmonic mean, which is defined as

M(x1, . . . , xn) =
(∑

i

x2
i

)
/

(∑

i

xi

)
.

Unfortunately, as noted by de Finetti [34, p. 378] in 1931, Chisini’s definition is so general
that it does not even imply that the “mean” (provided there exists a real and unique solution to
the above equation) fulfils the Cauchy’s internality property. The following quote from Ricci [150,
p. 39] could be considered as another possible criticism to Chisini’s view :

... when all values become equal, the mean equals any of them too. The inverse
proposition is not true. If a function of several variables takes their common value
when all variables coincide, this is not sufficient evidence for calling it a mean. For
example, the function

g(x1, x2, . . . , xn) = xn + (xn − x1) + (xn − x2) + · · ·+ (xn − xn−1)

equals xn when x1 = · · · = xn, but it is even greater than xn as long as xn is greater
than every other variable.

In 1930, Kolmogoroff [107] and Nagumo [136] considered that the mean should be more than
just a Cauchy mean or a numerical equalizer. They defined a mean value to be an infinite
sequence of continuous, symmetric and strictly increasing (in each variable) real functions

M (1)(x1) = x1, M
(2)(x1, x2), . . . ,M (n)(x1, . . . , xn), . . .
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satisfying the idempotence law: M (n)(x, . . . , x) = x for all n and all x, and a certain kind of
associative law:

M (k)(x1, . . . , xk) = x ⇒ M (n)(x1, . . . , xk, xk+1, . . . , xn) = M (n)(x, . . . , x, xk+1, . . . , xn) (1.9)

for every natural integer k ≤ n. They proved, independently of each other, that these conditions
are necessary and sufficient for the quasi-arithmeticity of the mean, that is, for the existence of
a continuous strictly monotonic function f such that M (n) may be written in the form

M (n)(x1, . . . , xn) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(n ∈ IN0). (1.10)

The quasi-arithmetic means (1.10) comprise most of the algebraic means of common use, and
allow one to specify f in relation to operational conditioning (see Section 3.1.1). Some means
however do not belong to this family: de Finetti [34, p. 380] observed that the antiharmonic
mean is not increasing in each variable and that the median is not associative in the sense of
(1.9).

The above properties defining a mean value seem to be natural enough. For instance, one
can readily see that, for increasing means, the idempotence property is equivalent to Cauchy’s
internality (1.8), and both are accepted by all statisticians as requisites for means.

Note that Fodor and Marichal [67] generalized the Kolmogoroff-Nagumo’s result by relaxing
the condition that the means be strictly increasing, requiring only that they be increasing (see
Section 3.2.2). The family obtained, which has a rather intricate structure, naturally includes
the min and max operations.

Associativity of means (1.9) has been introduced first in 1926 by Bemporad [18, p. 87] in a
characterization of the arithmetic mean. Under idempotence, this condition seems more natural,
for it becomes equivalent to

M (k)(x1, . . . , xk) = M (k)(x′1, . . . , x
′
k)

⇓
M (n)(x1, . . . , xk, xk+1, . . . , xn) = M (n)(x′1, . . . , x

′
k, xk+1, . . . , xn)

which says that the mean does not change when altering some values without modifying their
partial mean.

Notice that another definition of mean was given by Grabisch [79]: a mean operator (or aver-
aging operator) is a symmetric, increasing and idempotent real function. As a consequence, such
a function lies between min and max. Dubois and Prade [44, 46] requested also the continuity,
and the fact that min and max are excluded from the family.

1.3 Aggregation in multicriteria decision making

As announced in the introduction, we study the aggregation problem in the framework of multi-
criteria decision making (MCDM). The purpose of this section is to present this setting in more
details.

There are actually two main approaches of multicriteria decision making, namely multiat-
tribute utility theory (see e.g. [105]), and the preference modelling approach (see e.g. [70]). In
multiattribute utility theory, to each alternative is given an absolute score with respect to each
criterion, and the global score, taking into account all the criteria, is obtained by aggregating all
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the partial scores. This is called the cardinal approach. By contrast, in preference modelling, a
preference degree is assigned to every ordered pair of alternatives, with respect to each criterion.
Then, a global preference degree is obtained by aggregating all the partial preference degrees.
This is the ordinal or relational approach.

Whatever the approach to be taken, a necessary step is aggregation, and quantities to be
aggregated are either scores or preference degrees. In this dissertation, we will often refer to the
cardinal approach for the sake of simplicity, but this is not limitative.

1.3.1 Cardinal approach

Assume A = {a, b, c, . . .} is a non-empty set of alternatives or acts, among which the decision
maker must choose. Such alternatives could represent possible solutions to a problem. Since our
major concern here is the fomulation of aggregation operators rather than computational issues
we shall assume that A is finite. Assume we have a collection of goals or criteria N = {1, . . . , n}
we desire to satisfy. Each criterion i is represented by a mapping gi from the set of alternatives
A to a measurement scale Ei ⊆ IR. The value gi(a) is then called the partial score of a with
respect to criterion i.

In most applications, it is assumed that each Ei is the unit interval1 [0, 1]. In this case,
gi(a) can be viewed as the degree to which the alternative a satisfies criterion i, or a degree
of similarity between a and some ideal alternative according to criterion i. In the framework
introduced by Bellman and Zadeh [17], the mapping gi is viewed as the membership function
of the fuzzy set [199] of alternatives that meet criterion i (see also Dubois and Prade [44] and
Dubois and Koning [42]).

We do not address here the way of constructing the mappings gi, and we suppose that the
scores are given beforehand.

Of course the criteria have not always the same importance. It is then useful to define a
weight ωi associated to each criterion i. Such a weight represents the strength or importance of
this criterion.

When criteria represent a panel of experts, the score gi(a) is then regarded as the rating
of alternative a by expert i. Usually, all the experts have the same weight, but in certain
applications each expert can have a coefficient of importance. Montero [127] then proposed to
define the set of experts as a fuzzy set with membership function ω : N → [0, 1]. Given an
individual i ∈ N , the value ωi may be interpreted as the degree in which that individual is really
a decision maker relative to the decision problem, or it can be viewed as the power (degree of
importance, competence or ability) of his opinion.

Our central interest is the problem of constructing a single comprehensive criterion from
the given criteria. The word comprehensive refers to the fact that the criterion resulting from
combination is supposed to be representative of all the original criteria, and reflects the decision
maker’s attitude.

Formally, each alternative a ∈ A can be assimilated with the vector of its partial scores,
called profile2

a ∈ A ←→ (g1(a), . . . , gn(a)) ∈ E1 × · · · ×En.

1This is not restrictive if we consider that scores are defined up to a positive linear transformation.
2Removing some alternatives, if necessary, we can assume that the profiles are all distinct.
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From such a profile, one can compute a global score M(g1(a), . . . , gn(a)) of the alternative a by
means of an aggregation operator M which takes into account the weights associated to criteria.

Implicit in this formulation is the assumption that the global score is calculated in a pointwise
manner, i.e. it only depends upon the evaluations of the gi’s at a. This assumption ensures us of
satisfying the independence of irrelevant alternatives condition [14, 114]: modifying some profiles
except that of alternative a does not alter the global score of a.

It is also assumed that the aggregated value only depends on individual scores and not on
alternatives themselves. This means that the operator M is neutral with respect to alternatives:

gi(a) = gi(b), ∀i ⇒ M(g1(a), . . . , gn(a)) = M(g1(b), . . . , gn(b)).

Particularly, the same aggregation procedure should be used for each alternative.

For the sake of convenience, we denote the partial score gi(a) by xa
i . Moreover, for any

S ⊆ N , we set ES := ×i∈SEi. Thus, an alternative a can be represented by a n-dimensional
profile xa = (xa

1, . . . , x
a
n) in EN . Table 1.1 shows a typical presentation of a multicriteria decision

problem.

criterion 1 · · · criterion n global score
alternative a xa

1 · · · xa
n M(xa

1, . . . , x
a
n)

alternative b xb
1 · · · xb

n M(xb
1, . . . , x

b
n)

...
...

...
...

Table 1.1: Presentation of a multicriteria decison making problem

Once the global scores are computed, they can be used to rank the alternatives or select an
alternative that best satisfies the given criteria. For instance the optimal alternative a∗ ∈ A
could be selected such that

M(xa∗) = max
a∈A

M(xa).

To summarize, multicriteria decision making procedures consist of three main steps (phases)
as follows.

1. Modelling phase

In this phase we look for appropriate models for constructing the partial scores xa
i and also

for determining the importance of each criterion (i.e., the weights).

2. Aggregation phase

In this step we try to find a unified (global) score for each alternative, on the basis of the
partial scores and the weights.

3. Exploitation phase

In this phase we transform the global information about the alternatives either into a
complete ranking of the elements in A, or into a global choice of the best alternatives in A.

In the classical multiattribute utility (MAUT) model [62, 105], it is assumed that the prefer-
ences over A of the decision maker are expressed by a total preorder º (i.e., a strongly complete
and transitive binary relation). Then the basic idea of MAUT consists in assuming the existence
of a so-called utility function u : A → IR which represents º, that is such that

a Â b ⇐⇒ u(a) > u(b). (1.11)
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Using such a preference model to establish a recommendation (choice of an alternative, rank-
ing of all alternatives) in a decision aid study is straightforward and the main task of the analyst
is to assess u. For this purpose, it is suggested to consider one-dimensional utility functions3

ui : Ei → IR on each criterion/attribute, and then to aggregate them by a suitable operator M :

u(a) = M(u1(xa
i ), . . . , un(xa

n)), a ∈ A, (1.12)

so that the function u so constructed verifies (1.11). The numbers ui(xa
i ) are real numbers, either

positive or negative, but it is known that the ui are defined up to a positive linear transformation.
Thus we can consider that the ui range in the unit interval [0, 1] without loss of generality. This
is a necessary assumption when dealing with operators defined on [0, 1]n.

Under some well-known conditions (see e.g., Krantz et al. [108] or Wakker [186]), u can be
obtained in an additive manner, that is

u(a) =
n∑

i=1

ui(xa
i ), a ∈ A. (1.13)

In this case, modelling preferences amounts to assess the partial utilities ui. Several techniques
have been proposed to do so (see Keeney and Raiffa [105] or von Winterfeldt and Edwards [185]).

A very important notion in multicriteria decision making, closely related to the existence of
an additive utility function, is that of preferential independence (see e.g. [186]). To introduce
this concept, we note that through the natural identification of alternatives with their profiles in
EN , the preference relation º on A can be considered as a preference relation on EN .

Definition 1.3.1 The subset S of criteria is said to be preferentially independent of N \ S
if, for all xS , yS ∈ ES and all xN\S , zN\S ∈ EN\S , we have

(xS , xN\S) º (yS , xN\S) ⇐⇒ (xS , zN\S) º (yS , zN\S). (1.14)

The whole set of criteria N is said to be mutually preferentially independent if S is preferentially
independent of N \ S for every S ⊆ N .

Roughly speaking, the preference of (xS , xN\S) over (yS , xN\S) is not influenced by the values
xN\S . For some problems this principle might be violated as it can be seen in the following
example.

Example 1.3.1 Let us consider a decision problem involving 4 cars, evaluated on 3 criteria:
price, consumption and comfort.

criterion 1 (price) criterion 2 (consumption) criterion 3 (comfort)
car 1 10.000 Euro 10 `/100 km very good
car 2 10.000 Euro 9 `/100 km good
car 3 30.000 Euro 10 `/100 km very good
car 4 30.000 Euro 9 `/100 km good

Suppose the consumer (decision maker) has the following preferences:

car 2 º car 1 and car 3 º car 4.

The reason may be that, as price increases, so does the importance of comfort. In this case,
criteria 2 and 3 are not preferentially independent of criterion 1.

3These utility functions are used only to express the partial scores in a same measurement scale.
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It is known [62, 165] that the mutual preferential independence among the criteria (1.14) is
a necessary condition (but not sufficient) for a utility function to be additive, that is of the form
(1.13). In other terms, in case of violation of this property, no additive utility function can model
the preferences of the decision maker. We will see in Chapter 4 that the concept of fuzzy integral
allows to overcome this problem.

1.3.2 Relational approach

The relational approach consists in comparing alternatives two by two, and expressing with a
number the degree of preference of one alternative over the other, with respect to a criterion.
These numbers are very often expressed by the help of fuzzy (valued) preference relations.

More formally, let A be a given set of alternatives and R1, R2, . . . , Rn be fuzzy binary relations
on A representing n criteria. That is, for each criterion i ∈ N , Ri is a function from A × A to
[0, 1] such that Ri(a, b) reflects the degree to which a is declared to be not worse than b for
criterion i. Thus Ri(a, b) is a relative evaluation.

Such an approach has been developed essentially by Roy [157, 158] (ELECTRE methods)
with ordinary crisp relations, and then by Blin [21], Saaty [159], Fodor and Roubens [69, 70]
with fuzzy preference relations.

The modelling phase consists in looking for appropriate models for fuzzy monocriterion rela-
tion Ri and also for determining the weight ωi of each criterion i.

All these preference relations are then aggregated to take into account all the criteria. We
then look for an aggregation operator M ∈ An([0, 1], IR) so that the global relation R, expressed
by

R(a, b) = M(R1(a, b), . . . , Rn(a, b)), a, b ∈ A,

reflects an overall opinion on pairs of alternatives4 (aggregation phase).
This global relation R can be used to get a ranking of the alternatives, or to choose the

set of the “best” alternatives (exploitation phase). Note that, in this approach, the transitivity
property (in the usual sense, or in the max-min sense) is most often lost5, so that the result is a
partial ordering of the alternatives: some alternatives may be incomparable each other.

1.3.3 Equivalence classes of aggregation operators

When one is faced with the choice of an aggregation operator in a decision making problem, a
fundamental question arises: what are the operators which lead to the same decision, i.e. to the
same ranking of the alternatives? This question was addressed and solved by Grabisch [78].

Definition 1.3.2 Two operators M1 ∈ An(E, F1) and M2 ∈ An(E, F2) are said to be strongly
equivalent if

M1(x) < M1(x′) ⇔ M2(x) < M2(x′), x, x′ ∈ En.

Notation: M1 ∼ M2.
4Of course we suppose that the condition of independence of irrelevant preferences is satisfied: if a profile

of fuzzy relations (R1, . . . , Rn) is modified in such a way that individual’s paired comparisons among a pair of
alternatives (a, b) are unchanged —(R1(x, y), . . . , Rn(x, y)) becomes (R′1(x, y), . . . , R′n(x, y)) for all (x, y) belonging
to A × A except for (x, y) = (a, b)— the aggregation resulting from the original and modified profiles should be
unchanged for the pair (a, b). Hence, R(a, b) depends only on R1(a, b), . . . , Rn(a, b) and is a function of n arguments
for every pair (a, b) of A×A.

5A condition ensuring min-transitivity is presented in Section 2.2.4 (Proposition 2.2.7). Moreover, preservation
of T -transitivity, where T is a t-norm, has been studied by Fodor and Ovchinnikov [66].
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It is clear that ∼ is an equivalence relation. It ensures that the operators in the same equivalence
class lead to exactly the same decisions, i.e. same ranking of the alternatives and same set of
unordered (undecidable) alternatives. Grabisch [78] proved the following result.

Theorem 1.3.1 Consider M1 ∈ An(E,F1) and M2 ∈ An(E, F2). Then M1 and M2 are
strongly equivalent if and only if there exists a unique increasing bijection g : F1 → F2, such that

M2(x) = g(M1(x)), x ∈ En.

This shows that any aggregation operator M that represents a utility function (1.12) is defined
up to an increasing bijection.



Chapter 2

Aggregation properties

If we want to obtain a reasonable or satisfactory aggregation, any aggregation operator should
not be used. To eliminate the “undesirable” operators, we can adopt an axiomatic approach and
impose that these operators fulfil some selected properties. Such properties can be dictated by the
nature of the values to be aggregated. For example, in some multicriteria evaluation methods, the
aim is to assess a global absolute score to an alternative given a set of partial scores with respect to
different criteria. Clearly, it would be unnatural to give as global score a value which is lower than
the lowest partial score, or greater than the highest score, so that only compensative aggregation
operators are allowed. Now, if preference degrees coming from transitive (in some sense) relations
are combined, it may be requested that the result of combination remains transitive. Another
example concerns the aggregation of opinions in voting procedures. If, as usual, the voters are
anonymous, the aggregation operator must be symmetric.

Notice also that all the properties defined for aggregation operators can be naturally adapted
to extended aggregation operators. For instance, M ∈ A(E, IR) is said to be symmetric if, for all
n ∈ IN0, the n-th aggregation operator M (n) ∈ An(E, IR) in the sequence is symmetric.

In this chapter we present some properties that could be desirable for the aggregation of
criteria. Of course, all these properties are not required with the same strength, and do not
pertain to the same purpose. Some of them are imperative conditions whose violation leads to
obviously counterintuitive aggregation modes. Others are technical conditions that just facilitate
the representation or the calculation of the aggregation function. There are also facultative
conditions that naturally apply in special circumstances but are not to be universally accepted.
Note that analytic properties, such as the differentiability condition, which has been employed to
characterize the weighted arithmetic mean [4, Sect. 5.3], will not be considered here since most
of them are not interpretable in the multicriteria decision framework.

2.1 Elementary mathematical properties

2.1.1 Symmetry

Definition 2.1.1 (Sy) Symmetry, commutativity, neutrality, anonymity: M ∈ An(E, IR) is
a symmetric operator if, for all π ∈ Πn and all x ∈ En, we have

M(x1, . . . , xn) = M(xπ(1), . . . , xπ(n)).

The symmetry property (Sy) essentially implies that the indexing (ordering) of the arguments
does not matter. This is required when combining criteria of equal importance or anonymous

11



12 CHAPTER 2. AGGREGATION PROPERTIES

expert’s opinions1; indeed, a symmetric operator is independent of the labels. Moreover, whatever
the order in which the information is collected, the result will always be the same.

Notice that any symmetric operator is completely defined by means of compositions involving
order statistics:

M(x1, . . . , xn) = M(x(1), . . . , x(n)), x ∈ En.

The following result, well known in the theory of groups, shows that the symmetry property
can be checked with only two equalities, see e.g. Rotman [155, Exercise 2.9, p. 24].

Proposition 2.1.1 M ∈ An(E, IR) fulfils (Sy) if and only if, for all x ∈ En, we have
i) M(x2, x1, x3, . . . , xn) = M(x1, x2, x3, . . . , xn)
ii) M(x2, x3, . . . , xn, x1) = M(x1, x2, x3, . . . , xn).

In situations when judges, criteria, or individual opinions are not equally important, the
(Sy) property must be omitted. Previous research along this line was done by Cholewa [27] and
Montero [126, 127]. They justified the weighted arithmetic mean as a general (not necessarily
symmetric) aggregation rule.

2.1.2 Continuity

Definition 2.1.2 (Co) Continuity: M ∈ An(E, IR) is a continuous operator if it is a con-
tinuous function in the usual sense.

A continuous aggregation operator does not present any chaotic reaction to a small change
of the arguments.

2.1.3 Monotonicity and such

Definition 2.1.3 (In) Increasingness, monotonicity, non-decreasingness, non-negative re-
sponsiveness: M ∈ An(E, IR) is increasing (in each argument) if, for all x, x′ ∈ En, we have

xi ≤ x′i ∀i ∈ N ⇒ M(x) ≤ M(x′).

Definition 2.1.4 (SIn) Strict increasingness, strict monotonicity, positive responsiveness:
M ∈ An(E, IR) is strictly increasing (in each argument) if, for all x, x′ ∈ En, we have

xi ≤ x′i ∀i ∈ N, and ∃j ∈ N such that xj < x′j ⇒ M(x) < M(x′).

An increasing aggregation operator presents a non-negative response to any increase of the
arguments. In other terms, increasing a partial value cannot decrease the result. This operator
is strictly increasing if, moreover, it presents a positive reaction to any increase of at least one
partial value.

Definition 2.1.5 (UIn) Unanimous increasingness: M ∈ An(E, IR) is unanimously in-
creasing if, for all x, x′ ∈ En, we have

i) xi ≤ x′i ∀i ∈ N ⇒ M(x) ≤ M(x′)
ii) xi < x′i ∀i ∈ N ⇒ M(x) < M(x′).

A unanimously increasing operator is increasing and presents a positive response whenever all
the arguments strictly increase. For instance, we observe that, on [0, 1]n, the maximum operator
M(x) = maxxi fulfils (UIn) whereas the bounded sum M(x) = min(

∑n
i=1 xi, 1) does not.

1Of course, symmetry is more natural in voting procedures than in multicriteria decision making.
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2.1.4 Idempotence

In a variety of applications, it is desirable that the aggregation operators satisfy the unanimity
property, i.e. if all xi are identical, M(x1, . . . , xn) restitutes the common value. This is notably
the case for means.

Definition 2.1.6 (Id) Idempotence, agreement, unanimity, identity, reflexivity:
M ∈ An(E, IR) is idempotent if, for all x ∈ E, we have

M(x, . . . , x) = x.

Definition 2.1.7 (WId) Weak idempotence, boundary conditions:
M ∈ An([a, b], IR) is weakly idempotent if

M(a, . . . , a) = a and M(b, . . . , b) = b.

2.1.5 Location in the real line

Aggregation operators can be roughly divided into three classes, each possessing very distinct
behavior: conjunctive operators, disjunctive operators and compensative operators.

Definition 2.1.8 (Conj) Conjunctiveness: M ∈ An(E, IR) is conjunctive if, for all x ∈ En,
we have

M(x) ≤ minxi.

Conjunctive operators combine values as if they were related by a logical “and” operator.
That is, the result of combination can be high only if all the values are high. t-norms are
the suitable functions (defined on [0, 1]n) for doing conjunctive aggregation (see Section 3.3.5).
However, they generally do not satisfy properties which are often requested for multicriteria
aggregation, as idempotence, compensativeness, scale invariance, etc.

Definition 2.1.9 (Disj) Disjunctiveness: M ∈ An(E, IR) is disjunctive if, for all x ∈ En,
we have

maxxi ≤ M(x).

Disjunctive operators combine values as an “or” operator, so that the result of combination is
high if at least one value is high. Such operators are in this sense dual of conjunctive operators.
The most common disjunctive operators are t-conorms (defined on [0, 1]n). As t-norms, t-conorms
do not possess suitable properties for criteria aggregation.

Definition 2.1.10 (Comp) Compensativeness: M ∈ An(E, IR) is compensative if, for all
x ∈ En, we have

minxi ≤ M(x) ≤ maxxi.

Between conjunctive and disjunctive operators, there is room for a third category, namely
compensative or compromise aggregation operators. They are located between min and max,
which are the bounds of the t-norm and t-conorm families. In this kind of operators, a bad (resp.
good) score on one criterion can be compensated by a good (resp. bad) one on another criterion,
so that the result of combination will be medium, see Figure 2.1. If we add the properties (Sy,
In), then we get the family of averaging operators, where border functions min and max are
usually excluded.
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¶ ³ ¶ ³¶ ³conjunctiveness compensativeness disjunctiveness

a b

s s
minxi maxxi

Figure 2.1: Location of M in [a, b]

Since E is connected, any compensative aggregation operator defined on En necessarily takes
its values in E. Moreover, the following result presents an immediate link between (Comp) and
(Id) that makes the latter all the more natural (see also de Finetti [34, p. 379]).

Proposition 2.1.2 For every M ∈ An(E, IR), we have

(Comp) ⇒ (Id) (2.1)
(In, Id) ⇒ (Comp) (2.2)

Regarding conjunctive and disjunctive two-place operators, we have the following.

Proposition 2.1.3 Let M ∈ A2(E, IR) fulfilling (In).
i) If b ∈ E is the right endpoint of E then M fulfils (Conj) if and only if

M(b, x) ≤ x and M(x, b) ≤ x ∀x ∈ E.

ii) If a ∈ E is the left endpoint of E then M fulfils (Disj) if and only if

M(a, x) ≥ x and M(x, a) ≥ x ∀x ∈ E.

Proof. i) Let x, y ∈ E with x ≤ y. We simply have M(x, y) ≤ M(x, b) ≤ x = min(x, y) and
M(y, x) ≤ M(b, x) ≤ x = min(x, y).

ii) Similar to i).

Conjunctive, disjunctive and compensative operators form a large disjoint covering of opera-
tors on IR or [a, b], but there are some operators which do not belong to one of these categories.

In an experimental study on the evaluation of tiles, Zimmermann and Zysno [202] pointed
out the fact that human aggregation procedure is compensatory. Moreover, they showed that the
arithmetic mean leads to a biased evaluation, because this operator does not take into account
interaction between criteria. Zimmermann and Zysno have therefore proposed to mix the product
and the probabilistic sum to a proportion γ ∈ [0, 1] in order to produce a kind of compensation
between criteria:

M(x) =
( n∏

i=1

xi

)1−γ(
1−

n∏

i=1

(1− xi)
)γ

, x ∈ [0, 1]n.

This aggregation operator fulfils (Sy, Co, In) but not (Id). It covers a range from the product
(γ = 0, conjunctive attitude) to the probabilistic sum (γ = 1, disjunctive attitude).

It is known that t-norms are very often used to model the conjunction in multiple-valued
logic [12, 164]. But there are many situations in real life in which other functions, such as means,
are taken. In this sense, a more general class than those of t-norms might be considered to model
the conjunction.

On this issue, Trillas et al. [182] introduced a definition of the conjunction other than (Conj).
According to them, M ∈ A2([0, 1], [0, 1]) is said to be a conjunction if, for all x, y ∈ [0, 1],

x ≤ y ⇒ ∃z ∈ [0, 1] such that M(y, z) = x.



2.2. STABILITY PROPERTIES 15

In this sense, any continuous t-norm is a conjunction. Furthermore, the geometric mean is a
conjunction whereas the arithmetic mean is not.

Similarly, M ∈ A2([0, 1], [0, 1]) is said to be a disjunction if, for all x, y ∈ [0, 1],

x ≤ y ⇒ ∃z ∈ [0, 1] such that M(x, z) = y.

2.2 Stability properties

As explained in Chapter 1, depending on the kind of scale which is used, allowed operations on
values are restricted. For example, aggregation on ordinal scales should be limited to operations
involving comparisons only, such as medians, and order statistics, while linear operations are
allowed on interval scales.

To be precise, a scale of measurement is a mapping which assigns real numbers to objects
being measured. Stevens [175, 176] defined the scale type of a scale by giving a class of admissible
transformations, transformations that lead from one acceptable scale to another. For instance,
we call a scale a ratio scale if the class of admissible transformations consists of the similarities
φ(x) = r x, r > 0. In this case, the scale value is determined up to choice of a unit. Mass is an
example of a ratio scale. The transformation from Kilograms into pounds, for example, involves
the admissible transformation φ(x) = 2.2x. Length (inches, centimeters) and time intervals
(years, seconds) are two other examples of ratio scales. We call a scale an interval scale if the
class of admissible transformations consists of the positive linear transformations φ(x) = r x+ s,
r > 0. The scale value is then determined up to choices of unit and zero point. Temperature
(except where there is an absolute zero) defines an interval scale. Thus, transformation from
Centigrade into Fahrenheit involves the admissible transformation φ(x) = (9/5)x+32. We call a
scale an ordinal scale if the class of admissible transformations consists of the strictly increasing
functions φ. Here the scale value is determined only up to order. For example, the scale of air
quality being used in a number of cities is an ordinal scale. It assigns a number 1 to unhealthy
air, 2 to unsatisfactory air, 3 to acceptable air, 4 to good air, and 5 to excellent air. We could
just as well use the numbers 1, 7, 8, 15, 23, or the numbers 1.2, 6.5, 8.7, 205.6, 750, or any
numbers that preserve the order. Definitions of other scale types can be found in the book by
Roberts [151] on measurement theory, see also Roberts [152, 153].

It is clear that certain numerical statements involving measurements are meaningless in the
sense that their truth value depends on which scale is employed. A classical exemple is the state-
ment “The ratio of today’s maximum and minimum temperatures is 1.14” which is “meaningless
unless a particular representation, e.g., ◦C, is specified” [113, 179]. To give a second example,
suppose that x1, . . . , xn are measured according to an ordinal scale, then the arithmetic mean
comparison is meaningless. As illustration of this statement, let us consider the pairs of scores
(3, 5) and (1, 8):

3 + 5
2

<
1 + 8

2
but according to the following admissible transformation (φ(1) = 1, φ(3) = 4, φ(5) = 7, φ(8) =
8),

4 + 7
2

>
1 + 8

2
!!

A statement using scales of measurement is said to be meaningful if the truth or falsity of the
statement is invariant when every scale is replaced by another acceptable version of it [151, p.
59]. For example, an aggregation operator is meaningful if the ranking of alternatives induced
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by the aggregation does not depend on scale transformation. This means that, when scores are
defined according to an interval scale, using scores defined on a [0, 100] scale or on [−2, 3] scale
has no influence on the ranking of alternatives.

In 1959, Luce [112] observed that the general form of a functional relationship between vari-
ables is greatly restricted if we know the scale type of the variables. These restrictions are
discovered by formulating a functional equation from knowledge of the admissible transforma-
tions.

Luce’s method is based on the principle, called the principle of theory construction, that an
admissible transformation of the independent variables should lead to an admissible transforma-
tion of the dependent variable. For example, suppose that f(a) = M(f1(a), . . . , fn(a)), where f
is a ratio scale and f1, . . . , fn are all ratio scales, with the units chosen independently. Then, by
the principle of theory construction, we get the functional equation

M(r1 x1, . . . , rn xn) = R(r1, . . . , rn) M(x1, . . . , xn),
ri > 0, R(r1, . . . , rn) > 0.

Aczél, Roberts, and Rosenbaum [9] showed that the solutions of this equation are given by (see
Theorem 3.4.2):

M(x1, . . . , xn) = a
n∏

i=1

gi(xi), with a > 0, gi > 0,

and
gi(xi yi) = gi(xi) gi(yi).

In this section we present some functional equations related to certain scale types. The
interested reader can find more details in [8, 9] and a good survey in [153].

2.2.1 Ratio, difference and interval scales

Definition 2.2.1 (SSi) Stability for the admissible similarity transformations, positive ho-
mogeneousness, homogeneity of degree one with respect to multiplication: M ∈ An(E, IR) is stable
for the admissible similarity transformations if

M(r x1, . . . , r xn) = r M(x1, . . . , xn)

for all x ∈ En and all r > 0 such that r xi ∈ E for all i ∈ N .

Definition 2.2.2 (STr) Stability for the admissible translations, homogeneousness with re-
spect to addition, translativity: M ∈ An(E, IR) is stable for the admissible translations if

M(x1 + s, . . . , xn + s) = M(x1, . . . , xn) + s (2.3)

for all x ∈ En and all s ∈ IR such that xi + s ∈ E for all i ∈ N .

Definition 2.2.3 (SPL) Stability for the admissible positive linear transformations:
M ∈ An(E, IR) is stable for the admissible positive linear transformations if

M(r x1 + s, . . . , r xn + s) = r M(x1, . . . , xn) + s

for all x ∈ En and all r > 0, s ∈ IR such that r xi + s ∈ E for all i ∈ N .
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The choice of the interval [0, 1] is not restrictive if we consider that scores are defined up to
a positive linear transformation, as it is the case for example in multiattribute utility theory.

Proposition 2.2.1 For every M ∈ An(E, IR), the following assertions hold:

i) (SSi, STr) ⇔ (SPL) (2.4)
ii) If E 3 0 then (SSi) ⇒ M(e∅) = 0 (2.5)

iii) If E 3 0 then (SPL) ⇒ (Id) (2.6)

Proof. i) and ii) Trivial.
iii) It suffices to use i) and ii).

It clearly turns out, by the previous proposition, that if E 3 0 then the condition “r > 0” in
the statement of (SSi) or (SPL) can be replaced by “r ≥ 0” without any effect.

More general definitions related to stability have been studied, even when the variables xi

correspond to independent scales. We now present some of them, see Aczél et al. [9] (see also
Aczél and Roberts [8]).

Definition 2.2.4 Consider M ∈ An(E, IR). Then the property

(SRR) corresponds to same ratio scales for the independent variables and a ratio scale for the
dependent variable. The corresponding functional equation is

M(r x1, . . . , r xn) = R(r)M(x1, . . . , xn)

where x ∈ En, R > 0, r > 0 and r xi ∈ E for all i ∈ N .

(IRR) corresponds to independent ratio scales for the independent variables and a ratio scale
for the dependent variable. The corresponding functional equation is

M(r1 x1, . . . , rn xn) = R(r1, . . . , rn)M(x1, . . . , xn)

where x ∈ En, R > 0, ri > 0 and ri xi ∈ E for all i ∈ N .

(SII) corresponds to same interval scales for the independent variables and an interval scale
for the dependent variable. The corresponding functional equation is

M(r x1 + s, . . . , r xn + s) = R(r, s)M(x1, . . . , xn) + S(r, s)

where x ∈ En, R > 0, r > 0 and r xi + s ∈ E for all i ∈ N .

(ISZII) corresponds to independent interval scales with same zero for the independent variables
and an interval scale for the dependent variable. The corresponding functional equation is

M(r1 x1 + s, . . . , rn xn + s) = R(r1, . . . , rn, s)M(x1, . . . , xn) + S(r1, . . . , rn, s)

where x ∈ En, R > 0, r > 0 and ri xi + s ∈ E for all i ∈ N .

(ISUII) corresponds to independent interval scales with same unit for the independent variables
and an interval scale for the dependent variable. The corresponding functional equation is

M(r x1 + s1, . . . , r xn + sn) = R(r, s1, . . . , sn)M(x1, . . . , xn) + S(r, s1, . . . , sn)

where x ∈ En, R > 0, r > 0 and r xi + si ∈ E for all i ∈ N .
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(III) corresponds to independent interval scales for the independent variables and an interval
scale for the dependent variable. The corresponding functional equation is

M(r1 x1 + s1, . . . , rn xn + sn) = R(r1, . . . , rn, s1, . . . , sn)M(x1, . . . , xn)
+S(r1, . . . , rn, s1, . . . , sn)

where x ∈ En, R > 0, ri > 0 and ri xi + si ∈ E for all i ∈ N .

2.2.2 Inversion scales

Definition 2.2.5 (SSN) Stability for the standard negation: M ∈ An([0, 1], IR) is stable for
the standard negation if

M(1− x1, . . . , 1− xn) = 1−M(x1, . . . , xn), x ∈ [0, 1]n.

The (SSN) property means that a reversal of the scale has no effect on the evaluation. As
observed by Dubois and Koning [42], if we assume that the alternatives are rated in terms of
distaste intensities instead of preference intensities then the global distaste should be built from
individual distastes with the same aggregation operator as preferences. Indeed distaste and
preference are just a matter of naming the assessment criterion (choosing the good alternatives
or choosing the bad ones) and the aggregation operator should not depend on this name.

For a two-place function M , (SSN) expresses self-duality of M (compare with De Morgan
laws in fuzzy sets theory, see e.g. [70]). This condition can be extended by using any strong
negation ϕ−1(1−ϕ(x)) instead of 1−x, where ϕ : [0, 1] → [0, 1] is a continuous strictly increasing
function fulfilling ϕ(0) = 0 and ϕ(1) = 1, see Trillas [181].

Proposition 2.2.2 For every M ∈ An([0, 1], IR), we have (SSi, SSN) ⇒ (SPL).

Proof. By (2.4), it suffices to show that M fulfils (STr). Let x ∈ [0, 1]n and s ∈ [−1, 1] such
that xi + s ∈ [0, 1] for all i ∈ N . We have to prove that (2.3) holds. By (2.5) and (SSN) we have
M(eN ) = 1−M(e∅) = 1. So we can assume s ∈ ]− 1, 1[. For all i ∈ N , set yi = xi/(1− s). We
then have yi ∈ [0, 1] for all i ∈ N and

M(x1, . . . , xn) = (1− s) M(y1, . . . , yn) (SSi)
= (1− s)− (1− s) M(1− y1, . . . , 1− yn) (SSN)
= (1− s)−M [(1− s)− x1, . . . , (1− s)− xn] (SSi)
= −s + M(x1 + s, . . . , xn + s) (SSN)

In many situations, particularly concerning ratio judgements, it is reasonable to assume the
following reciprocal property [5, 6].

Definition 2.2.6 (Rec) reciprocal property: Assume that E is an interval of positive num-
bers which with every element x contains also its reciprocal 1/x. M ∈ An(E, E) fulfils the
reciprocal property if

M(1/x1, . . . , 1/xn) = 1/M(x1, . . . , xn), x ∈ En.

Let a and b be two objects about which the ratio judgements are made (for instance, how
much heavier a is than b). If we interchange a and b, then reasonably the judgements change
into their reciprocals (if a is judged to be twice as heavy as b, then b should be judged half as
heavy as a). The assumption (Rec) is that in this case also the aggregated judgement turns into
its reciprocal.
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2.2.3 Ordinal scales

The automorphism group of E, that is the group of all strictly increasing bijections φ : E → E is
denoted by Φ(E) and the set of all strictly increasing functions φ : E → E by Φ′(E). Of course,
for any E, we have Φ(E) ⊂ Φ′(E). We also denote the vector (φ(x1), . . . , φ(xn)) by φ(x), for all
x ∈ En.

Definition 2.2.7 (OS, OS’) Ordinal stability: M ∈ An(E, E) is ordinally stable if, for all
φ ∈ Φ(E) (resp. Φ′(E)), we have

M(φ(x)) = φ(M(x)), x ∈ En. (2.7)

Ovchinnikov [141, 142] showed that ordinal stability is a special form of the invariance prop-
erty in measurement theory. Indeed, let us define an (n + 1)-ary relation R on En by

R(y, x1, . . . , xn) ⇔ y = M(x1, . . . , xn), ∀y, x1, . . . , xn ∈ E.

This relation is Φ-invariant if

R(y, x1, . . . , xn) = R(φ(y), φ(x1), . . . , φ(xn)),

wich is equivalent to (2.7).

The following proposition has been proved by Ovchinnikov [141, Theorem 4.1] in the com-
pensative case (see also [72, 121]). It shows that an operator which is insensitive to any scale
change is forced to be ordinal in nature.

Proposition 2.2.3 Let M ∈ An(E, E) fulfilling (OS). Then

M(x) ∈ {x1, . . . , xn} ∪ {inf E, supE}, x ∈ En.

Furthermore, if E is open or if M fulfils (OS’) then

M(x) ∈ {x1, . . . , xn}, x ∈ En.

Proof. Consider x = (x1, . . . , xn) ∈ En reordered as x(1) ≤ . . . ≤ x(n) and set x0 := M(x).
Suppose the result is false. We then have three exclusive cases:

• If x(i) < x0 < x(i+1) for one i ∈ {1, . . . , n − 1} then there are elements u, v ∈ E and a
function φ ∈ Φ(E) such that x(i) < u < x0 < v < x(i+1), φ(t) = t on E \ [x(i), x(i+1)], and
φ(u) = v. This implies φ(x0) > x0, which is impossible because

φ(x0) = φ(M(x)) = M(φ(x)) = M(x) = x0.

• If x0 < x(1) then there are v ∈ E and a function φ ∈ Φ(E) such that x0 < v < x(1), φ(t) = t
for all t ≥ x(1), and φ(x0) = v. This implies φ(x0) > x0, a contradiction.

• The case x(n) < x0 can be treated as the previous one.

In the second part of Proposition 2.2.3, the assumption that E is open is necessary when
not considering (OS’); indeed, if a := inf E ∈ E for example, then any φ ∈ Φ(E) is such that
φ(a) = a and thus the constant function M(x) = a fulfils (OS).

As for ratio and interval scales (see Definition 2.2.4), a more general definition of the ordinal
stability has been proposed: the comparison meaningfulness for ordinal values, see Orlov [140].
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Definition 2.2.8 (CM, CM’) Comparison meaningfulness for ordinal values:
M ∈ An(E, IR) is comparison meaningful for ordinal values if, for all φ ∈ Φ(E) (resp. Φ′(E))
and all x, x′ ∈ En, we have

i) M(x) = M(x′) ⇒ M(φ(x)) = M(φ(x′)),
ii) M(x) < M(x′) ⇒ M(φ(x)) < M(φ(x′)).

(CM) (resp. (CM’)) is a weaker requirement than (OS) (resp. (OS’)), but which is sufficient
in decision making, as far as only the ranking of alternatives has importance. Moreover, for any
M ∈ An(E, E), we have (OS’) ⇒ (OS) and, for any M ∈ An(E, IR), we have (CM’) ⇒ (CM).

The following result is an adaptation of Lemma 2.2 in [141].

Proposition 2.2.4 i) For every M ∈ An(E, E), we have (Id, CM) ⇒ (OS) ⇒ (CM). If E
is open, we have (Id, CM) ⇔ (OS).

ii) For every M ∈ An(E, E), we have (Id, CM’) ⇔ (OS’).

Proof. Let us prove i). The proof is identical for ii).
Let x ∈ En and set x0 := M(x). By (Id), we have M(x) = M(x0, . . . , x0) and thus, for all

φ ∈ Φ(E),

M(φ(x))
(CM)
= M(φ(x0), . . . , φ(x0))

(Id)
= φ(x0) = φ(M(x))

and M fulfils (OS). Conversely, it is clear that any M ∈ An(E, E) fulfilling (OS) satisfies (CM)
and if E is open then, by Proposition 2.2.3, M fulfils (Id).

When independent ordinal scales are considered, comparison meaningfulness takes the fol-
lowing form.

Definition 2.2.9 (CMIS) Comparison meaningfulness for ordinal values with independent
scales: M ∈ An(E, IR) is comparison meaningful for ordinal values with independent scales if,
for all φ1, . . . , φn ∈ Φ(E) and all x, x′ ∈ En, we have

i) M(x) = M(x′) ⇒ M(φ1(x1), . . . , φn(xn)) = M(φ1(x′1), . . . , φn(x′n)),
ii) M(x) < M(x′) ⇒ M(φ1(x1), . . . , φn(xn)) < M(φ1(x′1), . . . , φn(x′n)).

The following two properties also concern ordinal values. They express a kind of stability for
minitive and maxitive translations.

Definition 2.2.10 (SMin) Stability for minimum with a constant vector: M ∈ An(E, IR)
is stable for minimum with a constant vector if

M(x1 ∧ r, . . . , xn ∧ r) = M(x1, . . . , xn) ∧ r

for all x ∈ En and all r ∈ E.

Definition 2.2.11 (SMax) Stability for maximum with a constant vector: M ∈ An(E, IR)
is stable for maximum with a constant vector if

M(x1 ∨ r, . . . , xn ∨ r) = M(x1, . . . , xn) ∨ r

for all x ∈ En and all r ∈ E.

(SMin) and (SMax) were introduced by Fodor and Roubens [71]. Clearly, they are related to
an algebra which uses min and max operations instead of classical sum and product operations. In
this sense, they look very much like (SSi) and (STr) respectively. Unfortunately, we do not know
any practical interpretation of these properties. Their investigation here is purely theoretical.
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Proposition 2.2.5 For every M ∈ An(E, IR), we have (SMin, SMax) ⇒ (Id).

Proof. For all x ∈ E, we have, by (SMin, SMax),

M(x, . . . , x) = M(x, . . . , x) ∧ x ≤ M(x, . . . , x) ∨ x = M(x, . . . , x),

and thus M(x, . . . , x) = x.

We also introduce the following properties.

Definition 2.2.12 (SMinB) Stability for minimum between Boolean and constant vectors:
M ∈ An([0, 1], IR) is stable for minimum between Boolean and constant vectors if

M(r eT ) ∈ {M(eT ), r}

for all T ⊆ N and all r ∈ [0, 1].

Definition 2.2.13 (SMaxB) Stability for maximum between Boolean and constant vectors:
M ∈ An([0, 1], IR) is stable for maximum between Boolean and constant vectors if

M(eT + r eT ) ∈ {M(eT ), r}

for all T ⊆ N and all r ∈ [0, 1].

The following proposition justifies the names given to (SMinB) and (SMaxB) properties.

Proposition 2.2.6 Consider M ∈ An([0, 1], IR) fulfilling (In, Id). Then M fulfils (SMinB)
if and only if

M(x1 ∧ r, . . . , xn ∧ r) = M(x1, . . . , xn) ∧ r, x ∈ {0, 1}n, r ∈ [0, 1]. (2.8)

Likewise, M fulfils (SMaxB) if and only if

M(x1 ∨ r, . . . , xn ∨ r) = M(x1, . . . , xn) ∨ r, x ∈ {0, 1}n, r ∈ [0, 1]. (2.9)

Proof. Let us consider the case of (SMinB). The other one can be treated similarly.
(Sufficiency) Trivial.
(Necessity) If x ∈ {0, 1}n then there exists T ⊆ N such that x = eT . Next, let r ∈ [0, 1].
If M(eT ) ≤ r then

M(r eT )
(In)

≤ M(eT ) ≤ r,

otherwise, if M(eT ) ≥ r then

M(r eT )
(In)

≤ M(r eN )
(Id)
= r ≤ M(eT ).

Therefore, by (SMinB), we simply have,

M(x1 ∧ r, . . . , xn ∧ r) = M(r eT ) = M(eT ) ∧ r = M(x1, . . . , xn) ∧ r.
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2.2.4 Additivity and related properties

Definition 2.2.14 (Add) Additivity: M ∈ An(E, IR) is additive if, for all x, x′ ∈ E, we
have

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n).

Definition 2.2.15 (Min) Minitivity: M ∈ An(E, IR) is minitive if, for all x, x′ ∈ E, we
have

M(x1 ∧ x′1, . . . , xn ∧ x′n) = M(x1, . . . , xn) ∧M(x′1, . . . , x
′
n).

Definition 2.2.16 (Max) Maxitivity: M ∈ An(E, IR) is maxitive if, for all x, x′ ∈ E, we
have

M(x1 ∨ x′1, . . . , xn ∨ x′n) = M(x1, . . . , xn) ∨M(x′1, . . . , x
′
n).

The (Add) property is very classical. The (Min) and (Max) properties are less common but
can be very useful when aggregating fuzzy preference relations.

A fuzzy binary relation R on a set A of alternatives is min-transitive (resp. negatively max-
transitive) if, for all a, b, c ∈ A,

R(a, c) ∧R(c, b) ≤ R(a, b) (resp. R(a, b) ≤ R(a, c) ∨R(c, b)).

The next proposition shows that it is useful to assume the (Min) and (Max) properties when we
consider aggregation of min-transitive (or negatively max-transitive) fuzzy binary relations (see
also [70, Sect. 7.3.1]).

Proposition 2.2.7 Let M ∈ An([0, 1], IR) fulfilling (In). Let A be a set of alternatives and
R1, . . . , Rn be min-transitive (resp. negatively max-transitive) fuzzy binary relations on A. Then
the aggregated fuzzy relation R defined as

R(a, b) = M(R1(a, b), . . . , Rn(a, b)), ∀a, b ∈ A,

is a min-transitive (resp. negatively max-transitive) fuzzy binary relation if and only if M fulfils
(Min) (resp. (Max)).

Proof. Consider the case of min-transitivity. The other one can be treated similarly.
(Necessity). Set xab

i := Ri(a, b) for all a, b ∈ A and all i ∈ N . By hypothesis, whenever
xac

i ∧ xcb
i ≤ xab

i for all a, b, c ∈ A and all i ∈ N , we have

M(xac
1 , . . . , xac

n ) ∧M(xcb
1 , . . . , xcb

n ) ≤ M(xab
1 , . . . , xab

n )

for all a, b, c ∈ A. In the particular case where xac
i ∧ xcb

i = xab
i for all a, b, c ∈ A and all i ∈ N ,

since M fulfils (In), we obtain that:

M(xab
1 , . . . , xab

n ) = M(xac
1 ∧ xcb

1 , . . . , xac
n ∧ xcb

n )
≤ M(xac

1 , . . . , xac
n ) ∧M(xcb

1 , . . . , xcb
n )

for all a, b, c ∈ A. Finally, we have that:

M(xac
1 ∧ xcb

1 , . . . , xac
n ∧ xcb

n ) = M(xac
1 , . . . , xac

n ) ∧M(xcb
1 , . . . , xcb

n )

for all a, b, c ∈ A. Therefore, M fulfils (Min).
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(Sufficiency). Suppose that Ri(a, c) ∧Ri(c, b) ≤ Ri(a, b) for all a, b, c ∈ A and all i ∈ N . We
have, using (Min) and (In) successively,

M(R1(a, c), . . . , Rn(a, c)) ∧M(R1(c, b), . . . , Rn(c, b))
= M(R1(a, c) ∧R1(c, b), . . . , Rn(a, c) ∧Rn(c, b))
≤ M(R1(a, b), . . . , Rn(a, b))

for all a, b, c ∈ A. Therefore, R is min-transitive.

We now present the concept of comonotonicity, which appeared as early as 1952 in Hardy et
al. [97]. In the context we are interested in it is defined as follows.

Definition 2.2.17 Two vectors x, x′ ∈ En are said to be comonotonic if there exists a
permutation π ∈ Πn such that

xπ(1) ≤ · · · ≤ xπ(n) and x′π(1) ≤ · · · ≤ x′π(n).

Thus π orders the components of x and x′ simultaneously. Another way to say that x and x′

are comonotonic is that (xi − xj)(x′i − x′j) ≥ 0 for every i, j ∈ N . Thus if xi < xj for some i, j
then x′i ≤ x′j .

The following example has been given in [124, 125] to understand intuitively the notion of
comonotonicity in multicriteria decision making.

Example 2.2.1 Let us assume that a consumer wants to buy a new car. His/her criteria are
cost and performance. The set of possible choices are a Ferrari, 5 Renault cars, 5 Peugeot cars.
We can now assume that the set of Renault cars constitutes a comonotonic set of his/her possible
choices. This means that the consumer can say that if a criteria is better satisfied than another
for one Renault car, this will be true for the other Renault cars. To do this, the consumer must
put “mentally” the criteria on the same scale of satisfaction in order to compare them, since
obviously, he/she cannot a priori compare the cost to the performance. We also see here the
interest of the commensurability assumption (see Section 6.1.1.)

Definition 2.2.18 (CoAdd) Comonotonic additivity: M ∈ An(E, IR) is comonotonic ad-
ditive if

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E.

Definition 2.2.19 (CoMin) Comonotonic minitivity: M ∈ An(E, IR) is comonotonic mini-
tive if

M(x1 ∧ x′1, . . . , xn ∧ x′n) = M(x1, . . . , xn) ∧M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E.

Definition 2.2.20 (CoMax) Comonotonic maxitivity: M ∈ An(E, IR) is comonotonic ma-
xitive if

M(x1 ∨ x′1, . . . , xn ∨ x′n) = M(x1, . . . , xn) ∨M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E.

The concept of comonotonic additivity has appeared first in [35] and more recently in [160].
Comonotonic minitivity and maxitivity were introduced for the first time (in the context of
fuzzy integrals) in [33]. Note that a justification of these two latter properties has been given by
Ralescu and Ralescu [148] in the framework of aggregation of fuzzy subsets.
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2.3 More elaborate mathematical properties

The following properties concern the “decomposability” of the aggregation procedure. It means
that it is possible to partition the set of criteria (voters, etc.) into disjoint subgroups, build the
partial aggregation for each subgroup and then combine these partial results to get the global
value. This condition may take several forms. The strongest one we will present is associa-
tivity. Other weaker formulations will also be presented: decomposability, autodistributivity,
bisymmetry, self-identity.

2.3.1 Associativity

We consider first the associativity functional equation. Associativity of addition means that
(a+b)+c = a+(b+c), so we can write a+b+c unambiguously. If we write the addition operation
as a two-place function f(a, b) = a + b, then associativity says that f(f(a, b), c) = f(a, f(b, c)).
For general f , this is the associativity functional equation.

Definition 2.3.1 (A) Associativity (for two arguments): M ∈ A2(E, E) is associative if,
for all x ∈ E3, we have

M(M(x1, x2), x3) = M(x1, M(x2, x3)). (2.10)

A large number of papers deal with the associativity functional equation (2.10) even in the
field of real numbers. In complete generality its investigation naturally constitutes a principal
subject of algebra. For a list of references see Aczél [4, Sect. 6.2].

With the use of a graphical representation linked to clustering procedures, we obtain Fig-
ure 2.2. From (2.10), it is clear that we have to suppose that the range of M (2) is a subset of
E.

x1 x1x2 x2x3 x3

≡

Figure 2.2: Associativity for two-place operators

Basically, associativity concerns aggregation of only two arguments. But it can be extended
to any finite number of arguments.

Definition 2.3.2 (A) Associativity: M ∈ A(E, E) is associative if M(x) = x for all x ∈ E,
and

M(x1, . . . , xj , xj+1, . . . , xk, xk+1, . . . , xn)
= M(x1, . . . , xj ,M(xj+1, . . . , xk), xk+1, . . . , xn) (2.11)

for all n ∈ IN0, all x ∈ En and all integers j, k such that 0 ≤ j < k ≤ n.

Associativity means that each subset of consecutive elements from x ∈ En can be replaced
by their partial aggregation without changing the global aggregation. On a graphical basis, we
obtain Figure 2.3.

Associativity is also a well-known algebraic property which allows to omit “parentheses” in an
aggregation of at least three elements. Observe that, if the extended operator M is associative,
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x1 x1x2 x2· · · · · ·xj xjxj+1 xkxk+1 xk+1· · · · · ·xn xn· · ·

xj+1 · · · xk

≡

Figure 2.3: The associativity property

then the function M (2) is associative (just set n = 3 in (2.11)). Implicit in the assumption of
associativity is a consistent way of going unambiguously from the aggregation of n elements to
n + 1 elements, i.e. if M is associative:

M(x1, . . . , xn+1) = M(M(x1, . . . , xn), xn+1), n ∈ IN0.

Thus associativity mandates how we define the extended aggregation operator and does so in a
way that keeps some consistency between the aggregation of n and n + 1 elements.

2.3.2 Decomposability

It can be easily verified that the arithmetic mean as an extended operator does not solve the
associativity equation (2.11). So, it seems interesting to know whether there exists a functional
equation, similar to associativity, which can be solved by the arithmetic mean, or even by other
means such as the geometric mean, the quadratic mean, etc.

On this subject, an acceptable equation, called associativity of means, has been proposed for
symmetric extended operators (Sy), and can be formulated as follows:

M(x1, . . . , xk, xk+1, . . . , xn) = M(k ¯M(x1, . . . , xk), xk+1, . . . , xn)

for all k, n ∈ IN0 such that k ≤ n. It was already mentioned in Section 1.2 that, under idempo-
tence (Id), this condition says that the global aggregation does not change when altering some
values without modifying their partial aggregation:

M(x1, . . . , xk) = M(x′1, . . . , x
′
k) ⇒ M(x1, . . . , xk, xk+1, . . . , xn) = M(x′1, . . . , x

′
k, xk+1, . . . , xn)

for all k, n ∈ IN0 such that k ≤ n. Introduced first in Bemporad [18, p. 87] in a characterization of
the arithmetic mean, associativity of means has been used by Kolmogoroff [107] and Nagumo [136]
to characterize the so-called mean values. More recently, Marichal and Roubens [121] proposed
to call this property “decomposability” in order not to confuse it with classical associativity (A).

When symmetry is not assumed, it is necessary to rewrite this property in such a way that
the first variables are not privileged. We then propose to generalize this concept in two ways:
decomposability (D) and strong decomposability (SD).

Definition 2.3.3 (D) Decomposability: M ∈ A(E, E) is decomposable if M(x) = x for all
x ∈ E, and

M(x1, . . . , xj , xj+1, . . . , xk, xk+1, . . . , xn)
= M(x1, . . . , xj , (k − j)¯M(xj+1, . . . , xk), xk+1, . . . , xn)

for all n ∈ IN0, all x ∈ En and all integers j, k such that 0 ≤ j < k ≤ n.
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The decomposability property means that each element of any subset of consecutive elements
from x ∈ En can be replaced by their partial aggregation without changing the global aggregation
(see Figure 2.4).

x1 x1x2 x2· · · · · ·xj xjxj+1 xkxk+1 xk+1· · · · · ·xn xn· · ·
s¤¤CC ¯̄LL
(k−j) times

xj+1 · · · xk

≡

Figure 2.4: The decomposability property

Proposition 2.3.1 Let M ∈ A(E,E) fulfilling (D). If M (2) fulfils (Sy) then so does M .

Proof. Let us proceed by induction on n ≥ 2. Assume that M (n) fulfils (Sy) for a fixed n ≥ 2.
Let (x1, . . . , xn+1) ∈ En+1. By (D), we have

M (n+1)(x1, . . . , xn+1) = M (n+1)(x1, n¯M (n)(x2, . . . , xn+1))
= M (n+1)(n¯M (n)(x1, . . . , xn), xn+1).

Since M (n) fulfils (Sy), we have

M (n+1)(x2, x1, x3, . . . , xn+1) = M (n+1)(x1, x2, x3, . . . , xn) = M (n+1)(x2, x3, . . . , xn+1, x1).

By Proposition 2.1.1, M (n+1) fulfils (Sy).

Definition 2.3.4 (SD) Strong decomposability: M ∈ A(E, E) is strongly decomposable if
M(x) = x for all x ∈ E, and

M
( ∑

i∈K

xi ei +
∑

i/∈K

xi ei

)
= M

(
M (k)(xi1 , . . . , xik) eK +

∑

i/∈K

xi ei

)

for all n ∈ IN0, all x ∈ En and all K = {i1, . . . , ik} ⊆ N with i1 < · · · < ik.

Strong decomposability means that each element of any subset of elements (which are not nec-
essarily consecutive) from x ∈ En can be replaced by their partial aggregation without changing
the global aggregation. Under idempotence (Id), this property is equivalent to:

M(xi1 , . . . , xik) = M(x′i1 , . . . , x
′
ik

) ⇒ M
( ∑

i∈K

xi ei +
∑

i/∈K

xi ei

)
= M

( ∑

i∈K

x′i ei +
∑

i/∈K

xi ei

)
,

for all n ∈ IN0, all x, x′ ∈ En and all K = {i1, . . . , ik} ⊆ N with i1 < · · · < ik.

Proposition 2.3.2 For every M ∈ A(E,E), the following assertions hold:

i) (SD) ⇒ (D) (2.12)
ii) (Sy, SD) ⇔ (Sy, D) (2.13)

iii) (Id, A) ⇒ (D) (2.14)
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Proof. i) and ii) Trivial.
iii) Let j, k, n ∈ IN such that 0 ≤ j < k ≤ n. For all x ∈ En, we have

M(x1, . . . , xj , xj+1, . . . , xk, xk+1, . . . , xn)
= M(x1, . . . , xj ,M(xj+1, . . . , xk), xk+1, . . . , xn) (A)
= M(x1, . . . , xj ,M [(k − j)¯M(xj+1, . . . , xk)], xk+1, . . . , xn) (Id)
= M(x1, . . . , xj , (k − j)¯M(xj+1, . . . , xk), xk+1, . . . , xn) (A).

According to (2.14), it seems more useful to consider decomposable idempotent extended
operators rather than associative idempotent extended operators. As example, the arithmetic
mean, which seems to be a quite acceptable idempotent extended operator, is decomposable but
not associative.

Proposition 2.3.3 Let M ∈ A(E,E) fulfilling (Id, SD). Then we have

i) M(k ¯ x1, . . . , k ¯ xn) = M(x1, . . . , xn) for all k, n ∈ IN0 and all x ∈ En. (2.15)
ii) M(x11, . . . , x1n; . . . ; xp1, . . . , xpn) = M [M(x11, . . . , x1n), . . . , M(xp1, . . . , xpn)](2.16)

for all matrices X = (xij) ∈ Ep×n, where n, p ∈ IN0.
iii) M(x1, . . . , xn) = M(x′n, . . . , x′1) for all n ∈ IN, n ≥ 2 and all x ∈ En, (2.17)

where x′j = M(x1, . . . , xj−1, xj+1, . . . , xn) for all j ∈ N .

Proof. The proof is an adaptation of that of Propositions 1 and 2 in Nagumo [136, Sect. 1].
i) For all k, n ∈ IN0 and all x ∈ En, we have

M(k ¯ x1, . . . , k ¯ xn) = M [k n¯M(x1, . . . , xn)] (SD)
= M(x1, . . . , xn) (Id).

ii) For all matrices X = (xij) ∈ Ep×n, where n, p ∈ IN0, we have

M(x11, . . . , x1n; . . . ;xp1, . . . , xpn) = M [n¯M(x11, . . . , x1n), . . . , n¯M(xp1, . . . , xpn)] (SD)
= M [M(x11, . . . , x1n), . . . , M(xp1, . . . , xpn)] (by (2.15)).

iii) For all n ∈ IN, n ≥ 2 and all x ∈ En, we have, by (2.15),

M(x1, . . . , xn) = M [(n− 1)¯ x1, . . . , (n− 1)¯ xn]

and by using (SD) with subset Kj = {j, n+ j, 2n+ j, . . . , (n−2)n+ j} for j = 1, . . . , n, we obtain

M [(n− 1)¯ x1, . . . , (n− 1)¯ xn] = M(x′n, . . . , x′1; . . . ; x
′
n, . . . , x′1).

Therefore, we have

M(x1, . . . , xn) = M(x′n, . . . , x′1; . . . ; x
′
n, . . . , x′1)

= M((n− 1)¯M(x′n, . . . , x′1)) (by (2.16))
= M(x′n, . . . , x′1) (Id),

which was to be proved.
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2.3.3 Autodistributivity

Definition 2.3.5 (AD) Autodistributivity, self-distributivity (for two arguments):
M ∈ A2(E, E) is autodistributive if, for all x ∈ E3, we have

M(x1,M(x2, x3)) = M(M(x1, x2), M(x1, x3))
and M(M(x1, x2), x3) = M(M(x1, x3), M(x2, x3)). (2.18)

The autodistributivity equations (2.18) were investigated both in general algebraic structures
and for real numbers in particular. A list of references can be found in [4, Sect. 6.5] (see also [7,
Chap. 17]).

2.3.4 Bisymmetry and related properties

Definition 2.3.6 (B) Bisymmetry for two arguments, mediality: M ∈ A2(E, E) is bisym-
metric if for all x ∈ E4, we have

M(M(x1, x2),M(x3, x4)) = M(M(x1, x3),M(x2, x4)).

The bisymmetry property (also called mediality) is very easy to handle and has been inves-
tigated from the algebraic point of view by using it mostly in structures without the property
of associativity — in a certain respect, it has been used as a substitute for associativity (A) and
also for symmetry (Sy). For a list of references see [4, Sect. 6.4] (see also [7, Chap. 17]).

Proposition 2.3.4 For every M ∈ A2(E,E), we have
i) (Sy, A) ⇒ (B),

ii) (Id, B) ⇒ (AD),
iii) (SIn, AD) ⇒ (Id).

Proof. See [46, Sect. 1.2.1].

Definition 2.3.7 (B) Bisymmetry (for n ≥ 2 arguments): M ∈ An(E,E) is bisymmetric if

M(M(x11, . . . , x1n), . . . , M(xn1, . . . , xnn))
= M(M(x11, . . . , xn1), . . . , M(x1n, . . . , xnn)) (2.19)

for all square matrices

X =




x11 · · · x1n
...

...
xn1 · · · xnn


 ∈ En×n.

Bisymmetry expresses that aggregation of all the elements of any square matrix can be per-
formed first on the rows, then on the columns, or conversely. However, since only square matrices
are involved, this property seems not to have a good interpretation in terms of aggregation in
MCDM. Its usefulness remains theoretical.

Definition 2.3.8 (GB) General bisymmetry: M ∈ A(E,E) fulfils the general bisymmetry
property if M(x) = x for all x ∈ E, and

M(M(x11, . . . , x1n), . . . , M(xp1, . . . , xpn))
= M(M(x11, . . . , xp1), . . . , M(x1n, . . . , xpn))
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for all matrices

X =




x11 · · · x1n
...

...
xp1 · · · xpn


 ∈ Ep×n,

where n, p ∈ IN0.

Contrary to (B), the (GB) property can be justified rather easily. Consider n judges (or
criteria, attributes, etc.) giving a score to each of p candidates. These scores, assumed to be
defined on a same scale, can be put in a p× n matrix as follows:




J1 · · · Jn

C1 x11 · · · x1n
...

...
...

Cp xp1 · · · xpn




Suppose now that we want to aggregate all the scores in the matrix in order to obtain a global
score of the p candidates. A reasonable way to proceed could be the following: aggregate the
scores of each candidate (aggregation on the rows of the matrix), and then aggregate these global
values. A dual way to proceed would be: aggregate the scores given by each judge (aggregation
on the columns of the matrix), and then aggregate these values.

The general bisymmetry property for an aggregation operator means that these two ways to
aggregate must lead to the same global score. This is a rather natural property.

Proposition 2.3.5 If M ∈ A(E, E) fulfils (GB) then, for all n ∈ IN with n ≥ 2, M (n) fulfils
(B).

Proposition 2.3.6 For every M ∈ A(E, E), we have
i) (Sy, A) ⇒ (GB),

ii) (Id, SD) ⇒ (GB).

Proof. i) Trivial.
ii) For all matrices X = (xij) ∈ Ep×n, where n, p ∈ IN0, we have

M(M(x11, . . . , x1n), . . . ,M(xp1, . . . , xpn))
= M(x11, . . . , x1n; . . . ; xp1, . . . , xpn) (by (2.16))
= M [M(x11, . . . , xp1), . . . , M(x1n, . . . , xpn), . . . , M(x11, . . . , xp1), . . . , M(x1n, . . . , xpn)] (SD)
= M [p¯M(M(x11, . . . , xp1), . . . ,M(x1n, . . . , xpn))] (by (2.16))
= M(M(x11, . . . , xp1), . . . , M(x1n, . . . , xpn)) (Id)

which proves the result.

A matrix X ∈ Ep×n is ordered if its elements satisfy xij ≤ xkl for all i ≤ k and j ≤ l. It
is said to be orderable if it is possible to make it ordered by permuting some rows and/or some
columns. Notice that not all matrices are orderable as the following example shows:

X =
(

1 2
4 3

)
.
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Definition 2.3.9 (BOM) Bisymmetry for orderable matrices: M ∈ An(E, E) is bisymmet-
ric for orderable matrices if

M([M([x11, . . . , x1n]π′), . . . ,M([xn1, . . . , xnn]π′)]π)
= M([M([x11, . . . , xn1]π), . . . , M([x1n, . . . , xnn]π)]π′)

for all π, π′ ∈ Πn and all ordered square matrices

X =




x11 · · · x1n
...

...
xn1 · · · xnn


 ∈ En×n.

Definition 2.3.10 (GBOM) General bisymmetry for orderable matrices:
M ∈ A(E, E) fulfils the general bisymmetry for orderable matrices if

M([M([x11, . . . , x1n]π′), . . . , M([xp1, . . . , xpn]π′)]π)
= M([M([x11, . . . , xp1]π), . . . , M([x1n, . . . , xpn]π)]π′)

for all π ∈ Πp, all π′ ∈ Πn and all ordered matrices

X =




x11 · · · x1n
...

...
xp1 · · · xpn


 ∈ Ep×n.

Of course, (B) implies (BOM) and (GB) implies (GBOM).

We now give a justification of (GBOM). Consider the same situation as above: n judges give
a score to each of p candidates. Now we start by removing some values—for example the lowest
score given by each judge, or the lowest score obtained by each candidate. In general, it does
not make sense anymore to aggregate as before.

However, there are situations where it still make sense: if the worst candidate is the same
for each judge then, when removing this candidate, we get a score matrix for (p− 1) candidates
and n judges, and we can aggregate as before. Likewise, if the most intolerant judge is the same
for each candidate then, when removing the judge, we get a score matrix for p candidates and
(n−1) judges, and we can aggregate. Clearly, if we wish to take into account all the possibilities
to remove judges and candidates, we have to consider orderable score matrices.

2.3.5 Self-identity

The property of self-identity for extended aggregation operators was introduced by Yager [196,
197] and formulated as follows:

Definition 2.3.11 (SId) Self-identity: M ∈ A(E, E) is a self-identity extended aggregation
operator if M(x) = x for all x ∈ E, and

M(x1, . . . , xn,M(x1, . . . , xn)) = M(x1, . . . , xn).

for all n ∈ IN0 and x ∈ En.
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Thus we see that in the case of self-identity extended operators adding an element equal to
the already established value does not change the aggregation value.

In this definition, the last argument is privileged. This can make sense in some situations
[198], even when (Sy) is not assumed. For instance, consider a situation in which the arguments
are temporal in nature, in this case xi indicates the i-th observed reading. In situations in which
we feel that the basic underlying process generating the readings is changing we may desire to
give more emphasis to the later readings rather than to the former ones.

Yager and Rybalov [198] established the following result.

Proposition 2.3.7 Let M ∈ A(E,E).
i) (SId) ⇒ (Id).
ii) Under (In), we have

x
{

<
>

}
M(x1, . . . , xn) ⇒ M(x1, . . . , xn, x)

{≤
≥

}
M(x1, . . . , xn).

The second part of the result essentially implies that values greater than the already estab-
lished value tend to increase the score while those below it tend to decrease this score.

2.3.6 Separability

The property of separability, suggested by Aczél and Saaty [10], means that the influences of the
individual judgements can be separated.

Definition 2.3.12 (Sep) Separability: M ∈ An(E, E) is separable if

M(x1, . . . , xn) = g(x1) ◦ · · · ◦ g(xn), x1, . . . , xn ∈ E, (2.20)

where g : E → E is continuous and non-constant and ◦ is a continuous associative and cancella-
tive operation mapping E ×E into E, i.e.

(u ◦ v) ◦ w = u ◦ (v ◦ w), ∀u, v, w ∈ E,

and {
u ◦ t = v ◦ t, for any t ∈ E, ⇒ u = v,
t ◦ u = t ◦ v, for any t ∈ E, ⇒ u = v.

Note that if not all judging individuals have the same weight when the judgements are
aggregated then these different influences should be reflected in different functions g1, . . . , gn and
(2.20) must be replaced by

M(x1, . . . , xn) = g1(x1) ◦ · · · ◦ gn(xn), x1, . . . , xn ∈ E.

An interesting study of such non-symmetric functions can be found in Aczél [5].
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Chapter 3

Some classes of aggregation operators

Given any aggregation operator, we can ask for a motivation of its use, i.e. for reasonable
conditions (or properties) which lead to this operator. Conversely, we can specify a priori some
conditions and determine all the aggregation operators satisfying these.

Proposing an interesting axiomatic characterization of an operator (or a family of operators)
is not an easy task. Mostly, aggregation operators can be characterized by different sets of
conditions. Nevertheless the various possible characterizations are not equally important. Some
of them involve purely technical conditions with no clear interpretation and the result becomes
useless. Some other involve conditions that contain explicitly the result and the characterization
becomes trivial. On the contrary, there are characterizations involving only natural conditions,
easily interpretable. In fact, this is the only case where the result should be seen as a significant
contribution. It improves our understanding of the operator considered and provides strong
arguments to justify (or reject) its use in the context of decision making.

The aim of this chapter is to present characterizations of some families of aggregation op-
erators (or extended aggregation operators). Most of the characterizations presented here, like
those of the quasi-arithmetic means, involve rather natural properties.

In Section 3.1 the family of bisymmetric aggregation operators is studied in the presence of
some properties such as continuity and idempotence. Some characterizations are also presented.
Section 3.2 deals with the extended aggregation operators that fulfil the decomposability prop-
erty. In particular, a description of the quasi-arithmetic means that are not necessarily strictly
increasing is given. In Section 3.3 we present the theory of associative functions and generalize
some well-known characterizations. Sections 3.4 and 3.5 consider some operators that are suit-
able for aggregation of values defined on specific scale types, especially the ordinal and interval
scales.

Whenever the form of E is not specified in a statement, it is understood as an arbitrary real
interval, finite or infinite.

3.1 Bisymmetric operators

3.1.1 Quasi-arithmetic means

Let E be a real interval, finite or infinite. It has been proved by Aczél [2] (see also [4, Sect. 6.4]
and [7, Chap. 17]) that the quasi-arithmetic means are the only symmetric, continuous, strictly
increasing, idempotent, real functions M ∈ An(E, E) which satisfy the bisymmetry condition
(2.19). The statement of this result is formulated as follows.

33
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Theorem 3.1.1 M ∈ An(E,E) fulfils (Sy, Co, SIn, Id, B) if and only if there exists a
continuous strictly monotonic function f : E → IR such that

M(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]
, x ∈ En. (3.1)

The quasi-arithmetic means (3.1) are compensative aggregation operators and cover a wide
spectrum of means including arithmetic, quadratic, geometric, harmonic, root-power and expo-
nential means as it can be seen in Table 3.1.

f(x) M(x) name

x
1
n

∑
xi arithmetic

x2

√
1
n

∑
x2

i quadratic

log x
n
√∏

xi geometric

x−1 1
1
n

∑ 1
xi

harmonic

xα (α ∈ IR0)
( 1

n

∑
xα

i

) 1
α root-power

eα x (α ∈ IR0)
1
α

ln
[ 1

n

∑
eα xi

]
exponential

Table 3.1: Examples of quasi-arithmetic means

The function f occuring in (3.1) is called a generator of M . It was also proved that f is
determined up to a linear transformation: with f(x), every function g(x) = r f(x) + s (r, s ∈
IR, r 6= 0) belongs to the same M , but no other function.

Note that Aczél and Alsina [6] proved that the quasi-arithmetic means can be characterized
only by two property: idempotence (Id) and separability (Sep) (with continuous non-constant g
and continuous, cancellative and associative ◦).

Theorem 3.1.2 M ∈ An(E,E) fulfils (Id, Sep) if and only if there exists a continuous
strictly monotonic function f : E → IR such that M is of the form (3.1).

Nagumo [136] investigated some subfamilies of the class of quasi-arithmetic means. He proved
the following result (see also [6, Sect. 4] and [7, Chap. 15]).

Theorem 3.1.3 i) M ∈ An(E,E) is a quasi-arithmetic mean fulfilling (STr) if and only if
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• either M is the arithmetic mean:

M(x) =
1
n

n∑

i=1

xi, x ∈ En,

• or M is the exponential mean: there exists α ∈ IR0 such that

M(x) =
1
α

ln
[ 1

n

n∑

i=1

eα xi

]
, x ∈ En.

ii) Let E = IR+
0 or a subinterval. M ∈ An(E, E) is a quasi-arithmetic mean fulfilling (SSi) if

and only if

• either M is the geometric mean:

M(x) =
( n∏

i=1

xi

) 1
n , x ∈ En,

• or M is the root-power mean: there exists α ∈ IR0 such that

M(x) =
( 1

n

n∑

i=1

xα
i

) 1
α , x ∈ En. (3.2)

Thus the arithmetic mean is the only quasi-arithmetic mean fulfilling (SPL) when E = IR+
0

or a subinterval. This result was already reached in 1926 by Bemporad [18, p. 87]. We will see
in Section 4.2.4 that this remains true with any E ⊇ [0, 1] (see Corollary 4.2.4).

Let us denote by M(α) the root-power mean (3.2) generated by α ∈ IR0. It is well known
that, if α1 < α2 then M(α1)(x) ≤ M(α2)(x) for all x ∈ ]0, +∞[n (equality if and only if all xi are
equal).

The family of root-power means was studied by Dujmovic [54, 55, 56] and Dyckhoff and
Pedrycz [57]. It encompasses most of traditionally known means: the arithmetic mean M(1),
the harmonic mean M(−1), the quadratic mean M(2), and three limit cases: the geometric mean
M(0), the minimum M(−∞) and the maximum M(+∞) (see e.g. [1]).

In addition to the Nagumo’s result (Theorem 3.1.3), we have the following characterizations.

Theorem 3.1.4 i) Let E be an interval of positive numbers which with every element x
contains also its reciprocal 1/x. ln(E) denotes the set of all lnx, where x is in E. Then M ∈
An(E, E) is a quasi-arithmetic mean fulfilling (Rec) if and only if there exists a continuous,
strictly monotonic, odd function ω : ln(E) → IR such that

M(x) = exp
[
ω−1

( 1
n

n∑

i=1

ω(lnxi)
)]

, x ∈ En.

ii) M ∈ An([0, 1], [0, 1]) is a quasi-arithmetic mean fulfilling (SSN) if and only if there exists a
continuous, strictly monotonic, odd function ω : [−1

2 , 1
2 ] → IR such that

M(x) =
1
2

+ ω−1
[ 1
n

n∑

i=1

ω(xi − 1
2
)
]
, x ∈ [0, 1]n.
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Proof. i) see Aczél and Alsina [6].
ii) M ∈ An([0, 1], [0, 1]) is a quasi-arithmetic mean fulfilling (SSN) if and only if F ∈

An([ 1√
e
,
√

e ], [ 1√
e
,
√

e ]), defined by

F (z) =
1√
e

exp[M(ln(
√

e z1), . . . , ln(
√

e zn))], z ∈ [
1√
e
,
√

e ]n,

is a quasi-arithmetic mean fulfilling (Rec). We then can conclude by i).

Back to Theorem 3.1.1, note that Aczél [2] also investigated the case where (Sy) and (Id)
are dropped (see also [4, Sect. 6.4] and [7, Chap. 17]). He showed the power of the concept of
bisymmetry by the fact that the theory of quasi-arithmetic means does not loose much of its
force if both (Sy) and (Id) fail to hold. He obtained the following result.

Theorem 3.1.5 i) M ∈ An(E, E) fulfils (Co, SIn, Id, B) if and only if there exist a contin-
uous strictly monotonic function f : E → IR and real numbers ω1, . . . , ωn > 0 fulfilling

∑
i ωi = 1

such that

M(x) = f−1
[ n∑

i=1

ωi f(xi)
]
, x ∈ En. (3.3)

ii) M ∈ An(E, E) fulfils (Co, SIn, B) if and only if there exist a continuous strictly monotonic
function f : E → IR and real numbers p1, . . . , pn > 0, q ∈ IR such that

M(x) = f−1
[ n∑

i=1

pi f(xi) + q
]
, x ∈ En. (3.4)

The quasi-linear means (3.3) and the quasi-linear functions (3.4) are weighted aggregation
operators. In the set of properties given here for these operators, the weights are not a priori
given. The question of uniqueness with respect to f is dealt in details in [4, Sect. 6.4].

Table 3.2 provides some particular cases of quasi-linear means.

f(x) M(x) name of weighted mean

x
∑

ωi xi arithmetic

x2
√∑

ωi x2
i quadratic

log x
∏

xωi
i geometric

xα (α ∈ IR0)
(∑

ωi x
α
i

) 1
α root-power

Table 3.2: Examples of quasi-linear means

Note that Aczél [4, Sect. 6.5] showed that the two-place quasi-linear means are the general
continuous strictly increasing solutions of the autodistributivity equations (2.18) (see also Aczél
and Dhombres [7, Chap. 17]).
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Theorem 3.1.6 M ∈ A2(E, E) fulfils (Co, SIn, AD) if and only if there exists a continuous
strictly monotonic function f : E → IR and an arbitrary constant ω ∈ ]0, 1[ such that

M(x, y) = f−1[(1− ω) f(x) + ω f(y)], (x, y) ∈ E2.

Of course, by adding (Sy) to the previous theorem, we obtain the two-place quasi-arithmetic
means. This indicates the equivalence between (B) and (AD) for strictly increasing means.

As Fuchs [73] has shown, the results and proofs of Theorems 3.1.1 and 3.1.5 can be applied
mutatis mutandis to arbitrary completely ordered sets. In order to avoid arguments concerning
metric, the continuity property has been replaced by a property of pure algebraic character.

3.1.2 Non-strict quasi-arithmetic means

We now generalize Theorem 3.1.1 by relaxing (SIn) into (In). Thus, we describe the class of
operators fulfilling (Sy, Co, In, Id, B). These operators will be called non-strict quasi-arithmetic
means. Contrary to the class of quasi-linear functions, this family of operators has a rather
intricate structure. It is very similar to that of ordinal sums (see Sect. 3.3.3) well-known in the
theory of semigroups, see e.g. [110, 128]. Note that all the results we present in this section have
been published in Fodor and Marichal [67].

We shall confine ourselves to functions with two variables. The case of n variables remains
an open problem. Moreover, we will assume that E is a closed real interval [a, b].

Lemma 3.1.1 If M ∈ A2([a, b], [a, b]) fulfils (Sy, Co, In, Id, B) then the following conditions
are equivalent:

i) M(a, x) < x < M(x, b) ∀x ∈ ]a, b[
ii) x < M(x, y) < y ∀x, y ∈ ]a, b[, x < y

iii) M fulfils (SIn) on ]a, b[.

Proof. ii) ⇒ i). For all x ∈ ]a, b[, there exist u, v ∈ ]a, b[ such that a < u < x < v < b. From ii)
we have M(a, x) ≤ M(u, x) < x < M(x, v) ≤ M(x, b).

i) ⇒ ii). Assume first that there exist x0, y0 ∈ ]a, b[, x0 < y0 such that M(x0, y0) = y0. Define

X := {x ∈ [a, b] |x ≤ y0 and M(x, y0) = y0}.

On the one hand, it is clear that X 6= ∅ since x0 ∈ X. On the other hand, by (Co), X is closed.
Introducing x∗ := inf X, we have a < x∗ ≤ x0 < y0 since, from i), we have a 6∈ X. Moreover, by
(In), we have [x∗, y0] ⊆ X. We should have x∗ > M(a, y0). Indeed, if x∗ ≤ M(a, y0), then, since
M(a, y0) < y0 by hypothesis, we have M(a, y0) ∈ X, that is M(M(a, y0), y0) = y0 and

M(M(a, x∗), y0)
(Id)
= M(M(a, x∗),M(y0, y0))

(B)
= M(M(a, y0),M(x∗, y0))

= M(M(a, y0), y0) = y0.

Since M(a, x∗) ≤ x∗ < y0, we have M(a, x∗) ∈ X and, by the definition of x∗, we have M(a, x∗) =
x∗, which contradicts i).

It follows that M(a, y0) < x∗ < y0 = M(x∗, y0) and, by (Co), there exists z ∈ (a, x∗) such
that x∗ = M(z, y0). Consequently, we have, using (Id) and (B),

M(M(z, x∗), y0) = M(M(z, x∗),M(y0, y0)) = M(M(z, y0),M(x∗, y0)) = M(x∗, y0) = y0.
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Since M(z, x∗) ≤ x∗ < y0, we have M(z, x∗) ∈ X and, by the definition of x∗, we have M(z, x∗) =
x∗. Finally, we have, using (Id) and (B),

x∗ = M(x∗, x∗) = M(x∗,M(z, y0)) = M(M(x∗, x∗),M(z, y0))
= M(M(x∗, z),M(x∗, y0)) = M(x∗, y0) = y0,

a contradiction. Consequently, we have M(x, y) < y for all x, y ∈ ]a, b[, x < y. One can prove in
a similar way that x < M(x, y).

ii) ⇔ iii). Aczél has proved that, under the assumptions of this lemma, the condition ii) is
equivalent to

M(x, y) = f−1
[f(x) + f(y)

2

]
∀x, y ∈ ]a, b[

where f is any continuous strictly monotonic function on ]a, b[ (see [4, pages 281–284]), which is
sufficient.

Before stating the following important result we need to introduce some subfamilies. For all
θ ∈ [a, b], we define Ba,b,θ as the set of operators M ∈ A2([a, b], [a, b]) which fulfil (Sy, Co, In, Id,
B) and such that M(a, b) = θ. The extreme cases Ba,b,a and Ba,b,b will play an important role in
the sequel. We can notice that min ∈ Ba,b,a and max ∈ Ba,b,b.

Theorem 3.1.7 M ∈ A2([a, b], [a, b]) fulfils (Sy, Co, In, Id, B) if and only if there exist two
numbers α and β fulfilling a ≤ α ≤ β ≤ b, two operators Ma,α,α ∈ Ba,α,α and Mβ,b,β ∈ Bβ,b,β,
and a continuous strictly monotonic function f : [α, β] → IR such that, for all x, y ∈ E,

M(x, y) =





Ma,α,α(x, y) if x, y ∈ [a, α],

Mβ,b,β(x, y) if x, y ∈ [β, b],

f−1
[f [median(α, x, β)] + f [median(α, y, β)]

2

]
otherwise.

Proof. (Sufficiency) Indeed, we can easily show that the operators M defined in the statement
fulfil (Sy, Co, In, Id, B).

(Necessity) Assume that M ∈ A2([a, b], [a, b]) fulfils (Sy, Co, In, Id, B). Define

Xa := {x ∈ [a, b] |M(a, x) = x} and Xb := {x ∈ [a, b] |M(x, b) = x}.
On the one hand, it is clear that Xa 6= ∅ and Xb 6= ∅ since a ∈ Xa and b ∈ Xb. On the other
hand, by (Co), Xa and Xb are closed. Introducing α := supXa and β := inf Xb, we have α ≤ β,
otherwise we would have

M(a, b) ≥ M(a, α) = α > β = M(β, b) ≥ M(a, b),

a contradiction.
Let x, y ∈ [a, b]. If x, y ∈ [a, α], then we have M(x, y) = Ma,α,α(x, y), where Ma,α,α ∈ Ba,α,α.

Likewise, if x, y ∈ [β, b], then we have M(x, y) = Mβ,b,β(x, y), where Mβ,b,β ∈ Bβ,b,β . Otherwise,
we have two mutually exclusive cases:

• If α = β, then we have

α = M(a, α) ≤ M(x, y) ≤ M(α, b) = α,

that is M(x, y) = α.
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• If α < β, then we have

M(a, y) = M(α, y) ∀y ∈ [α, M(α, b)], (3.5)
M(x, b) = M(x, β) ∀x ∈ [M(a, β), β]. (3.6)

Indeed, if y ∈ [α, M(α, b)] then, by (Co), there exists z ∈ ]α, b[ such that y = M(α, z). So,
we have

M(a, y) = M(M(a, a),M(α, z)) = M(M(a, α),M(a, z))
= M(M(α, α),M(a, z)) = M(M(α, a),M(α, z))
= M(α, y),

which proves (3.5). We can show that (3.6) is true by using the same argument.

Moreover, we have
M(α, β) = M(α, b) = M(a, β) = M(a, b). (3.7)

Indeed, setting θ := M(a, b), we have

α = M(a, α) ≤ M(a, β) ≤ θ ≤ M(α, b) ≤ M(β, b) = β

and we can apply (3.5) and (3.6). Therefore, we have

θ = M(M(a, b), θ) = M(M(a, θ),M(θ, b)) = M(M(α, θ),M(θ, β))
= M(M(α, β), θ) = M(M(a, α),M(β, b)) = M(α, β),

and

M(α, b) = M(M(a, α), b) = M(M(α, b), θ) = M(M(α, b),M(α, β)) = M(α, β),

and

M(a, β) = M(a,M(β, b)) = M(θ, M(a, β)) = M(M(α, β),M(a, β)) = M(α, β),

which proves (3.7).

We also have

M(a, x) = M(α, x) ∀x ∈ [α, β], (3.8)
M(x, b) = M(x, β) ∀x ∈ [α, β]. (3.9)

By (3.5)–(3.7), it suffices to prove that M(a, x) = M(α, x) for all x ∈ [θ, β], and M(x, b) =
M(x, β) for all x ∈ [α, θ].

M is continuous, thus for any x ∈ [θ, β] there exists z ∈ [a, b] such that x = M(β, z). Thus
we have

M(a, x) = M(a,M(β, z)) = M(M(a, β),M(a, z))
= M(M(α, β),M(a, z)) = M(M(β, z), α)
= M(α, x)

which proves (3.8). We can prove (3.9) similarly.

For any x ≤ α, y ≥ β we do have M(x, y) = θ. Indeed, from (3.7), we have θ = M(a, β) ≤
M(x, y) ≤ M(α, b) = θ.

Finally, by Theorem 3.1.1 and Lemma 3.1.1, it suffices to show that M(α, x) < x < M(x, β)
for all x ∈ ]α, β[. Suppose the first inequality is not true. Then, from (3.8), there exists
x ∈ ]α, β[ such that M(a, x) = M(α, x) = x, which contradict the definition of α. We can
prove the second inequality in a similar way.
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As we can see, the previous characterization partitions the definition set [a, b]2 into at most
nine cells. On each one of them, M takes a well-defined form. Figure 3.1 presents graphics
showing the particular case of f(x) = x (non-strict arithmetic mean). Out of the two extreme
cells, which correspond to the families Ba,α,α and Bβ,b,β, we find the arithmetic mean with
arguments depending on each cell itself. This comes from the presence of the median function in
the expression of M . For example, if x ∈ [β, b] and y ∈ [α, β] then we get the arithmetic mean for
the arguments β and y. In order to obtain a clear and readable three-dimensional representation,
we have chosen the min and max operators in the extreme cells.

6

-

Ba,α,α

Bβ,b,β

x + α

2

β + α

2

α + y

2

x + y

2

β + y

2

α + β

2

x + β

2

a α β b x

α

β

b

y

Figure 3.1: Example of non-strict arithmetic mean

Now, our task consists in describing the two families Ba,α,α and Bβ,b,β. Because of (Id), they
can be assimilated with Ba,b,b and Ba,b,a respectively, simply by the help of a redefinition of the
bounds of the intervals [a, α] and [β, b].

Before going on, let us consider a lemma.

Lemma 3.1.2 M ∈ Ba,b,a (resp. Ba,b,b) is strictly increasing on ]a, b[2 if and only if there
exists a continuous strictly increasing (resp. decreasing) function g : [a, b] → IR, with g(a) = 0
(resp. g(b) = 0), such that

M(x, y) = g−1
[√

g(x) g(y)
]
, (x, y) ∈ [a, b]2. (3.10)

Proof. Let us consider the case Ba,b,a, the other one is symmetric.
(Sufficiency) Easy.
(Necessity) Let M ∈ Ba,b,a be strictly increasing on ]a, b[2. From Theorem 3.1.1, there exists

a function f which is continuous and strictly monotonic on ]a, b[, such that

2f(M(x, y)) = f(x) + f(y) ∀x, y ∈ ]a, b[. (3.11)
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Replacing f by −f , if necessary, we can assume that f is strictly increasing on ]a, b[. By the
continuity of M , we have

lim
x→a+

M(x, y) = M(a, y) = a ∀y ∈ ]a, b[.

Then assume that limx→a+ f(x) = r ∈ IR. From (3.11), we have f(y) = r for all y ∈ ]a, b[, which
is impossible since f is strictly increasing on ]a, b[. Therefore, we have limx→a+ f(x) = −∞.

From (3.11), we also have limy→b− f(y) ∈ IR. Then let g(x) be the continuous extension of
the function exp f(x) on [a, b], that is, g(a) = 0 and g(x) = exp f(x) on ]a, b]. The function g
thus defined is continuous and strictly increasing on [a, b] and (3.11) becomes

ln g[M(x, y)] =
ln g(x) + ln g(y)

2
∀x, y ∈ ]a, b]

and so we have
M(x, y) = g−1

[√
g(x) g(y)

]

on ]a, b]2 and even on [a, b]2 since M is continuous.

Now, we can present a description of the two families Ba,b,a and Ba,b,b. Let us start with
the first one. It corresponds to the cell in the upper right-hand corner in the partition of the
definition set [a, b]2 (see Figure 3.1), for which we have the boundary condition M(a, b) = a. The
quasi-geometric means (3.10) play a central role in this description.

Theorem 3.1.8 We have M ∈ Ba,b,a if and only if

• either
M(x, y) = min(x, y) ∀x, y ∈ [a, b];

• or there exists a continuous strictly increasing function g : [a, b] → IR, with g(a) = 0, such
that

M(x, y) = g−1
[√

g(x) g(y)
]

∀x, y ∈ [a, b];

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {gk | k ∈ K} of continuous strictly increasing func-
tions gk : [ak, bk] → IR, with gk(ak) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =





g−1
k

[√
gk[min(x, bk)] gk[min(y, bk)]

]
if ∃k ∈ K such that min(x, y)∈]ak, bk[;

min(x, y) otherwise.

Proof. (Sufficiency) One can easily check that the operators M defined in the statement belong
to Ba,b,a.

(Necessity) Let x, y ∈ [a, b] and M ∈ Ba,b,a. Define a set X ⊆ [a, b] by

X := {x ∈ [a, b] |M(x, b) = x}.

It is clear that X is closed and non-empty. Thus Y := [a, b] \X is open and bounded. In fact
Y = ∅ if and only if M(x, b) = x for all x ∈ [a, b], that is

M(x, y) = min(x, y)
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since assuming x ≤ y, with x, y ∈ [a, b], we have M(x, y) ≤ M(x, b) = x = M(x, x) ≤ M(x, y)
and hence M(x, y) = x.

In the other extreme case we have Y = ]a, b[, that is X = {a, b}, if and only if x < M(x, b)
for all x ∈ ]a, b[. However M(a, a) = a and M(a, b) = a imply M(a, x) = a < x for all x ∈ ]a, b[.
It follows, from Lemma 3.1.1 that M(x, y) is strict on ]a, b[2 and from Lemma 3.1.2 that

M(x, y) = g−1
[√

g(x) g(y)
]
,

where g is any continuous strictly increasing function on [a, b], with g(a) = 0.
Consider the remaining case, that is ∅ ⊆/ Y ⊆/ ]a, b[. Then there exists a countable index set

K ⊆ IN and a class of pairwise disjoint open intervals {]ak, bk[ | k ∈ K} of [a, b] such that

Y =
⋃

k∈K

]ak, bk[.

For all k ∈ K, we obviously have M(ak, b) = ak and M(bk, b) = bk since ak, bk ∈ X, but also

M(x, b) > x ∀x ∈ (ak, bk), (3.12)
M(ak, x) = ak ∀x ∈ [ak, b], (3.13)
M(bk, x) = bk ∀x ∈ [bk, b]. (3.14)

To establish (3.12), we can notice that x ∈ ]ak, bk[ implies x /∈ X. For (3.13) and (3.14), we
obviously have

ak = M(ak, ak) ≤ M(ak, x) ≤ M(ak, b) = ak, ∀x ∈ [ak, b],
bk = M(bk, bk) ≤ M(bk, x) ≤ M(bk, b) = bk, ∀x ∈ [bk, b].

Then we can see that, if min(x, y) ∈ X, then

M(x, y) = min(x, y).

If min(x, y) ∈ Y , that is min(x, y) ∈ ]ak, bk[ for one k ∈ K, then, assuming that x ∈ ]ak, bk[ and
y ∈ [bk, b], we have

M(x, y) = M(x, bk). (3.15)

Indeed, since from (3.13), we have M(ak, bk) = ak and since M(bk, bk) = bk, then, by continuity
of M , there exists z ∈ (ak, bk) such that x = M(z, bk). Then, from (3.14) we have

M(x, y) = M(M(z, bk),M(y, y)) = M(M(z, y),M(bk, y)) = M(M(z, y), bk)
= M(M(z, y),M(bk, bk)) = M(M(z, bk),M(y, bk)) = M(x, bk).

Now, we can show that if x, y ∈ ]ak, bk[, then

M(x, y) = g−1
k

[√
gk(x) gk(y)

]

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0. It is sufficient,
from Lemmas 3.1.1 and 3.1.2, to show that

M(ak, x) < x < M(x, bk), ∀x ∈ ]ak, bk[.

The first inequality comes from (3.13). For the second one, we notice that if x = M(x, bk) for
one x ∈ ]ak, bk[ then, from (3.15), we would have x = M(x, bk) = M(x, b), which contradicts
(3.12).
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Figure 3.2: Description of Ba,b,a

We can note that, in the previous result, the third possibility includes the first two. Indeed,
we get the first case if no subinterval ]ak, bk[ is considered and we get the second one if only one
subinterval is considered and if it corresponds to ]a, b[. Consequently, only the third case could
have been presented, the first two cases being simply degenerations of the third.

Figure 3.2 represents an example from the third case. As we can see, there exists a partition
of [a, b] in disjoint open subintervals ]ak, bk[ that divide the definition set [a, b]2 into several pieces.
If, given (x, y) ∈ [a, b]2, there exists an index k ∈ K for which min(x, y) lies in ]ak, bk[ then (x, y)
is in one of the unshaded regions. A quasi-geometric mean g−1

k

√
gk(x)gk(y) is defined in the

central square of this region. Moreover, due to the presence of the min function in the expression
of M , there are constant values on each horizontal or vertical segment going from the edge of
the square to the extremity of the definition set. Finally, the min function is defined in all the
shaded regions.

Now, let us turn to the second family Ba,b,b that corresponds to the boundary condition
M(a, b) = b. The next theorem presents a description very similar to the previous one.

Theorem 3.1.9 We have M ∈ Ba,b,b if and only if

• either
M(x, y) = max(x, y) ∀x, y ∈ [a, b];

• or there exists a continuous strictly decreasing function g : [a, b] → IR, with g(b) = 0, such
that

M(x, y) = g−1
[√

g(x) g(y)
]

∀x, y ∈ [a, b];

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {gk | k ∈ K} of continuous strictly decreasing func-
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tions gk : [ak, bk] → IR, with gk(bk) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =





g−1
k

[√
gk[max(ak, x)] gk[max(ak, y)]

]
if ∃k ∈ K such that max(x, y)∈]ak, bk[;

max(x, y) otherwise.

Figure 3.3 represents an example from the third case. We will not stress on this representation,
which is very similar to the one of Figure 3.2.
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Figure 3.3: Description of Ba,b,b

To conclude, we note that Theorems 3.1.7, 3.1.8 and 3.1.9, taken together, give a complete
description of the non-strict quasi-arithmetic means with two variables, defined from the bisym-
metry property.

3.2 Decomposable extended operators

3.2.1 Quasi-arithmetic means

Let E be a real interval, finite or infinite. Kolmogoroff [107] and Nagumo [136], in their pioneering
work, considered the class of extended aggregation operators fulfilling (Sy, Co, SIn, Id, D), also
called mean values. They established, independently of each other, the following result.

Theorem 3.2.1 M ∈ A(E,E) fulfils (Sy, Co, SIn, Id, D) if and only if there exists a
continuous strictly monotonic function f : E → IR such that, for all n ∈ IN0,

M (n)(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]
, x ∈ En.

Theorem 3.2.1 gives a characterization of the class of quasi-arithmetic means (see Section
3.1.1) defined for all and not for any fixed number of variables. It turns out, according to
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Theorems 3.1.1 and 3.2.1, that the (B) property is an adequate substitute of (D) for defining
quasi-arithmetic means with a definite number of variables. Note that the connection between
(B) and (D) for quasi-arithmetic means was discussed by Horváth [102].

Now, suppose n ∈ IN0 fixed and consider the situation where each value xi, i ∈ Nn, is weighted
by a non-negative rational number ωi (also called degree of significance of i). If these weights
(ω1, . . . , ωn) are given according to a ratio scale, they are not univoqually estimated but are such
that any other system of acceptable weights (ω′1, . . . , ω′n) corresponds to

ω′i = C ωi ∀i ∈ Nn, C is a strictly positive rational number.

(ω1, . . . , ωn) can be modified using a similarity transformation into

ω′i =
ωi∑
i ωi

(
∑

i

ω′i = 1)

or
pi = q ω′i,

where pi, q ∈ IN, q 6= 0,
∑

i pi = q.
It is possible to simulate the effect of a quasi-linear mean (3.3) with the weights (ω1, . . . , ωn)

only by using a quasi-arithmetic mean M in the following way:

M(p1 ¯ x1, . . . , pn ¯ xn) = f−1
[ 1

q

∑

i

pi f(xi)
]

= f−1
[ ∑

i

ω′i f(xi)
]
.

Now, we show that (Sy) is unnecessary in Theorem 3.2.1, provided that decomposability is
considered in its general form (SD). Thus we prove that the class of extended operators satisfying
(Co, SIn, Id, SD) coincides with that of extended quasi-arithmetic mean operators. This result
can also be found in Marichal [117]. From (2.12) and (2.13), we can see that this is a generalization
of Theorem 3.2.1.

One could think that (SD) alone implies (Sy). Nevertheless, the non-symmetric extended
operator M = (P(n)

1 )n∈IN0 fulfils (SD)1.

Lemma 3.2.1 If A corresponds to the matrix

A =




θ θ 0
1− θ 0 θ

0 1− θ 1− θ


 , θ ∈ ]0, 1[,

then

lim
i→+∞

Ai =
1
D




θ2 θ2 θ2

θ(1− θ) θ(1− θ) θ(1− θ)
(1− θ)2 (1− θ)2 (1− θ)2




with D = θ2 + θ(1− θ) + (1− θ)2.

Proof. The eigenvalues of A correspond to the solutions of det(A− zI) = 0 or

(z − 1)[θ(1− θ)− z2] = 0.

1Remember that P
(n)
1 is the n-place projection associated to the first argument, see (1.4).
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Three distinct eigenvalues are obtained: z1 = 1, z2 =
√

θ(1− θ), z3 = −√
θ(1− θ) and A can

be diagonalized:
∆ = S−1AS = diag

(
1,

√
θ(1− θ),−

√
θ(1− θ)

)
.

We also have the following eigenvectors:

S1 =




s11

s21

s31


 =




θ2

θ(1− θ)
(1− θ)2


 , S2 =




s12

s22

s32


 =




−√θ√
θ −√1− θ√

1− θ


 ,

S3 =




s13

s23

s33


 =




√
θ

−√θ −√1− θ√
1− θ


 .

A can be expressed in the form: A = S∆S−1 and

Ai = S∆iS−1, ∀i ∈ IN0.

Finally, setting s′ij := (S−1)ij , we have

lim
i→+∞

Ai = S
(

lim
i→+∞

∆i
)
S−1 = ( s′11S1 s′12S1 s′13S1 ) .

We only have to determine s′11, s
′
12, s

′
13 such that

( s′11 s′12 s′13 ) S = ( 1 0 0 )

and we can see that
s′11 = s′12 = s′13 =

1
D

.

Theorem 3.2.2 M ∈ A(E, E) fulfils (Co, SIn, Id, SD) if and only if there exists a contin-
uous strictly monotonic function f : E → IR such that, for all n ∈ IN0,

M (n)(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]
, x ∈ En.

Proof. (Sufficiency) Trivial (see Theorem 3.2.1).
(Necessity) Let M ∈ A(E, E) fulfilling (Co, SIn, Id, SD). By Propositions 2.3.6 and 2.3.5,

M (2) fulfils (Co, SIn, Id, B). Next, by Theorem 3.1.5, there exists a continuous strictly monotonic
function f : E → IR and a real number θ ∈ ]0, 1[ such that

M(x1, x2) = f−1
[
θ f(x1) + (1− θ) f(x2)

]
, ∀x1, x2 ∈ E.

Define Ω := f(E) = {f(x) |x ∈ E}. The extended operator F ∈ A(Ω, Ω) defined by

F (z1, . . . , zn) := f
[
M(f−1(z1), . . . , f−1(zn))

]
, ∀z ∈ Ωn, ∀n ∈ IN0,

also fulfils (Co, SIn, Id, SD) and is such that

F (z1, z2) = θ z1 + (1− θ) z2, ∀z1, z2 ∈ Ω. (3.16)
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Now, let us show that

F (z1, z2, z3) =
1
D

[
θ2 z1 + θ(1− θ) z2 + (1− θ)2 z3

]
, ∀z1, z2, z3 ∈ Ω, (3.17)

with D = θ2 + θ(1− θ) + (1− θ)2. We have successively

F (z1, z2, z3) = F (F (z1, z2), F (z1, z3), F (z2, z3)) (by (2.17))
= F (θ z1 + (1− θ) z2, θ z1 + (1− θ) z3, θ z2 + (1− θ) z3) (by (3.16))
= F ((z1, z2, z3)A)

where A is the matrix defined in Lemma 3.2.1. By iteration, we obtain

F (z1, z2, z3) = F ((z1, z2, z3) A) = F ((z1, z2, z3) A2)
= F ((z1, z2, z3) Ai) ∀i ∈ IN0.

We then have

F (z1, z2, z3) = lim
i→+∞

F ((z1, z2, z3) Ai) (constant numerical sequence)

= F ((z1, z2, z3) lim
i→+∞

Ai) (by (Co))

= F
(
3¯ 1

D

[
θ2 z1 + θ(1− θ) z2 + (1− θ)2 z3

])
(Lemma 3.2.1)

=
1
D

[
θ2 z1 + θ(1− θ) z2 + (1− θ)2 z3

]
(by (Id))

which proves (3.17).
Now we show that θ must be 1/2. (SD) implies

F (z1, z2, z3) = F (F (z1, z3), z2, F (z1, z3)).

By (3.16) and (3.17), this identity becomes

θ(1− θ)(1− 2 θ)(z3 − z1) = 0,

that is θ = 1/2.
Consequently, M (2) fulfils (Sy). Moreover, by Proposition 2.3.1, M also fulfils (Sy). We then

conclude by Theorem 3.2.1.

3.2.2 Non-strict quasi-arithmetic means

We now generalize Theorem 3.2.1 by relaxing (SIn) into (In). Thus, we investigate the class of
extended operators fulfilling (Sy, Co, In, Id, D). Since its description is very similar to that given
in Section 3.1.2, we will call those extended operators the non-strict quasi-arithmetic means.
Here again, we assume that E is a closed real interval [a, b]. The results of this section can also
be found in Fodor and Marichal [67].

Before presenting the result, we need a lemma. Its statement can be extracted from the
Kolmogoroff’s main proof (see [107]).

Lemma 3.2.2 If M ∈ A([a, b], [a, b]) fulfils (Sy, Co, In, Id, D) then there exists a function
ψ : [0, 1] → [a, b] which is continuous on ]0, 1[ and increasing on [0, 1], with ψ(0) = a and
ψ(1) = b, such that, for all n ∈ IN0,

M (n)[ψ(t1), . . . , ψ(tn)] = ψ
( 1
n

n∑

i=1

ti
)
, t ∈ [0, 1]n. (3.18)
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For all θ ∈ [a, b], we define Da,b,θ as the set of extended operators M ∈ A([a, b], [a, b]) which
fulfil (Sy, Co, In, Id, D) and such that M(a, b) = θ. The extreme cases Da,b,a and Da,b,b will play
an important role in the sequel.

Theorem 3.2.3 M ∈ A([a, b], [a, b]) fulfils (Sy, Co, In, Id, D) if and only if there exist
two numbers α and β fulfilling a ≤ α ≤ β ≤ b, two extended operators Ma,α,α ∈ Da,α,α and
Mβ,b,β ∈ Dβ,b,β, and a continuous strictly monotonic function f : [α, β] → IR such that, for all
n ∈ IN0 and all x ∈ En,

M(x) =





Ma,α,α(x) if maxi xi ∈ [a, α],

Mβ,b,β(x) if mini xi ∈ [β, b],

f−1
[ 1

n

n∑

i=1

f [median(α, xi, β)]
]

otherwise.

Proof. (Sufficiency). We can easily show that M satisfies the announced properties.
(Necessity). According to Lemma 3.2.2, there exists a function ψ : [0, 1] → [a, b] which is

continuous on ]0, 1[ and increasing on [0, 1], with ψ(0) = a and ψ(1) = b, such that (3.18) holds
for all n ∈ IN0.

Define α and β in the following way:

a ≤ α = lim
t→0+

φ(t) ≤ lim
t→1−

φ(t) = β ≤ b.

Then, for all k ∈ IN0, we have

M(k ¯ a, α) = α (3.19)
M(β, k ¯ b) = β. (3.20)

Indeed, according to Lemma 3.2.2 and by continuity of ψ and of M , we have

M(k ¯ a, α) = lim
t→0+

M(k ¯ ψ(0), ψ(t)) = lim
t→0+

ψ
( t

k + 1

)
= α

and

M(β, k ¯ b) = lim
t→1−

M(ψ(t), k ¯ ψ(1)) = lim
t→1−

ψ
( k + t

k + 1

)
= β.

Then let n ∈ IN0 and x ∈ [a, b]n. If maxi xi ∈ [a, α] then, from (3.19), we have M(x) = Ma,α,α(x),
where Ma,α,α ∈ Da,α,α. Likewise, if mini xi ∈ [β, b] then, from (3.20), we have M(x) = Mβ,b,β(x),
where Mβ,b,β ∈ Dβ,b,β. Otherwise, we have two mutually exclusive cases:

i) If α = β then, from (3.19) and (3.20), we have

α = M((n− 1)¯ a, α) ≤ M(x) ≤ M(α, (n− 1)¯ b) = α,

that is M(x) = α.
ii) If α < β then ψ is strictly increasing on [0, 1]. Indeed, suppose it is not true and there

exist t1, t2 ∈ ]0, 1[, t1 < t2, such that ψ(t1) = ψ(t2).
Then we have, for all p, q ∈ IN, p ≤ q, q 6= 0,

M(p¯ ψ(t1), (q − p)¯ ψ(0)) = M(p¯ ψ(t2), (q − p)¯ ψ(0)),
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that is, from Lemma 3.2.2,
ψ

(p

q
t1

)
= ψ

(p

q
t2

)
.

Therefore, for any rational number r ∈ [0, 1], we have

ψ(r t1) = ψ(r t2),

which still holds, by continuity of ψ, for all real number r ∈ [0, 1]. Choosing r = t1/t2 ∈ ]0, 1[,
the previous equality becomes

ψ(r t1) = ψ(t1) = ψ(t2).

By iteration, we get
ψ(rm t1) = ψ(t2) ∀m ∈ IN0

and by continuity of ψ,
α = lim

m→+∞ψ(rm t1) = ψ(t2).

One can show, in a similar way, that ψ(t1) = β. Indeed we have, for all p, q ∈ IN, p ≤ q, q 6= 0,

M(p¯ ψ(t1), (q − p)¯ ψ(1)) = M(p¯ ψ(t2), (q − p)¯ ψ(1)),

that is, from Lemma 3.2.2,

ψ(1− r (1− t1)) = ψ(1− r (1− t2))

for all r ∈ [0, 1]. Choosing r = (1− t2)/(1− t1) ∈ ]0, 1[, the previous equality implies

ψ(1− (1− t1)) = ψ(t1) = ψ(t2) = ψ(1− r (1− t1)).

By iteration and then by continuity of ψ, we get

ψ(t1) = lim
m→+∞ψ(1− rm (1− t1)) = β.

Finally, we have α = β, a contradiction. Consequently, ψ is strictly increasing on ]0, 1[ and
thus on [0, 1]. Since ψ is continuous on ]0, 1[, its inverse ψ−1 is defined on ]α, β[∪{a, b} and is
continuous on ]α, β[.

Set n1, n2, n3 ∈ IN0 such that n1, n3 < n and n1 + n2 + n3 = n. Let us investigate the
expression

M(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)

with x1, . . . , xn1 ∈ [a, α], y1, . . . , yn2 ∈ ]α, β[ and z1, . . . , zm3 ∈ [β, b].
Using (Co) and Lemma 3.2.2 successively, we have

M(n1 ¯ a, y1, . . . , yn2 , n3 ¯ β) = lim
t→1−

M
[
n1 ¯ ψ(0), ψψ−1(y1), . . . , ψψ−1(yn2), n3 ¯ ψ(t)

]

= lim
t→1−

ψ
[ n1

n
0 +

1
n

n2∑

i=1

ψ−1(yi) +
n3

n
t
]

= ψ
[ n1

n
0 +

1
n

n2∑

i=1

ψ−1(yi) +
n3

n
1

]
.

Since n1 < n, this latter expression is also equal to

M(n1 ¯ α, y1, . . . , yn2 , n3 ¯ b)
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and thus finally to
M(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)

since, by (In), we have

M(m1 ¯ a, y1, . . . , yn2 , n3 ¯ β) ≤ M(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)
≤ M(n1 ¯ α, y1, . . . , yn2 , n3 ¯ b).

Then, let f(x) be the continuous extension on [α, β] of the function ψ−1(x), that is, f(α) = 0,
f(β) = 1 and f(x) = ψ−1(x) on ]α, β[. The function f is thus continuous and strictly monotonic
on [α, β] and we have

M(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3) = f−1
[ n1

n
f(α) +

1
n

n2∑

i=1

f(yi) +
n3

n
f(β)

]
.

We now intend to describe the two families Da,α,α and Dβ,b,β . By (Id), they can be assimilated
with Da,b,b and Da,b,a respectively, simply by the help of a redefinition of the bounds of the
intervals [a, α] and [β, b].

Lemma 3.2.3 Let E be any real interval, finite or infinite. Let M ∈ A(E,E) fulfilling (Id,
D). If M (2) = min (resp. max) then M (n) = min (resp. max) for all n ∈ IN0.

Proof. Let us proceed by induction. Suppose that M (n) = min for a fixed n ≥ 2. By (2.13) and
Proposition 2.3.1, M fulfils (SD). Let x ∈ En+1 with x1 ≤ . . . ≤ xn+1. Using twice (2.17), we
simply have

M (n+1)(x1, . . . , xn+1) = M (n+1)(x1, . . . , x1, x2) = M (n+1)(x1, . . . , x1) = x1 = minxi.

The same can be done for the max operation.

Lemma 3.2.4 Let M ∈ A(E, E) fulfilling (Co, Id, D) and let f : E → IR be a continuous
strictly monotonic function. If

M (2)(x, y) = f−1
[f(x) + f(y)

2

]
, (x, y) ∈ E2

then, for all n ∈ IN0, we have

M (n)(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]
, x ∈ En.

Proof. On the one hand, by Proposition 2.3.1, M fulfils (Sy).
On the other hand, define Ω := f(E) = {f(x) |x ∈ E}. The extended operator F ∈ A(Ω, Ω)

defined by

F (z1, . . . , zn) := f [M(f−1(z1), . . . , f−1(zn))], ∀z ∈ Ωn, ∀n ∈ IN0,

also fulfils (Sy, Co, Id, D) and we have F (z1, z2) = (z1 + z2)/2 for all z1, z2 ∈ Ω.
By using (2.17), we can prove by induction that, for all n ∈ IN0,

F (n)(z) =
1
n

n∑

i=1

zi, z ∈ Ωn

(see Nagumo [136, Sect. 4]). This allows to end the proof.

Now, turn to the description of Da,b,a and Da,b,b. These descriptions are very similar to that
of Theorems 3.1.8 and 3.1.9.
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Theorem 3.2.4 We have M ∈ Da,b,a if and only if

• either we have, for all n ∈ IN0,

M(x) = min
i

xi ∀x ∈ [a, b]n,

• or there exists a continuous strictly increasing function g : [a, b] → IR, with g(a) = 0, such
that, for all n ∈ IN0,

M(x) = g−1
[

n

√∏

i

g(xi)
]

∀x ∈ [a, b]n,

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {gk | k ∈ K} of continuous strictly increasing func-
tions gk : [ak, bk] → IR, with gk(ak) = 0, such that, for all n ∈ IN0 and all x ∈ [a, b]n,

M(x) =





g−1
k

[
n

√∏

i

gk[min(xi, bk)]
]
, if ∃k ∈ K such that mini xi ∈ ]ak, bk[

mini xi, otherwise.

Proof. (Sufficiency) One can easily check that the extended operators M defined in the statement
belong to Da,b,a.

(Necessity) From (2.13) and Propositions 2.3.6 and 2.3.5, M (2) ∈ Ba,b,a and we can use
Theorem 3.1.8. Let n ∈ IN0 and x ∈ [a, b]n. We have three mutually exclusive cases.

• M (2) = min, and so, by Lemma 3.2.3, M (n) = min.

• There exists a continuous strictly increasing function g : [a, b] → IR, with g(a) = 0, such
that M(x, y) = g−1

√
g(x) g(y) for all x, y ∈ [a, b]. In that case, defining f(x) := ln g(x) on

]a, b], we have, by Lemma 3.2.4,

M(x) = g−1
[

n

√∏

i

g(xi)
]

for all x ∈ ]a, b]n and even for all x ∈ [a, b]n since M fulfils (Co).

• There exist a countable index set K ⊆ IN, a family of disjoint subintervals {]ak, bk[ | k ∈ K}
of [a, b] and a family {gk | k ∈ K} of continuous strictly increasing functions gk : [a, b] → IR,
with gk(ak) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =





g−1
k

[√
gk[min(x, bk)] gk[min(y, bk)]

]
if ∃k ∈ K such that min(x, y) ∈]ak, bk[;

min(x, y) otherwise.

Suppose that there exists k ∈ K such that mini xi ∈ ]ak, bk[. Then for all j ∈ Nn, we have

M (n)(x1, . . . , xj , xj+1, . . . , xn) = M (n)(x1, . . . , xj , bk, . . . , bk)

whenever x1, . . . , xj ∈ ]ak, bk[ and xj+1, . . . , xn ∈ [bk, b]. Indeed, if n = 2 then if x ∈ ]ak, bk[
and y ∈ [bk, b], we have M(x, y) = M(x, bk). Suppose the result is true for n (n ≥ 2) and
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also x1, . . . , xj ∈ ]ak, bk[ and xj+1, . . . , xn+1 ∈ [bk, b], j ∈ Nn+1. So, using twice (2.17), we
have

M (n+1)(x1, . . . , xj , xj+1, . . . , xn+1)

= M (n+1)(M (n)(x1, . . . , xj , bk, . . . , bk), . . . , M (n)(x2, . . . , xj , bk, . . . , bk))

= M (n+1)(x1, . . . , xj , bk, . . . , bk)

Thus, the result is still true for n + 1.

To end, we can use Lemma 3.2.4 to show that if x ∈ ]ak, bk[ then

M(x) = g−1
[

n

√∏

i

g(xi)
]
.

Hence the result.

Theorem 3.2.5 We have M ∈ Da,b,b if and only if

• either we have, for all n ∈ IN0,

M(x) = max
i

xi ∀x ∈ [a, b]n,

• or there exists a continuous strictly decreasing function g : [a, b] → IR, with g(b) = 0, such
that, for all n ∈ IN0,

M(x) = g−1
[

n

√∏

i

g(xi)
]

∀x ∈ [a, b]n,

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {gk | k ∈ K} of continuous strictly decreasing func-
tions gk : [ak, bk] → IR, with gk(bk) = 0, such that, for all n ∈ IN0 and all x ∈ [a, b]n,

M(x) =





g−1
k

[
n

√∏

i

gk[max(ak, xi)]
]
, if ∃k ∈ K such that maxi xi ∈ ]ak, bk[

maxi xi, otherwise.

3.3 Associative operators and extended operators

Before dealing with associative operators, we will need to introduce some useful concepts: A
semigroup (E,M) is a set E with an associative internal operation M defined on it. As usual,
we will assume that E is a real interval, finite or infinite. An element e ∈ E is

a) an identity for M if M(e, x) = M(x, e) = x for all x ∈ E,
b) an zero (or annihilator) for M if M(e, x) = M(x, e) = e for all x ∈ E,
c) an idempotent for M if M(e, e) = e.

For any semigroup (E,M), it is clear that there is at most one identity and at most one zero for
M in E, and both are idempotents.

We also need to introduce the concept of ordinal sum, well-known in the theory of semigroups
(see e.g. [29, 110]).
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Definition 3.3.1 Let K be a totally ordered set and {(Ek,Mk) | k ∈ K} be a collection of
disjoint semigroups indexed by K. Then the ordinal sum of {(Ek,Mk) | k ∈ K} is the set-theoretic
union ∪k∈KEk under the following binary operation:

M(x, y) =
{

Mk(x, y), if ∃ k ∈ K such that x, y ∈ Ek

min(x, y), if ∃ k1, k2 ∈ K, k1 6= k2 such that x ∈ Ek1 and y ∈ Ek2 .

The ordinal sum is a semigroup under the above defined operation.

3.3.1 Case of strictly increasing operators

Aczél [3] investigated the general continuous, strictly increasing, real solution on E2 of the
associativity functional equation (2.10). He proved the following (see also [4, Sect. 6.2]).

Theorem 3.3.1 Let E be a real interval, finite or infinite, which is open on one side. M ∈
A2(E, E) fulfils (Co, SIn, A) if and only if there exists a continuous and strictly monotonic
function f : E → IR such that

M(x, y) = f−1[f(x) + f(y)], (x, y) ∈ E2. (3.21)

It was also proved that the function f occuring in (3.21) is determined up to a multiplicative
constant, that is, with f(x) all functions g(x) = r f(x) (r ∈ IR0) belongs to the same M , and
only these.

Moreover, the function f is such that, if e ∈ E then

M(e, e) = e ⇔ f(e) = 0. (3.22)

Indeed, if M(e, e) = e then, by (3.21), we have 2f(e) = f(e), hence f(e) = 0. Conversely,
suppose f(e) = 0. By (3.21), we have 0 = 2f(e) = f(M(e, e)). Since f is strictly monotonic, we
have M(e, e) = e.

By (3.22) and because of strict monotonicity of f , there is at most one idempotent for M
(which is, actually, the identity) and hence M cannot be idempotent (Id). Therefore, there is no
operator fulfilling (Co, SIn, Id, A). However, we can notice that every operator fulfilling (Co, SIn,
A) satisfies (Sy). The sum (f(x) = x) and the product (f(x) = log x) are well-known examples
of continuous, strictly increasing, associative operators.

According to Ling [110], any semigroup (E,M) satisfying the hypotheses of Theorem 3.3.1
is called Aczélian.

Recall that each associative extended aggregation operator M ∈ A(E,E) is uniquely deter-
mined by its two-place function. Thus, we have immediately the following result.

Corollary 3.3.1 Let E be a real interval, finite or infinite, which is open on one side. M ∈
A(E, E) fulfils (Co, SIn, A) if and only if there exists a continuous and strictly monotonic
function f : E → IR such that, for all n ∈ IN0,

M(x) = f−1
[ n∑

i=1

f(xi)
]
, x ∈ En.
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3.3.2 Archimedean semigroups

Some authors tempted to generalize Theorem 3.3.1 by relaxing (SIn) into (In). But it seems that
the class of operators fulfilling (Co, In, A) has not been described yet. However, under some
additional conditions, results have been obtained.

First, we state a representation theorem attributed very often to Ling [110]. In fact, her
main theorem can be deduced from previously known results on topological semigroups, see
Faucett [59] and Mostert and Shields [128]. Nevertheless, the advantage of Ling’s approach is
twofold: treating two different cases in a unified manner and establishing elementary proofs.

Theorem 3.3.2 Let E = [a, b]. M ∈ A2(E, E) fulfils (Co, In, A) and

M(b, x) = x ∀x ∈ E (3.23)
M(x, x) < x ∀x ∈ E◦ (3.24)

if and only if there exists a continuous strictly decreasing function f : E → [0, +∞], with f(b) = 0,
such that

M(x, y) = f−1[ min(f(x) + f(y), f(a)) ] ∀x, y ∈ E. (3.25)

The requirement that E be closed is not really a restriction. If E is any real interval, finite
or infinite, with right endpoint b (b can be +∞), then we can replace condition (3.23) by

lim
t→b−

M(t, t) = b, lim
t→b−

M(t, x) = x ∀x ∈ E.

Any function f solving equation (3.25) is called an additive generator (or simply generator)
of M . Moreover, we can easily see that any function M of the form (3.25) is symmetric (Sy)
and, by Proposition 2.1.3, it is also conjunctive (Conj).

Condition (3.23) expresses that b is a left identity for M . It turns out, from (3.25), that b acts
as an identity, and a as a zero. Condition (3.24) simply expresses that there are no idempotents
for M in ]a, b[: indeed, by (In) and (3.23), we always have M(x, x) ≤ M(b, x) = x for all x ∈ [a, b].

Depending on whether f(a) is finite or infinite (recall that f(a) ∈ [0, +∞]), M takes a
well-defined form (see Fodor and Roubens [70, Sect. 1.3] and Schweizer and Sklar [164]):

• f(a) < +∞ if and only if M has zero divisors (i.e. ∃x, y ∈ ]a, b[ such that M(x, y) = a).
In this case, there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1 such that

M(x, y) = g−1[max(g(x) + g(y)− 1, 0)] ∀x, y ∈ [a, b]. (3.26)

To see this, it suffices to set g(x) := 1 − f(x)/f(a). For associative extended aggregation
operators M ∈ A([a, b], [a, b]), (3.26) becomes

M(x) = g−1
[
max

( n∑

i=1

g(xi)− n + 1, 0
)]

∀x ∈ [a, b]n, ∀n ∈ IN0.

• limt→a+ f(x) = +∞ if and only if M is strictly increasing on ]a, b[. In this case, there exists
a continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such
that

M(x, y) = g−1[g(x) g(y)] ∀x, y ∈ [a, b], (3.27)
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To see this, it suffices to set g(x) := exp(−f(x)). For associative extended aggregation
operators M ∈ A([a, b], [a, b]), (3.27) becomes

M(x) = g−1
[ n∏

i=1

g(xi)
]

∀x ∈ [a, b]n, ∀n ∈ IN0.

Of course, Theorem 3.3.2 can also be written under a dual form as follows.

Theorem 3.3.3 Let E = [a, b]. M ∈ A2(E, E) fulfils (Co, In, A) and

M(a, x) = x ∀x ∈ E (3.28)
M(x, x) > x ∀x ∈ E◦ (3.29)

if and only if there exists a continuous strictly increasing function f : E → [0, +∞], with f(a) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(b)) ] ∀x, y ∈ E. (3.30)

Here again, E can be any real interval, even infinite. The functions M of the form (3.30) are
symmetric (Sy) and disjunctive (Disj). There are no interior idempotents. The left endpoint a
acts as an identity and the right endpoint b acts as a zero.

Once more, two mutually exclusive cases can be examined:

• f(b) < +∞ if and only if M has zero divisors (i.e. ∃x, y ∈ ]a, b[ such that M(x, y) = b).
In this case, there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1 such that

M(x, y) = g−1[min(g(x) + g(y), 1)] ∀x, y ∈ [a, b]. (3.31)

To see this, it suffices to set g(x) := f(x)/f(b). For associative extended aggregation
operators M ∈ A([a, b], [a, b]), (3.31) becomes

M(x) = g−1
[
min

( n∑

i=1

g(xi), 1
)]

∀x ∈ [a, b]n, ∀n ∈ IN0.

• limt→b− f(x) = +∞ if and only if M is strictly increasing on ]a, b[. In this case, there exists
a continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such
that

M(x, y) = g−1[1− (1− g(x)) (1− g(y))] ∀x, y ∈ [a, b], (3.32)

To see this, it suffices to set g(x) := 1− exp(−f(x)). For associative extended aggregation
operators M ∈ A([a, b], [a, b]), (3.32) becomes

M(x) = g−1
[
1−

n∏

i=1

(1− g(xi))
]

∀x ∈ [a, b]n, ∀n ∈ IN0.

Any semigroup fulfilling the assumptions of Theorem 3.3.2 or 3.3.3 is called Archimedean,
see Ling [110]. In other words, any semigroup (E, M) is said to be Archimedean if M fulfils (Co,
In, A), one endpoint of E is an identity for M , and there are no idempotents for M in E◦. We
can make a distinction between conjunctive and disjunctive Archimedean semigroups depending
on whether the identity is the right endpoint of E or the left endpoint of E respectively. An
Archimedean semigroup is called properly Archimedean or Aczélian if every additive generator f
is unbounded; otherwise it is improperly Archimedean.

Ling [110, Sect. 6] proved that every Archimedean semigroup is obtainable as a limit of
Aczélian semigroups.
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3.3.3 A class of non-decreasing operators

We now intend to describe the class of operators M ∈ A2([a, b], [a, b]) fulfilling (Co, In, WId, A).
For all θ ∈ [a, b], we define Aa,b,θ as the set of operators M ∈ A2([a, b], [a, b]) which fulfil (Co, In,
WId, A) and such that M(a, b) = M(b, a) = θ. The extreme cases Aa,b,a and Aa,b,b will play an
important role in the sequel. The results proved by the author can be found in Marichal [116].

Theorem 3.3.4 M ∈ A2([a, b], [a, b]) fulfils (Co, In, WId, A) if and only if there exist α, β ∈
[a, b] and two operators Ma,α∧β,α∧β ∈ Aa,α∧β,α∧β and Mα∨β,b,α∨β ∈ Aα∨β,b,α∨β such that, for all
x, y ∈ [a, b],

M(x, y) =





Ma,α∧β,α∧β(x, y), if x, y ∈ [a, α ∧ β]
Mα∨β,b,α∨β(x, y), if x, y ∈ [α ∨ β, b]
(α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y), otherwise.

Proof. (Sufficiency) We can easily see that the operators M defined in the statement fulfil (Co,
In, WId). The only property we have to prove is associativity.

Assume α ≤ β (the other case can be treated similarly) and let x, y, z ∈ [a, b].

1. If y, z ≤ α then

• if x ≤ α then M = Ma,α,α and M(M(x, y), z) = M(x,M(y, z));

• if x > α then M(M(x, y), z) = M(α, z) = α = M(x,M(y, z)).

2. The case y, z ≥ β can be treated similarly.

3. In the remaining cases,

• if z ≤ α and y > α then M(x, y) ≥ α and M(M(x, y), z) = α = M(x, α) =
M(x,M(y, z));

• if z ≥ β and y < β then M(x, y) ≤ β and M(M(x, y), z) = β = M(x, β) =
M(x,M(y, z));

• if α ≤ z ≤ β then M(M(x, y), z) = z = M(x, z) = M(x,M(y, z)).

(Necessity) Set α := M(b, a), β := M(a, b) and suppose α ≤ β. The other case can be treated
similarly.

We have

M(α, a) = M(b, α) = α, (3.33)
M(a, β) = M(β, b) = β. (3.34)

Indeed, we have for instance, M(α, a) = M(M(b, a), a) = M(b,M(a, a)) = M(b, a) = α.
We have

M(x, y) = α ∀x, y ∈ [a, b], y ≤ α ≤ x, (3.35)
M(x, y) = β ∀x, y ∈ [a, b], x ≤ β ≤ y, (3.36)

Indeed, we have for instance, by (In) and (3.33), α = M(b, α) ≥ M(x, y) ≥ M(α, a) = α.
We have

M(a, y) = y ∀y ∈ [a, β] (3.37)
M(b, y) = y ∀y ∈ [α, b] (3.38)
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Indeed, for instance, if z increases from a to β, M(a, z) increases continuously from a to β. Using
the intermediate-value theorem, this implies that: ∀y ∈ [a, β], ∃z ∈ [a, β] such that y = M(a, z)
and

M(a, y) = M(a,M(a, z)) = M(M(a, a), z) = M(a, z) = y.

To end the proof, we have to prove that

M(x, y) = y ∀x ∈ [a, b] ∀y ∈ [α, β].

Indeed, by (In) and (3.37)–(3.38), we simply have y = M(a, y) ≤ M(x, y) ≤ M(b, y) = y.

As we can note, the previous characterization partitions the definition set [a, b]2 into several
pieces. On each one of them, M takes a well defined form. Figure 3.4 presents graphics showing
this partition and the corresponding values of the function.
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Figure 3.4: Operators fulfilling (Co, In, WId, A) on [a, b]2

Now, our task consists in describing the two families Aa,b,a and Aa,b,b. For this purpose,
consider a proposition.

Proposition 3.3.1 If M ∈ A2([a, b], [a, b]) fulfils (Co, In, A) then the following assertions
are equivalent:

i) b is an identity for M .
ii) a is a zero, and b is an idempotent for M .

iii) M(a, b) = M(b, a) = a, and b is an idempotent for M .

The assertions remain equivalent if the endpoints a and b are exchanged.

Proof. i) or ii) ⇒ iii) Trivial.
iii) ⇒ ii) For all x ∈ [a, b], we have M(a, x) ≤ M(a, b) = a, so that M(a, x) = a.
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iii) ⇒ i) If z increases from a to b, M(b, z) increases continuously from a to b. Using the
intermediate-value theorem, this implies that: ∀x ∈ [a, b], ∃z ∈ [a, b] such that x = M(b, z) and

M(b, x) = M(b,M(b, z)) = M(M(b, b), z) = M(b, z) = x.

We can prove similarly that M(x, b) = x for all x ∈ [a, b].

Now, let us turn to the description of Aa,b,a. Mostert and Shields [128, p. 130, Theorem B]
proved the following.

Theorem 3.3.5 M ∈ A2([a, b], [a, b]) fulfils (Co, A) and is such that a acts as a zero and b
as an identity if and only if

• either
M(x, y) = min(x, y) ∀x, y ∈ [a, b],

• or there exists a continuous strictly decreasing function f : [a, b] → [0, +∞], with f(b) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(a)) ] ∀x, y ∈ [a, b].

(conjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {fk | k ∈ K} of continuous strictly decreasing func-
tion fk : [ak, bk] → [0, +∞], with fk(bk) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =
{

f−1
k [min(fk(x) + fk(y), fk(ak)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]

min(x, y), otherwise.

(ordinal sum of conjunctive Archimedean semigroups and one-point semigroups)

By Proposition 3.3.1, Aa,b,a is the family of operators M ∈ A2([a, b], [a, b]) fulfilling (Co, In,
A) and such that a acts as a zero and b as an identity. Consequently, the description of the
family Aa,b,a is also given by Theorem 3.3.5 (see also Figure 3.5). Moreover, it turns out that all
operators fulfilling the assumptions of this result satisfy (Sy, In, Conj).

Theorem 3.3.5 can also be written under a dual form as follows.

Theorem 3.3.6 M ∈ A2([a, b], [a, b]) fulfils (Co, A) and is such that a acts as an identity
and b as a zero if and only if

• either
M(x, y) = max(x, y) ∀x, y ∈ [a, b],

• or there exists a continuous strictly increasing function f : [a, b] → [0, +∞], with f(a) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(b)) ] ∀x, y ∈ [a, b].

(disjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family {fk | k ∈ K} of continuous strictly increasing func-
tion fk : [ak, bk] → [0, +∞], with fk(ak) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =
{

f−1
k [min(fk(x) + fk(y), fk(bk)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]

max(x, y), otherwise.

(ordinal sum of disjunctive Archimedean semigroups and one-point semigroups)
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M fulfils (Co, A)
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a = zero, b = identity
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Figure 3.5: Description of Aa,b,a

As above, we can see that Aa,b,b is the family of operators M ∈ A2([a, b], [a, b]) fulfilling
(Co, In, A) and such that a acts as an identity and b as a zero. The description of the family
Aa,b,b is thus given by Theorem 3.3.6 (see also Figure 3.6). Moreover, all operators fulfilling the
assumptions of this result satisfy (Sy, In, Disj).

Theorems 3.3.4, 3.3.5 and 3.3.6, taken together, give a complete description of the family of
operators M ∈ A2([a, b], [a, b]) fulfilling (Co, In, WId, A). Imposing some additional conditions
leads to the following immediate corollaries.

Corollary 3.3.2 M ∈ A2([a, b], [a, b]) fulfils (Co, SIn, WId, A) if and only if there exists a
continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such that

• either
M(x, y) = g−1[g(x) g(y)] ∀x, y ∈ [a, b],

• or
M(x, y) = g−1[g(x) + g(y)− g(x) g(y)] ∀x, y ∈ [a, b].

Corollary 3.3.3 M ∈ A2([a, b], [a, b]) fulfils (Sy, Co, In, WId, A) if and only if there exist
α ∈ [a, b] and two functions Ma,α,α ∈ Aa,α,α and Mα,b,α ∈ Aα,b,α such that, for all x, y ∈ [a, b],

M(x, y) =





Ma,α,α(x, y), if x, y ∈ [a, α]
Mα,b,α(x, y), if x, y ∈ [α, b]
α, otherwise.

Corollary 3.3.4 M ∈ A2([a, b], [a, b]) fulfils (Co, In, WId, A) and has exactly one identity
element in [a, b] if and only if M ∈ Aa,b,a ∪ Aa,b,b.
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Figure 3.6: Description of Aa,b,b

3.3.4 Compensative operators

Now, we investigate the case of compensative operators (Comp). By (2.1), it is equivalent
to consider idempotent operators (Id). Although we have seen in Section 3.3.1 that there is
no operator fulfilling (Co, SIn, Id, A), the class of operators fulfilling (Co, In, Id, A) is not
empty and its description can be deduced from Theorem 3.3.4. However, Fodor [65] had already
obtained this description in a more general framework. In his result, E can be any connected
order topological space. In particular, E can be an arbitrary real interval, even infinite.

Theorem 3.3.7 Let E be a real interval, finite or infinite. M ∈ A2(E, E) fulfils (Co, In,
Id, A) if and only if there exist α, β ∈ E such that

M(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y), (x, y) ∈ E2. (3.39)

Notice that, by distributivity of ∧ and ∨, M can be written also in the equivalent form:

M(x, y) = (β ∨ x) ∧ (α ∨ y) ∧ (x ∨ y), (x, y) ∈ E2.

On the basis of (3.39), the graphical representation of M can be illustrated (see Figure 3.7).
For associative extended aggregation operators M ∈ A(E, E), the statement can be formulated
as follows.

Theorem 3.3.8 Let E be a real interval, finite or infinite. M ∈ A(E, E) fulfils (Co, In, Id,
A) if and only if there exist α, β ∈ E such that

M(x) = (α ∧ x1) ∨
( n−1∨

i=2

(α ∧ β ∧ xi)
)
∨ (β ∧ xn) ∨

( n∧

i=1

xi

)
∀x ∈ En, ∀n ∈ IN0 (3.40)
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Figure 3.7: Representation on [0, 1]2 of M(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y) in case of α ≤ β

It is worth noting that there exists no weighted associative extended operators allowing
to assign to each partial value xi a positive weight ωi. This comes from the fact that any
associative extended operator is completely determined by its two-place operator. Moreover,
when (Id) is assumed, no simulation similar to that used for quasi-arithmetic mean operators
(see Section 3.2.1) can be used, for we have, under (Id, A),

M(p1 ¯ x1, . . . , pn ¯ xn) = M(x1, . . . , xn) ∀p1, . . . , pn ∈ IN0.

Before Fodor [65], the symmetric case (Sy) was obtained by Fung and Fu [75] and in a
revisited way by Dubois and Prade [44]. Now, the result can be formulated as follows.

Theorem 3.3.9 Let E be a real interval, finite or infinite.
i) M ∈ A2(E, E) fulfils (Sy, Co, In, Id, A) if and only if there exists α ∈ E such that

M(x, y) = median(x, y, α) ∀x, y ∈ E (3.41)

ii) M ∈ A(E, E) fulfils (Sy, Co, In, Id, A) if and only if there exists α ∈ E such that

M(x) = median
( n∧

i=1

xi,
n∨

i=1

xi, α
)

∀x ∈ En, ∀n ∈ IN0. (3.42)

Since (Sy, A) implies (B), we immediately see that (3.41) is a particular case of non-strict
arithmetic mean (see Theorem 3.1.7).

The previous three theorems show that the idempotence property is seldom consistent with
associativity. For instance, the associative mean (3.42) is not very decisive since it leads to the
predefined value α as soon as there exist xi ≤ α and xj ≥ α.

Operators (3.39)–(3.42) will be investigated in more details in Section 4.3.

CzogaÃla and Drewniak [32] have examined the case when M has an identity element e ∈ E.
They obtained the following.
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Theorem 3.3.10 Let E be a real interval, finite or infinite.
i) If M ∈ A2(E, E) fulfils (In, Id, A) and has an identity element e ∈ E, then there is a decreasing
function g : E → E with g(e) = e such that, for all x, y ∈ E,

M(x, y) =





x ∧ y, if y < g(x)
x ∨ y, if y > g(x)
x ∧ y or x ∨ y, if y = g(x).

ii) If M ∈ A2(E,E) fulfils (Co, In, Id, A) and has an identity element e ∈ E, then M = min or
max.

Fodor [65] showed that the previous result still holds in the more general framework of
connected order topological spaces.

3.3.5 Triangular norms and conorms

In fuzzy set theory, one of the main topics consists in defining fuzzy logical connectives which
are appropriate extensions of logical connectives AND, OR and NOT in the case when the
valuation set is the unit interval [0, 1] rather than {0, 1}.

Fuzzy connectives modelling AND and OR are called triangular norms (t-norms for short)
and triangular conorms (t-conorms) respectively, see [12, 164].

Definition 3.3.2 i) A t-norm is a function T : [0, 1]2 → [0, 1] fulfilling (Sy, In, A) and having
1 as identity.

ii) A t-conorm is a function S : [0, 1]2 → [0, 1] fulfilling (Sy, In, A) and having 0 as identity.

The investigation of these functions has been made by Schweizer and Sklar [162, 163] and
Ling [110]. See also Dubois and Prade [46] and the references mentioned there.

Of course, the family of continuous t-norms is nothing less than the classA0,1,0, and the family
of continuous t-conorms is the class A0,1,1. These families have been described in Section 3.3.3.
Moreover, in this context, Corollary 3.3.4 gives a characterization of their union:

Corollary 3.3.5 M ∈ A2([0, 1], [0, 1]) fulfils (Co, In, WId, A) and has exactly one identity
in [0, 1] if and only if M is a continuous t-norm or a continuous t-conorm.

It is well known from literature that t-norms and t-conorms are extensively used in fuzzy set
theory, especially in modelling fuzzy connectives and implications (see [188]). Applications to
practical problems require the use of, in a sense, the most appropriate t-norm or t-conorm. On
this issue, Fodor [63] presented a method to construct new t-norms from t-norms.

It is worth noting that some properties of t-norms, such as associativity, do not play any
essential role in preference modelling and choice theory. Recently, some authors [11, 57, 201]
have investigated non-associative binary operation on [0, 1] in different contexts. These operators
can be viewed as a generalization of t-norms and t-conorms in the sense that both are contained
in this kind of operations. Moreover, Fodor [64] defined and investigated the concept of weak
t-norms. His results were usefully applied to the framework of fuzzy strict preference relations.

We will not stress on this topic of t-norms and t-conorms. The interested reader can consult
the book of Fodor and Roubens [70].
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3.4 Operators that are stable for some scale transformations

3.4.1 Ratio, interval and inversion scales

A foundational paper of Aczél et al. [9] gives the general solutions of the functional equations
related to (SRR), (IRR), etc. We present these solutions as well as some related results.

Theorem 3.4.1 M ∈ An(IR+
0 , IR+

0 ) fulfils (SRR) if and only if

M(x) = g(x1)F (
x2

x1
, . . . ,

xn

x1
), x ∈ IR+

0 ,

with F ∈ An−1(IR+
0 , IR+

0 ) and g : IR+
0 → IR+

0 such that g(x y) = g(x)g(y) for all x, y ∈ IR+
0 . (If

n = 1 then F = constant.)

Proof. See Aczél et al. [9, case #2] and Aczél and Dhombres [7, Chap. 20].

Theorem 3.4.2 M ∈ An(IR+
0 , IR+

0 ) fulfils (IRR) if and only if

M(x) = a
n∏

i=1

gi(xi), x ∈ IR+
0 ,

with a > 0 and gi : IR+
0 → IR+

0 such that gi(xi yi) = gi(xi)gi(yi) for all xi, yi ∈ IR+
0 .

Moreover, M ∈ An(IR+
0 , IR+

0 ) fulfils (Co, IRR) if and only if

M(x) = a
n∏

i=1

xci
i , x ∈ IR+

0 ,

with a > 0 and ci ∈ IR for all i.

Proof. See Aczél et al. [9, case #4].

Theorem 3.4.3 Non-constant operators M ∈ An(]0, 1], ]0, 1]) that fulfil (IRR) are charac-
terized by

M(x) = a
n∏

i=1

xci
i , x ∈ IR+

0 ,

with a ∈ ]0, 1] and ci ≥ 0 for all i.

Proof. See Fodor and Roubens [70, Theorem 5.9].

Theorem 3.4.4 M ∈ An(IR, IR) fulfils (SII) if and only if

M(x) =

{
S(x) F

(
x1−AM(x)

S(x) , . . . , xn−AM(x)
S(x)

)
+ aAM(x) + b, if S(x) 6= 0,

a x1 + b, if S(x) = 0 (i.e. x1 = · · · = xn),

or

M(x) =

{
g(S(x))F

(
x1−AM(x)

S(x) , . . . , xn−AM(x)
S(x)

)
+ b, if S(x) 6= 0,

b, if S(x) = 0,

where a, b ∈ IR, S(x) =
√∑n

i=1(xi −AM(x))2, F ∈ An(IR, IR) arbitrary, and g : IR → IR+
0 such

that g(x y) = g(x)g(y) for all x, y ∈ IR. (If n = 1 then M(x) = a x + b).
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Proof. See Aczél et al. [9, case #5].

From the previous theorem and the immediate equivalence (Id, SII) ⇔ (SPL) in IRn, we
deduce a description of the operators that fulfil (SPL).

Theorem 3.4.5 M ∈ An(IR, IR) fulfils (SPL) if and only if

M(x) =

{
S(x) F

(
x1−AM(x)

S(x) , . . . , xn−AM(x)
S(x)

)
+ AM(x), if S(x) 6= 0,

x1, if S(x) = 0 (i.e. x1 = · · · = xn),

where S(x) =
√∑n

i=1(xi −AM(x))2, and F ∈ An(IR, IR) arbitrary. (If n = 1 then M(x) = x).

An alternative form of the previous theorem is the following (see also Proposition 3.5.1.)

Theorem 3.4.6 M ∈ An(IR, IR) fulfils (SPL) if and only if

M(x) =

{
(x(n) − x(1)) F

(
x1−x(1)

x(n)−x(1)
, . . . ,

xn−x(1)

x(n)−x(1)

)
+ x(1), if x(n) > x(1)

x(1), if x(n) = x(1).

where F ∈ An(IR, IR) is arbitrary. (If n = 1 then M(x) = x).

Theorem 3.4.7 M ∈ An(IR, IR) fulfils (ISUII) if and only if

M(x) =
n∑

i=1

ai xi + b, x ∈ IRn,

where ai, b ∈ IR are arbitrary constants.

Proof. See Aczél et al. [9, case #9].

Theorem 3.4.8 Let M ∈ An(IR, IR). Then the following assertions are equivalent.
i) M fulfils (ISZII).

ii) M fulfils (III).
iii) There exists j ∈ N such that

M(x) = a xj + b, x ∈ IRn,

where a, b ∈ IR are arbitrary constants.

Proof. See Aczél et al. [9, cases #7 and #11].

The following result, due to Silvert [172], gives the form of symmetric sums, that is the
aggregation operators satisfying (Sy, Co, In, WId, SSN).

Theorem 3.4.9 If M ∈ An([0, 1], [0, 1]) fulfils (Sy, Co, In, WId, SSN) then there exists an
increasing continuous function g : [0, 1]n → [0, 1] fulfilling g(0, . . . , 0) = 0 such that

M(x) =
g(x1, . . . , xn)

g(x1, . . . , xn) + g(1− x1, . . . , 1− xn)
, x ∈ [0, 1]n. (3.43)

The representation (3.43) is not unique. For instance λ g, λ 6= 0, and g = M all generate M .
Note also that Dombi [38] investigated the family of strictly increasing associative symmetric

sums (see also [46]).
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3.4.2 Ordinal scales

Let us introduce the concept of Boolean max-min functions (see Marichal [115]). The word
‘Boolean’ refers to the fact that these functions are generated by set functions that range in
{0, 1}. As mean operators are clearly cardinal in nature (i.e. only cardinal information can be
aggregated), Boolean max-min functions are suitable for ordinal information.

Definition 3.4.1 For any set function c : 2N → {0, 1} such that c∅ = 0 and
∨

T⊆N

cT = 1,

the Boolean max-min function B∨∧c : IRn → IR associated to c is defined by

B∨∧c (x) =
∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]

=
∨

T⊆N
cT =1

∧

i∈T

xi.

The best known form of a Boolean max-min function is the following: M is a Boolean max-
min function if and only if there exists a finite family {Tk}m

k=1 of non-empty subsets of N such
that

M(x) =
m∨

k=1

∧

i∈Tk

xi.

Let us introduce the following sets which partition IRn:

Oπ := {x ∈ IRn |xπ(1) ≤ · · · ≤ xπ(n)}, π ∈ Πn. (3.44)

It is clear that any Boolean max-min function M = B∨∧c is such that

∀π ∈ Πn, ∃ k ∈ N : M(x) = xk, ∀x ∈ Oπ. (3.45)

The converse is not true: there exist many non-continuous functions M that satisfy (3.45), see
[143, Lemma 4.3].

Proposition 3.4.1 For any π ∈ Πn, we have

B∨∧c (x) = xπ(j), x ∈ Oπ,

with
j =

∨
T⊆N
cT =1

∧

i∈π−1(T )

i.

Proof. If x ∈ Oπ, we have
∨

T⊆N
cT =1

∧

i∈T

xi =
∨

T⊆N
cT =1

∧

π(i)∈T

xπ(i)

=
∨

T⊆N
cT =1

∧

i∈π−1(T )

xπ(i),

which leads to the result.
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Using classical distributivity of min and max operations, we can see that any Boolean max-
min function can be put in a “conjunctive” form

∧

T⊆N

[
dT ∨ (

∨

i∈T

xi)
]

=
∧

T⊆N
dT =0

∨

i∈T

xi

with an appropriate set function d : 2N → {0, 1} such that d∅ = 1 and
∧

T⊆N dT = 0 (see
Section 4.3 for more details).

The following result is due to Marichal and Mathonet [118].

Theorem 3.4.10 Let M ∈ An([a, b], [a, b]). Then the following three assertions are equiva-
lent:

i) M fulfils (Co, OS’).
ii) M fulfils (In, OS’).
iii) There exists a set function c such that M = B∨∧c .

Proof. i) ⇒ ii) Consider x = (x1, . . . , xn) ∈ [a, b]n reordered as x(1) ≤ . . . ≤ x(n) and set
x(0) := a, x(n+1) := b. Let k ∈ N and consider the function fk : [a, b] → IR defined by

fk(t) := M(x1, . . . , xk−1, t, xk+1, . . . , xn), t ∈ [a, b].

We shall show that fk is increasing on [a, b]. Let i ∈ {0, 1, . . . , n} such that x(i) < x(i+1). Then fk

is increasing on ]x(i), x(i+1)[. Indeed, if t1, t2 ∈ ]x(i), x(i+1)[, t2 > t1, then there exists φ ∈ Φ′([a, b])
such that φ(t1) = t2, φ(x(j)) = x(j) for all j ∈ {0, 1, . . . , n + 1} and φ(t) ≥ t for all t ∈ [a, b]. By
(OS’), we then have

fk(t2) = fk(φ(t1)) = φ(fk(t1)) ≥ fk(t1).

Finally, by (Co), fk is increasing on [a, b].
ii) ⇒ iii) Set MT := M(a eT +b eT ) for all T ⊆ N . By Proposition 2.2.3, we have MT ∈ {a, b}

for all T ⊆ N . Moreover, for all x ∈ [a, b] and all T ⊆ N , we have

M(a eT + x eT ) = MT ∧ x (3.46)
M(x eT + b eT ) = MN\T ∨ x (3.47)

Indeed, taking φ(t) = x−a
b−a (t− a) + a, we have, by (OS’),

M(a eT + x eT ) = M(φ(a)eT + φ(b)eT ) = φ(MT )

which proves (3.46). Similarly, taking φ(t) = b−x
b−a (t− a) + x, we have

M(x eT + b eT ) = M(φ(a)eT + φ(b)eT ) = φ(MN\T )

which proves (3.47).
Let x ∈ [a, b]n. On the one hand, for all T ⊆ N , we have

M(x)
(In)

≥ M [a eT + (
∧

i∈T

xi)eT ]
(3.46)
= MT ∧ (

∧

i∈T

xi)

and thus
M(x) ≥

∨

T⊆N

[MT ∧ (
∧

i∈T

xi)].
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On the other hand, let T ∗ ⊆ N such that MT ∗ ∧ (
∧

i∈T ∗ xi) is maximum and set

J := {j ∈ N |xj ≤ MT ∗ ∧ (
∧

i∈T ∗
xi)}.

We should have J 6= ∅: indeed, if xj > MT ∗ ∧ (
∧

i∈T ∗ xi) for all j ∈ N , we have, since MN = b,

MN ∧ (
∧

i∈N

xi) > MT ∗ ∧ (
∧

i∈T ∗
xi)

which contradicts the definition of T ∗. Moreover, we should have MN\J = a: indeed, if MN\J = b
with N \ J 6= ∅, we have, by definition of J ,

MN\J ∧ (
∧

i∈N\J
xi) > MT ∗ ∧ (

∧

i∈T ∗
xi)

a contradiction. Finally, we have,

M(x)
(In)

≤ M [(MT ∗ ∧ (
∧

i∈T ∗
xi))eJ + b eJ ]

(3.47)
= MT ∗ ∧ (

∧

i∈T ∗
xi) =

∨

T⊆N

[MT ∧ (
∧

i∈T

xi)].

Therefore, setting cT := (MT − a)/(b− a) for all T ⊆ N , we have c∅ = 0, cN = 1 and

M(x) =
∨

T⊆N

[MT ∧ (
∧

i∈T

xi)] =
∨

T⊆N
MT =b

∧

i∈T

xi =
∨

T⊆N
cT =1

∧

i∈T

xi.

iii) ⇒ i) Clearly M fulfils (Co). It also fulfils (OS’) since we have φ(x∨ y) = φ(x)∨φ(y) and
φ(x ∧ y) = φ(x) ∧ φ(y) for all φ ∈ Φ′([a, b]) and all x, y ∈ [a, b].

It is worth noting that when (OS’) is replaced by (OS) in Theorem 3.4.10, the equivalence
between the assertions does not hold anymore. Indeed, since Φ([a, b]) is the set of all continuous
strictly increasing functions φ : [a, b] → [a, b] with boundary conditions φ(a) = a and φ(b) = b,
we immediately see that the non-continuous operator

M(x) =
{

b, if maxi xi = b,
mini xi, else,

(3.48)

fulfils (In, OS), which is sufficient.

In the more general case when E is any doubly homogeneous linear order2 [141, 143], the
equivalence between i) and iii) in Theorem 3.4.10 remains true and was independently established
by Ovchinnikov [143, Theorem 5.3] using a rather different approach. Since any connected open
set in IR is a doubly homogeneous linear order, the result can be stated as follows.

Theorem 3.4.11 Assume that E is open. Then M ∈ An(E,E) fulfils (Co, OS or OS’) if
and only if there exists a set function c such that M = B∨∧c .

We have already observed in the remark regarding Proposition 2.2.3 that, when E is not
open, there exist operators M ∈ An(E, E) fulfilling (Co, OS) other than B∨∧c . However, as the
following result shows, those operators do not fulfil (Id). In other words, the operators that fulfil
(Co, Id, OS) are the Boolean max-min functions. By Proposition 2.2.4, we can even replace (Co,
Id, OS) by (Co, Id, CM). We will also assume that M ranges in IR, thus making our result all
the more general.

2A linear order E is said to be doubly homogeneous if, for any x1, x2, y1, y2 ∈ E such that x1 < x2 and y1 < y2,
there is an automorphism φ : E → E such that φ(x1) = y1 and φ(x2) = y2.
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Theorem 3.4.12 Let E be any real interval, finite or infinite. M ∈ An(E, IR) fulfils (Co,
Id, CM or CM’) if and only if there exists a set function c such that M = B∨∧c .

Proof. (Sufficiency) Trivial.
(Necessity) Since (CM’) implies (CM), we can assume that M fulfils (Co, Id, CM). Let us

show that we have
M(x) ∈ E◦, ∀x ∈ (E◦)n. (3.49)

Suppose for example that there exists x ∈ (E◦)n such that M(x) ≤ inf E. By (Id), we have
x(1) < x(n). Moreover, there exists J ∈ IN0 such that inf E + 1/j < x(1) for all j ≥ J . By (Id),
we have

M(x) ≤ M(inf E + 1/j, . . . , inf E + 1/j), j ≥ J. (3.50)

Now, let us consider a sequence (φi)i∈IN0 such that, for all i ∈ IN0 we have φi ∈ Φ(E) and
φi(t) = x(n) + (t− x(n))/i on [x(1), x(n)]. By (3.50), we have, for all j ≥ J ,

x(n)
(Id)
= M(x(n), . . . , x(n)) = M( lim

i→∞
φi(x))

(Co)
= lim

i→∞
M(φi(x))

(CM)

≤ lim
i→∞

M(φi(inf E + 1/j))
(Id)
= lim

i→∞
φi(inf E + 1/j).

Letting j →∞, we obtain
x(n) ≤ inf E < x(1) < x(n),

a contradiction. Of course, a similar argument can be used for supE. Hence (3.49) is proved.
By Proposition 2.2.4, it is clear that the restriction of M to (E◦)n fulfils the assumptions of

Theorem 3.4.11. Hence, there exists a set function c such that M = B∨∧c on (E◦)n and even on
En since M is continuous.

To study the particular case of symmetric operators, we need to investigate the order statistics
(1.5) (cf. van der Waerden [184, Sect. 17]). Ovchinnikov [141, Sect. 7] has proved that any order
statistic can be put in the following two forms:

x(k) =





∨

1≤i1<···<in−k+1≤n

(xi1 ∧ · · · ∧ xin−k+1
) (disjunctive normal form)

∧

1≤i1<···<ik≤n

(xi1 ∨ · · · ∨ xik) (conjunctive normal form)
(3.51)

Therefore, the order statistic OSk is a Boolean max-min function such that cT = 1 if and only if
|T | = n− k + 1. See Section 4.4.3 for more details.

The following result gives a characterization of the class of order statistics. Proved first in
1981 by Orlov [140] on IRn, and then in 1993 by Marichal and Roubens [121, Theorem 1] on En,
it was finally shown in the more general framework of ordered sets in 1996 by Ovchinnikov [141,
Theorem 4.3].

Theorem 3.4.13 M ∈ An(E, IR) fulfils (Sy, Co, Comp, CM) if and only if there exists
k ∈ N such that M = OSk.

Proof. We give here the proof obtained by Marichal and Roubens [121].
(Sufficiency) Trivial.
(Necessity) By (Comp), M ∈ An(E, E). By (2.1), M fulfils (Id), and by Proposition 2.2.4, M

fulfils (OS). Then consider z ∈ (E◦)n such that z1 < · · · < zn. By (Comp) and Proposition 2.2.3,
there exists k ∈ N such that M(z) = zk.
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Figure 3.8: Surjection ψ : E → E such that ψ(zj) = x(j) for all j ∈ N

Let x ∈ En and consider a continuous non-decreasing surjection ψ : E → E such that
ψ(zj) = x(j) for all j ∈ N (see Figure 3.8).

It is easy to build a sequence (ψi)i∈IN0 with ψi ∈ Φ(E), such that

lim
i→∞

ψi(t) = ψ(t), t ∈ E.

We then have

M(x)
(Sy)
= M(x(1), . . . , x(n)) = M(ψ(z)) = M( lim

i→∞
ψi(z))

(Co)
= lim

i→∞
M(ψi(z))

(OS)
= lim

i→∞
ψi(M(z)) = lim

i→∞
ψi(zk) = ψ(zk) = x(k).

Hence the result.

We see that the order statistics are the symmetric Boolean max-min functions. Moreover,
combining (2.1) and Theorems 3.4.12 and 3.4.13 provides the following result.

Theorem 3.4.14 Let M ∈ An(E, IR). Then the following assertions are equivalent.
i) M fulfils (Sy, Co, Id, CM).
ii) M fulfils (Sy) and there exists a set function c such that M = B∨∧c .
iii) There exists k ∈ N such that M = OSk.

Adding (Sy) in Theorems 3.4.10 and 3.4.11 allows to point out other characterizations of the
class of order statistics.

We now describe the class of operators M ∈ An([a, b], IR) fulfilling (Co, CM). The result
can be found in Marichal and Mathonet [118]. Before presenting it we shall go through a
number of lemmas. Moreover, for any partition (R,S, T ) of N , we define the function M(R,S,T ) ∈
An([a, b], IR) by

M(R,S,T )(t) := M(a eR + t eS + b eT ), t ∈ [a, b].

We also set MT := M(a eT + b eT ) for all T ⊆ N .
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Lemma 3.4.1 Let M ∈ An([a, b], IR) fulfilling (Co, CM). Then, for all partition (R, S, T ) of
N , the function M(R,S,T ) is constant or strictly monotonic.

Proof. Let x0, y0 ∈ ]a, b[ such that x0 < y0 and suppose M(R,S,T )(x0) < M(R,S,T )(y0) (resp.
>,=). Let x, y ∈ ]a, b[ such that x < y. There exists φ ∈ Φ([a, b]) such that φ(x0) = x and
φ(y0) = y. By (CM), we have M(R,S,T )(x) < M(R,S,T )(y) (resp. >,=). Finally, by (Co), M(R,S,T )

is strictly increasing (resp. strictly decreasing, constant) on [a, b].

Lemma 3.4.2 Let M ∈ An([a, b], IR) fulfilling (Co, CM). Then, there exist T, T ′ ⊆ N such
that MT ≤ M(x) ≤ MT ′ for all x ∈ [a, b]n.

Proof. Let us consider the case of the lower bound. The other one can be treated similarly. By
(Co), there exists x∗ ∈ [a, b]n such that M(x∗) ≤ M(x) for all x ∈ [a, b]n. Let

C := {x∗i |x∗i ∈ ]a, b[}.

If C = ∅ then we can conclude immediately. Else, let

K := {k ∈ N |x∗k = min C} 6= ∅.

Choosing k ∈ K, we have

M(x∗) = M(x∗ + (t− x∗k)eK), t ∈ ]a, x∗k[;

indeed, suppose that there exists t ∈ ]a, x∗k[ such that M(x∗) < M(x∗ + (t− x∗k)eK) and consider
φ ∈ Φ([a, b]) such that φ(t) = x∗k and φ(x∗i ) = x∗i for all i ∈ N \ K. By (CM), we have
M(φ(x∗)) < M(x∗), a contradiction.

By (Co), we have
M(x∗) = M(x∗ + (a− x∗k)eK).

We can iterate this process until obtaining M(x∗) = MT with T = {i ∈ N |x∗i = b}.

Lemma 3.4.3 Let M ∈ An([a, b], IR) fulfilling (Co, CM). Then, we have M∅ ≤ M(x) ≤ MN

or MN ≤ M(x) ≤ M∅ for all x ∈ [a, b]n.

Proof. Let us consider the case of the lower bound. The other one can be treated similarly. By
Lemma 3.4.2, there exists T ⊆ N such that MT ≤ M(x) for all x ∈ [a, b]. By Lemma 3.4.1, we
have three mutually exclusive cases:

• If M(∅,N,∅) is strictly increasing then M∅ < MN . Let us show that M∅ ≤ MT . Suppose it
is not true. By Lemma 3.4.1, M(∅,N\T,T ) is strictly increasing since

M(∅,N\T,T )(a) = MT < MN = M(∅,N\T,T )(b).

By (Co), there exists r ∈ ]a, b[ such that M∅ = M(∅,N\T,T )(r). Then, there exists φi ∈
Φ([a, b]), such that φi(r) = b− (b− r)/i for all i ∈ IN0. By (CM), we have

M∅ = M(∅,N\T,T )(φi(r)), i ∈ IN0,

and by (Co), M∅ = MN , a contradiction.
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• If M(∅,N,∅) is strictly decreasing then MN < M∅. Suppose MT < MN . By Lemma 3.4.1,
M(N\T,T,∅) is strictly decreasing since

M(N\T,T,∅)(a) = M∅ > MT = M(N\T,T,∅)(b).

We can conclude as in the previous case.

• If M(∅,N,∅) is constant then M∅ = MN . Suppose MT < M∅. By Lemma 3.4.1, M(N\T,T,∅) is
strictly decreasing and M(∅,N\T,T ) is strictly increasing. Taking r ∈ ]a, b[, we have

MT = M(N\T,T,∅)(b) < M(N\T,T,∅)(r) < M(N\T,T,∅)(a) = M∅ = MN .

Hence, by (Co), there exists s ∈ ]a, b[ such that

M(N\T,T,∅)(r) = M(∅,N\T,T )(s).

Consider φi ∈ Φ([a, b]), such that φi(r) = b − (b − r)/i and φi(s) = b − (b − s)/i for all
i ∈ IN0. By (CM) and (Co), we have MT = MN , a contradiction.

Theorem 3.4.15 M ∈ An([a, b], IR) fulfils (Co, CM) if and only if
• either M is constant,
• or there exist a set function c and a continuous strictly monotonic function

g : [a, b] → IR such that M = g ◦ B∨∧c .

Proof. (Sufficiency) Easy.
(Necessity) By Lemma 3.4.1, M(∅,N,∅) is constant or strictly monotonic. If M(∅,N,∅) is constant

then, by Lemma 3.4.3, so is M . In the other case, the function g := M(∅,N,∅) is a continuous
bijection from [a, b] onto [M∅ ∧MN ,M∅ ∨MN ]. By Lemma 3.4.3, M ′ := g−1 ◦M is well defined.
Moreover, we can readily see that M ′ is an aggregation operator defined on [a, b]n and fulfilling
(Co, Id, CM). Theorem 3.4.12 then allows to conclude.

Corollary 3.4.1 M ∈ An([a, b], IR) fulfils (Sy, Co, CM) if and only if
• either M is constant,
• or there exist k ∈ N and a continuous strictly monotonic function g : [a, b] → IR

such that M = g ◦OSk.

We also have the following result.

Theorem 3.4.16 M ∈ An([a, b], [a, b]) fulfils (Co, OS) if and only if
• either M = a or M = b (constant operators),
• or there exists a set function c such that M = B∨∧c .

Proof. (Sufficiency) Easy.
(Necessity) By Proposition 2.2.4, M fulfils (CM) and, by Theorem 3.4.15, we have two ex-

clusive cases:

• M is constant and, in this case, we must have φ(M) = M for all φ ∈ Φ([a, b]), that is
M = a or b.
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• There exists a set function c and a continuous strictly monotonic function g : [a, b] → IR
such that M = g ◦ B∨∧c . In this case, we have

M(x) ∈ ]a, b[, ∀x ∈ ]a, b[n,

and the restriction of M to ]a, b[n fulfils the assumptions of Theorem 3.4.11, which is
sufficient.

Kim [106, Corollary 1.2] showed that considering independent ordinal scales in multicriteria
decision making leads to the presence of a dictator criterion.

Theorem 3.4.17 M ∈ An(IR, IR) fulfils (Co, CMIS) if and only if
• either M is constant,
• or there exist k ∈ N and a continuous strictly monotonic function g : IR → IR

such that M = g ◦ Pk.

The classical definition of continuity uses a distance between aggregated values and makes use
of the cardinal properties of the scores xi. Though (OS) and (Co) are not contradictory, coupling
these two axioms is somewhat awkward since (OS) implies that the cardinal properties of the
scores xi should not be used. In the following three results, we drop the continuity property.

Let R be a total preorder on N . A cell OR in En is defined by

OR := {x ∈ En |xi < xj ⇔ i P j and xi = xj ⇔ i I j},
where P and I are the asymmetric and symmetric parts of R, respectively. The set of all cells
forms a partition of En. Ovchinnikov [143, Theorem 5.1] described the class of functions fulfilling
(OS) when E is any doubly homogeneous linear order. For connected real sets, the result can be
stated as follows.

Theorem 3.4.18 Assume that E is open. M ∈ An(E, E) fulfils (OS) if and only if for all
total preorder R on N , there exists k ∈ N such that M(x) = xk for all x ∈ OR.

Ovchinnikov [141, Theorem 4.2] also proved the following result.

Theorem 3.4.19 Let M ∈ An(E, IR) fulfilling (Sy, Comp, CM). Then the restriction of M
to

A =
⋃

π∈Πn

{x ∈ (E◦)n |xπ(1) < · · · < xπ(n)} = {x ∈ (E◦)n |x(1) < · · · < x(n)}

is an order statistic OSk.

According to the previous theorem, we see that the ‘pathological functions’ such as (3.48)
occur only on the ‘borders’ of regions like {x ∈ (E◦)n |xπ(1) < · · · < xπ(n)}. In a sense, an
operator fulfilling (Sy, Comp, CM) is an order statistic ‘almost everywhere’ on En.

It is interesting to observe that, since En is the closure of A (see Theorem 3.4 in [141]),
adding (Co) in Theorem 3.4.19 allows to retrieve Theorem 3.4.13.

Theorem 3.4.20 M ∈ An([a, b], IR) fulfils (In, Id, CM’) if and only if there exists a set
function c such that M = B∨∧c .

Proof. (Sufficiency) Trivial.
(Necessity) By (2.2), we have M ∈ An([a, b], [a, b]). By Proposition 2.2.4, M fulfils (OS’). We

then can conclude by Theorem 3.4.10.
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3.4.3 Additive, minitive and maxitive operators

In [4, Sect. 5.1], Aczél proved the following result.

Theorem 3.4.21 i) M ∈ An(E, IR) fulfils (Add) if and only if

M(x) =
n∑

i=1

gi(xi), x ∈ En,

with gi : E → IR such that gi(xi + yi) = gi(xi) + gi(yi) for all xi, yi ∈ E.
ii) M ∈ An(E, IR) fulfils (Co, Add) if and only if

M(x) =
n∑

i=1

ai xi, x ∈ En,

with ai ∈ IR for all i ∈ N .

The following theorem gives a description of the aggregation operators fulfilling (Min) or
(Max) (see also [49]).

Theorem 3.4.22 i) M ∈ An([a, b], IR) fulfils (Min) if and only if there exist increasing
functions gi : [a, b] → IR, i ∈ N , such that

M(x) =
n∧

i=1

gi(xi), x ∈ [a, b]n.

ii) M ∈ An([a, b], IR) fulfils (Max) if and only if there exist increasing functions hi : [a, b] → IR,
i ∈ N , such that

M(x) =
n∨

i=1

hi(xi), x ∈ [a, b]n.

Proof. i) (Necessity) Let x ∈ [a, b]n. By (Min), we have

M(x) =
n∧

i=1

M(xi ei + b ei) =
n∧

i=1

gi(xi)

where gi(t) = M(t ei+b ei), i ∈ N . Moreover, for all i ∈ N , gi is increasing; indeed, if t, t′ ∈ [a, b],
t ≤ t′, we have that

gi(t) = gi(t ∧ t′) = gi(t) ∧ gi(t′)

implies gi(t) ≤ gi(t′).
(Sufficiency) We have

gi(t ∧ t′) = gi(t) ∧ gi(t′)

for all t, t′ ∈ [a, b] and all i ∈ N ; indeed, if t ≤ t′, we have gi(t) ≤ gi(t′) and

gi(t ∧ t′) = gi(t) = gi(t) ∧ gi(t′).

We then can conclude.
ii) Similar to i).
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3.5 Operators that are stable for positive linear transformations

In this section, E will be any real interval (finite or infinite) containing [0, 1]. Moreover, we set
θ
(n)
S := M (n)(eS) and θ

(n)
S := M (n)(eS) for all S ⊆ N , and the superscript (n) will often be

omitted.
This section aims at describing the family of all aggregation operators fulfilling three specific

properties. The first two are (In, SPL). The third property is chosen among well-known algebraic
properties such as associativity, decomposability and bisymmetry (see Section 2.3 for details).
All the results of this section can be found in Marichal et al. [120].

3.5.1 Preliminary characterizations

The following proposition shows that all the operators fulfilling (SPL) can be considered on [0, 1]n

without loss of generality (see also Theorem 3.4.6).

Proposition 3.5.1 Assume E ⊇ [0, 1]. Any M ∈ An(E, IR) fulfilling (SPL) is completely
defined by its restriction to [0, 1]n.

Proof. Let M ′ ∈ An([0, 1], IR) denote the restriction to [0, 1]n of M , that is M ′ = M on [0, 1]n.
By (SPL), we have, for all x ∈ En,

M(x) =

{
x(1), if x(n) = x(1)

(x(n) − x(1)) M ′
(

x1−x(1)

x(n)−x(1)
, . . . ,

xn−x(1)

x(n)−x(1)

)
+ x(1), otherwise.

We then can conclude.

The next proposition is very interesting and easy to prove. A quite similar statement can be
found in [7, Chap. 15] (see remark that follows Proposition 9).

Proposition 3.5.2 Assume E ⊇ [0, 1]. M ∈ A2(E, IR) fulfils (In, SPL) if and only if there
exist α, β ∈ [0, 1] such that

M(x, y) = α x + β y + (1− α− β)(x ∧ y) ∀x, y ∈ E. (3.52)

Moreover, we have α = M(1, 0) and β = M(0, 1).

Proof. (Sufficiency) Easy.
(Necessity) Let x, y ∈ E. If x ≤ y then we have

M(x, y)
(SPL)
= (y − x) M(0, 1) + x = (1− β) x + β y

with β = M(0, 1). Moreover, β ∈ [0, 1] since, by (2.2) and (2.6), M is compensative.
One proceeds similarly if x ≥ y.

Corollary 3.5.1 Assume E ⊇ [0, 1]. M ∈ A2(E, IR) fulfils (Sy, In, SPL) if and only if there
exists ω ∈ [0, 1]2 such that M = OWAω.

Figure 3.9 shows the graphical representation on [0, 1]2 of the function defined in (3.52). It
is worth comparing it with Figure 3.7.

Some particular examples according to the values of α and β can be found in Table 3.3.
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Figure 3.9: Representation on [0, 1]2 of M(x, y) = α x + β y + (1− α− β)(x ∧ y)

values of (α, β) M

(α, β) = (0, 0) min
(α, β) = (1, 1) max
(α, β) = (1, 0) P1

(α, β) = (0, 1) P2

α + β = 1 WAM(α,β)

α = β OWA(1−β,β)

Table 3.3: Some examples of two-place operators fulfilling (In, SPL)

3.5.2 Bisymmetric and autodistributive operators

Theorem 3.5.1 Assume E ⊇ [0, 1] and let M ∈ A2(E, IR). Then the following three asser-
tions are equivalent:

i) M fulfils (In, SPL, B)
ii) M fulfils (In, SPL, AD)

iii) M ∈ {min,max} ∪ {WAMω |ω ∈ [0, 1]2}.
Proof. iii) ⇒ i) Trivial.

i) ⇒ ii) It is a straightforward consequence of (2.6) and Proposition 2.3.4.
ii) ⇒ iii) Set α := M(1, 0) and β := M(0, 1). By Proposition 3.5.2, we only have to prove

that (α, β) ∈ {(0, 0), (1, 1)} or α + β = 1. Since M fulfils (AD), we must have

M(x1,M(x2, x3)) = M(M(x1, x2),M(x1, x3)), x ∈ E3.

Substituting x = (α, 1, 0) into this identity, we obtain, by (3.52), α = 0 or α = 1 or α + β = 1.
Similarly, for x = (β, 0, 1), we obtain, by (3.52), β = 0 or β = 1 or α + β = 1.
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Corollary 3.5.2 Assume E ⊇ [0, 1] and let M ∈ A2(E, IR). Then the following three asser-
tions are equivalent:

i) M fulfils (Sy, In, SPL, B)
ii) M fulfils (Sy, In, SPL, AD)

iii) M ∈ {min, max, AM}.

We now intend to describe the family of operators M ∈ An(E, E) (n ≥ 2) fulfilling (In, SPL,
B). For this purpose, we need three technical lemmas.

Lemma 3.5.1 Let n ∈ IN0, n ≥ 2. If M ∈ An([0, 1], [0, 1]) fulfils (In, SPL, B) and if there
exists S ⊆ N such that θS ∈ ]0, 1[ then M fulfils (Add).

Proof. Let x, y ∈ [0, 1]n with xi + yi ∈ [0, 1] for all i ∈ N , and set λ := inf{θS , 1 − θS} ∈ ]0, 1[.
Let us show that

M(x + y) = M(x) + M(y). (3.53)

(i) Assume first that xi, yi ≤ λ for all i ∈ N . Consider the square matrix X of n rows ri and
n columns cj (i, j ∈ N), where ri is defined as follows (for i ∈ N):

ri =
1
2

( xi

θS
+ 1

)
eS +

1
2

yi

1− θS
eS .

On the one hand, by (SPL), we have, for all i ∈ N :

M(ri) =
1
2

yi

1− θS
+

1
2

( xi

θS
+ 1− yi

1− θS

)
θS =

xi + yi

2
+

θS

2
,

and thus
M(M(r1), . . . , M(rn)) =

1
2

M(x + y) +
θS

2
.

On the other hand, for all j ∈ N , we have

M(cj) =





1
2(M(x)

θS
+ 1), if j ∈ S,

1
2

M(y)
1−θS

, otherwise.

However, by (2.6) and (2.2), M fulfils (Comp). Hence, by (SPL), we have,

M(M(c1), . . . , M(cn)) = M
[ 1

2

(M(x)
θS

+ 1
)
eS +

1
2

M(y)
1− θS

eS

]
=

1
2

[M(x) + M(y)] +
θS

2
.

Since M fulfils (B), we have (3.53).
(ii) In the general case, we have,

M(x + y)
(SPL)
=

1
λ

M(λx + λ y)
(i)
=

1
λ

M(λx) +
1
λ

M(λ y)
(SPL)
= M(x) + M(y).

Lemma 3.5.2 Let n ∈ IN0, n ≥ 2. If M ∈ An([0, 1], [0, 1]) fulfils (In, SPL, B), and if
θS ∈ {0, 1} for all S ⊆ N , then, setting Smax := {i ∈ N | θi = 1} and assuming Smax 6= ∅, we
have, for all S ⊆ N :

S ∩ Smax = ∅ ⇒ θS = 0.



3.5. OPERATORS THAT ARE STABLE FOR POSITIVE LINEAR TRANSFORMATIONS77

Proof. The result is trivial if n = 2. Otherwise, use induction over |S|.
The result holds for |S| ∈ {0, 1}. Assume that it holds for |S| = s ≥ 1 and show that it holds

for |S| = s + 1. Assume that S ∩ Smax = ∅ and consider the square matrix X of n rows ri and n
columns cj (i, j ∈ N), where ri is defined as follows (for i ∈ N):

ri =





e∅, if i /∈ S,
eS , if i = q,
eN , if i ∈ S \ q,

where q ∈ S. On the one hand, for all i ∈ S \ q, we have M(ri) = 1. On the other hand, for all
j ∈ N , we have

M(cj) =
{

0, if j /∈ S (by induction)
θS , if j ∈ S.

Indeed, if j /∈ S, we have cj = eS\q and (S \ q) ∩ Smax = ∅.
Now, let j0 ∈ S \ q. In particular, we have j0 /∈ Smax. Consider the square matrix X ′ of n

rows r′i and n columns c′j (i, j ∈ N), where r′i = ri for all i ∈ N \ j0 and r′j0 = ej0 . We then have

M(ej0) = θj0 = 1

since, by (In), θj0 ≥ θi for all i ∈ Smax. So we have

M(M(r′1), . . . , M(r′n)) = M(M(r1), . . . , M(rn)).

However, since c′j0 = eS\j0 , we have M(c′j0) = 0 (by induction) and

M(c′j) =





0, if j /∈ S,
0, if j = j0,
θS , if j ∈ S \ j0.

Consequently, since M fulfils (SPL) and (B), we have

θ2
S = M(M(c1), . . . , M(cn)) = M(M(r1), . . . , M(rn))

= M(M(r′1), . . . , M(r′n)) = M(M(c′1), . . . , M(c′n)) = θS M(eS\j0) = 0.

Lemma 3.5.3 Let n ∈ IN0, n ≥ 2. If M ∈ An([0, 1], [0, 1]) fulfils (In, SPL, B), if θS ∈ {0, 1}
for all S ⊆ N , and θi = 0 for all i ∈ N , then, setting Smin = {i ∈ N | θi = 0}, we have Smin 6= ∅
and θSmin = 1.

Proof. If n = 2 then θ1 = θ2 = 0 and θ2 = θ1 = 0. Otherwise, let S∗min ⊆ N with a minimal
cardinality such that θS∗min

= 1. The existence of such a S∗min is trivial since θN = 1, and we
clearly have |S∗min| ≥ 2. Let us prove that S∗min ⊆ Smin. Assume that there exists k ∈ S∗min such
that θk = 1. Consider the square matrix X of n rows ri and n columns cj (i, j ∈ N), where ri is
defined as follows (for i ∈ N):

ri =





e∅, if i /∈ S∗min,
eS∗min

, if i = k,
ek if i ∈ S∗min \ k.

On the one hand, we have, for all i ∈ N :

M(ri) =
{

0, if i /∈ S∗min

1, if i ∈ S∗min
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and thus
M(M(r1), . . . , M(rn)) = M(eS∗min

) = θS∗min
= 1.

On the other hand, for all j ∈ N , we have

M(cj) =





0, if j /∈ S∗min since |S∗min| is minimal,
0, if j = k since θi = 0 ∀i ∈ N,
1, if j ∈ S∗min \ k since cj = eS∗min

.

Since M fulfils (B), we have

1 = M(M(c1), . . . , M(cn)) = M(eS∗min\k),

a contradiction since |S∗min| is minimal.
Now, let us prove that Smin ⊆ S∗min. For all i /∈ S∗min, we have, by (In), θi ≥ θS∗min

= 1, that
is i /∈ Smin.

Theorem 3.5.2 Assume E ⊇ [0, 1]. M ∈ An(E,E) fulfils (In, SPL, B) if and only if

M ∈ {minS , maxS |S ⊆ N} ∪ {WAMω |ω ∈ [0, 1]n}.
Proof. (Sufficiency) Trivial.

(Necessity) By Proposition 3.5.1, we can assume that M ∈ An([0, 1], [0, 1]). Let x ∈ [0, 1]n.
The values θS (S ⊆ N) fulfil the assumptions of exactly one of Lemmas 3.5.1, 3.5.2 or 3.5.3. We
then have three exclusive cases:

(i) Under the assumptions of Lemma 3.5.1, we have, by (SPL),

M(x) =
n∑

i=1

θi xi,

with, by (Id),
∑

i θi = M(n¯ 1) = 1.
(ii) Under the assumptions of Lemma 3.5.2, there exists p ∈ Smax such that xp = maxi∈Smax xi

and we have

M(x)
(In)

≤ M(xp eSmax + eSmax)
(SPL)
= xp + (1− xp) θSmax = xp

and

M(x)
(In)

≥ M(xp ep)
(SPL)
= xp θp = xp.

Therefore, we have
M(x) = max

i∈Smax

xi.

(iii) Under the assumptions of Lemma 3.5.3, there exists p ∈ Smin such that xp = mini∈Smin xi

and we have, since p ∈ Smin:

M(x)
(In)

≤ M(xp ep + ep)
(SPL)
= xp + (1− xp) θp = xp

and

M(x)
(In)

≥ M(xp eSmin)
(SPL)
= xp θSmin = xp.

Therefore, we have
M(x) = min

i∈Smin

xi.

Corollary 3.5.3 Assume E ⊇ [0, 1]. M ∈ An(E, E) fulfils (Sy, In, SPL, B) if and only if

M ∈ {min, max,AM}.
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3.5.3 Extended operators fulfilling general bisymmetry

The (GB) property is stronger than simply fulfilling (B) for each n. Thus, for example, we
can satisfy (In, SPL, B) and have radically different operations for each degree of cardinality of
aggregation. That is we could have an extended aggregation operator such that

M(x1, x2) = min(x1, x2),

M(x1, x2, x3) =
1
3

3∑

i=1

xi,

M(x1, x2, x3, x4) = x3,

M(x1, x2, x3, x4, x5) = max(x1, x4).

Thus in this situation we have no restriction on the process of extending the functions to greater
cardinalities in a consistent way.

As Theorem 3.5.3 below shows, (GB) brings some requirements for consistency in extending
an operator’s cardinality. Let us begin with two lemmas.

Lemma 3.5.4 If M ∈ A([0, 1], [0, 1]) fulfils (In, SPL, GB) and if there exists p ∈ IN0, p ≥ 2
such that

M (p) ∈ {WAM(p)
ω |ω ∈ [0, 1]p} \ {P(p)

i | i ∈ Np}
then, for all n ∈ IN0, there exists ω ∈ [0, 1]n such that M (n) = WAMω.

Proof. There exist ω ∈ [0, 1]p and {i1, i2} ⊆ Np with i1 6= i2, such that M (p) = WAM(p)
ω with

ωi1 , ωi2 6= 0.
Let n ∈ IN0, n ≥ 2, and let us show that M (n) fulfils (Add). Let x, y ∈ [0, 1]n with xi + yi ∈

[0, 1] for all i ∈ Nn. As in Lemma 3.5.1, we can assume xi, yi ≤ inf{ωi1 , ωi2} ∈ ]0, 1[ for all i ∈ Nn.
Consider the matrix X of p rows ri (i ∈ Np) and n columns cj (j ∈ Nn), where ri is defined as
follows (for i ∈ Np):

ri =





1
ωi1

x if i = i1,
1

ωi2
y if i = i2,

e∅ if i ∈ Np \ i1i2.

Since M fulfils (SPL, GB), we have M (n)(x + y) = M (n)(x) + M (n)(y). We then can conclude as
in the proof of Theorem 3.5.2.

Lemma 3.5.5 If M ∈ A([0, 1], [0, 1]) fulfils (In, SPL, GB) and if there exists p ∈ IN0, p ≥ 2
such that

M (p) ∈ {min(p)
S |S ⊆ Np} \ {P(p)

i | i ∈ Np}
(resp. M (p) ∈ {max(p)

S |S ⊆ Np} \ {P(p)
i | i ∈ Np})

then, for all n ∈ IN0, there exists S ⊆ Nn such that M (n) = minS (resp. M (n) = maxS).

Proof. Assume that there exist S ⊆ Np and {i1, i2} ⊆ Np with i1 6= i2, such that M (p) = min(p)
S .

The case max(p)
S can be treated similarly.

Let n ∈ IN0, n ≥ 2, and x, y ∈ [0, 1]n. Next, consider the matrix X of p rows ri (i ∈ Np) and
n columns cj (j ∈ Nn), where ri is defined as follows (for i ∈ Np):

ri =





x, if i = i1,
y, if i = i2,
eNn , if i ∈ Np \ i1i2.
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Since M fulfils (GB), we see that it also fulfils (Min). Therefore, if x ∈ [0, 1]n then

M (n)(x) = min
i∈Nn

M (n)(xi ei + ei)
(SPL)
= min

i∈Nn

[(1− xi)θ
(n)
i + xi].

Let us show that θ
(n)
i ∈ {0, 1} for all i ∈ Nn. Suppose it is not true. Since M (n) fulfils (In, SPL,

B), by Lemma 3.5.1, M (n) fulfils (Add) and thus

M (n) ∈ {WAM(n)
ω |ω ∈ [0, 1]n} \ {P(n)

i | i ∈ Nn}

which is impossible by Lemma 3.5.4. Indeed, we have

{WAM(p)
ω |ω ∈ [0, 1]p} ∩ {min(p)

S |S ⊆ Np} = {P(p)
i | i ∈ Np} (3.54)

since if M (p) belongs to the left-hand set of (3.54) then we necessarily have ωi = θ
(p)
i ∈ {0, 1}.

Finally, we have M (n) = min(n)
S with S = {i ∈ Nn | θ(n)

i = 0}.

Theorem 3.5.3 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, GB) if and only if
• either: for all n ∈ IN0, there exists S ⊆ Nn such that M (n) = minS,
• or: for all n ∈ IN0, there exists S ⊆ Nn such that M (n) = maxS,
• or: for all n ∈ IN0, there exists ω ∈ [0, 1]n such that M (n) = WAMω.

Proof. (Sufficiency) We can easily check that all the extended operators mentioned in the state-
ment fulfil (In, SPL, GB).

(Necessity) By Proposition 3.5.1, we can assume that M ∈ A([0, 1], [0, 1]). If, for all n ∈ IN0,
M (n) ∈ {P(n)

i | i ∈ Nn} then we can conclude immediately. Otherwise, there exists p ∈ IN0, p ≥ 2
such that M (p) /∈ {P(p)

i | i ∈ Np}. By Proposition 2.3.5, M (p) fulfils (In, SPL, B). Applying
Theorem 3.5.2, we can see that M (p) fulfils the assumptions of Lemma 3.5.4 or 3.5.5, and we can
conclude again.

Corollary 3.5.4 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (Sy, In, SPL, GB) if and only if

M = (min(n))n∈IN0 or (max(n))n∈IN0 or (AM(n))n∈IN0 .

3.5.4 Decomposable and strongly decomposable extended operators

Lemma 3.5.6 If M ∈ A([0, 1], [0, 1]) fulfils (In, SPL, D) then

M (2) ∈ {WAMω, OWAω |ω ∈ [0, 1]2}.

Proof. Set α := M(1, 0) and β := M(0, 1). By Proposition 3.5.2, we only have to prove that
α = β or α + β = 1. Let us proceed in two steps:

(i) We have successively

M(0, 0, 1)
(D)
= M(0, β, β)

(SPL)
= β M(0, 1, 1)

and
M(0, 1, 1)

(D)
= M(β, β, 1)

(SPL)
= β + (1− β) M(0, 0, 1).
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It follows that

M(0, 0, 1) =
β2

β2 − β + 1

and, similarly,

M(1, 0, 0) =
α2

α2 − α + 1
.

(ii) We have, using (D) and (SPL),

M(0, 1, 0) = β M(1, 1, 0) = α M(0, 1, 1).

By (i), the latter equality becomes

β
(
α + (1− α)

α2

α2 − α + 1

)
= α

(
β + (1− β)

β2

β2 − β + 1

)

or, after reduction, α = 0 or β = 0 or α = β or α + β = 1. If β = 0, i.e. M(0, 0, 1) = 0, we have
successively

α
(SPL)
= M(α, α, 1)

(D)
= M(1, 0, 1)

(D)
= M(1, 0, 0) =

α2

α2 − α + 1
and thus α = 0 or α = 1. We proceed similarly if α = 0. Hence the result.

Theorem 3.5.4 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, D) if and only if
• either: M = (min(n))n∈IN0,
• or: M = (max(n))n∈IN0,
• or: there exists θ ∈ [0, 1] such that, for all n ∈ IN0, we have M (n) = WAMω with

ωi =
(1− θ)n−i θi−1

∑n
j=1(1− θ)n−j θj−1

, i ∈ Nn.

Proof. (Sufficiency) We can easily check that all the extended operators mentioned in the state-
ment fulfil the corresponding properties.

(Necessity) By Proposition 3.5.1, we can assume that M ∈ A([0, 1], [0, 1]). By Lemma 3.5.6,
there exists θ ∈ [0, 1] such that

M (2) = WAM(1−θ,θ) or OWA(1−θ,θ).

(i) Assume first that M (2) = WAM(1−θ,θ). Let us prove by induction over n ≥ 2 that

M(x) =
1

Dn

n∑

i=1

(1− θ)n−i θi−1xi, x ∈ [0, 1]n,

where Dn =
∑n

j=1(1− θ)n−j θj−1. The result holds true for n = 2. Suppose it holds for a fixed
n ≥ 2 and show it still holds for n + 1. Let (x1, . . . , xn+1) ∈ [0, 1]n+1 and set x := (x1, . . . , xn).
We then have

M (n+1)(x1, . . . , xn+1)
(D)
= M (n+1)(n¯M (n)(x), xn+1)

(SPL)
=

{
(M (n)(x)− xn+1) θ

(n+1)
n+1 + xn+1 if xn+1 ≤ M (n)(x),

(xn+1 −M (n)(x)) θ
(n+1)
n+1 + M (n)(x) if xn+1 ≥ M (n)(x).
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Let us show that θ
(n+1)
n+1 is uniquely determined. The same can be done for θ

(n+1)
n+1 . Using

induction, we have

θ
(n+1)
n+1

(D)
= M (n+1)(1, n¯ θ

(n)
n )

(ind.)
= M (n+1)(1, n¯ (1− θn−1

Dn
))

and

θ
(n+1)
1

(D)
= M (n+1)(n¯ θ

(n)
1 , 0)

(ind.)
= M (n+1)(n¯ (1− θ)n−1

Dn
, 0).

Hence, using (SPL), we have the linear system





θ
(n+1)
n+1 =

θn−1

Dn
θ
(n+1)
1 + (1− θn−1

Dn
)

θ
(n+1)
1 =

(1− θ)n−1

Dn
θ
(n+1)
n+1

whose determinant

det

(
1 −θn−1

Dn

− (1−θ)n−1

Dn
1

)
= 1− (1− θ)n−1 θn−1

D2
n

is strictly positive. Indeed, we have Dn ≥ (1 − θ)n−1 and Dn ≥ θn−1, with at least one strict
inequality. Consequently, M (n+1)(x1, . . . , xn+1) is uniquely determined and M corresponds to
the third case in the statement of the theorem.

(ii) Now assume that M (2) = OWA(1−θ,θ). By Proposition 2.3.1, M fulfils (Sy). By (2.13),
M fulfils (SD). By Propositions 2.3.6 and 2.3.5, M (2) fulfils (B). Finally, using Corollary 3.5.2,
we have M (2) ∈ {min, max,AM}.

The operator AM is a particular case of (i) for which θ = 1/2. For the other two cases, we
can conclude by Lemma 3.2.3.

Theorem 3.5.5 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, SD) if and only if

M = (min(n))n∈IN0 or (max(n))n∈IN0 or (P(n)
1 )n∈IN0 or (P(n)

n )n∈IN0 or (AM(n))n∈IN0 .

Proof. (Sufficiency) Trivial.
(Necessity) Suppose M 6= (min(n))n∈IN0 and M 6= (max(n))n∈IN0 . Since (SD) implies (D), by

Theorem 3.5.4, there exists θ ∈ [0, 1] such that, for all n ∈ IN0, we have M (n) = WAMω with

ωi =
(1− θ)n−i θi−1

∑n
j=1(1− θ)n−j θj−1

, i ∈ Nn.

Since M fulfils (SD), we must have

M(M(x1, x3), x2,M(x1, x3)) = M(x1, x2, x3), x ∈ E3.

In particular, for x = (0, 0, 1), the previous equality becomes M(θ, 0, θ) = M(0, 0, 1), that is,
(1− θ)2 θ + θ3 = θ2. Hence, we have θ ∈ {0, 1, 1/2} that allows to complete the proof.

Corollary 3.5.5 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (Sy, In, SPL) and (D or SD) if
and only if

M = (min(n))n∈IN0 or (max(n))n∈IN0 or (AM(n))n∈IN0 .
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3.5.5 Associative operators

Theorem 3.5.6 Assume E ⊇ [0, 1]. M ∈ A2(E, E) fulfils (In, SPL, A) if and only if

M ∈ {min, max,P1,P2}.

Proof. (Sufficiency) Trivial.
(Necessity) Set α := M(1, 0) and β := M(0, 1). By Proposition 3.5.2, we only have to prove

that α, β ∈ {0, 1}. Since M fulfils (A), we must have

M(M(x1, x2), x3) = M(x1,M(x2, x3)), x ∈ E3.

In particular, for x = (1, 0, 0), we obtain, by (SPL), α ∈ {0, 1}. Also, for x = (0, 0, 1), we obtain
β ∈ {0, 1}.

Theorem 3.5.7 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, A) if and only if

M = (min(n))n∈IN0 or (max(n))n∈IN0 or (P(n)
1 )n∈IN0 or (P(n)

n )n∈IN0 .

Proof. (Sufficiency) Trivial.
(Necessity) We construct the sequence (M (n))n∈IN0 by induction over n. The functions M (2)

are given by Theorem 3.5.6. Thus assume that M (k) = min for all k ≤ n for a fixed n ≥ 2. By
(A), we simply have

M(x1, . . . , xn+1) = M(M(x1, . . . , xn), xn+1) = min
i∈Nn+1

xi.

The other cases can be treated similarly.

Corollary 3.5.6 Assume E ⊇ [0, 1]. M ∈ A(E,E) fulfils (Sy, In, SPL, A) if and only if

M = (min(n))n∈IN0 or (max(n))n∈IN0 .
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Chapter 4

Fuzzy measures and integrals

4.1 Definitions and motivations

A significant aspect of aggregation in multicriteria decision making is the difference in the impor-
tance of criteria, which is usually modelled by using different weights. Since these weights must
be taken into account during the aggregation, it is necessary to use weighted operators, thus
giving up the symmetry property (Sy). Until recently, the most often used weighted aggregation
operators were averaging operators, such as the quasi-linear means (3.3).

On this topic, Cholewa [27] and Montero [126, 127] described a serie of axioms that weighted
aggregation operators should follow, and proposed the weighted arithmetic mean (WAM) as a
typical aggregation operator that satisfies these axioms.

However, the weighted arithmetic means and, more generally, the quasi-linear means present
some drawbacks. None of these operators is able to model in some understandable way an
interaction between criteria. Indeed, it is well known in multiattribute utility theory (MAUT)
that these operators lead to mutual preferential independence among the criteria, which expresses
in some sense the independence of the criteria (see Section 1.3). Since these aggregation operators
are not appropriate when interactive criteria are considered, people usually tend to construct
independent criteria, or criteria that are supposed to be so, causing some bias effect in evaluation.

In order to have a flexible representation of complex interaction phenomena between criteria
(e.g. positive or negative synergy between some criteria), it is useful to substitute to the weight
vector a non-additive set function allowing to define a weight not only on each criterion, but also
on each subset of criteria.

For this purpose, the use of fuzzy measures have been proposed by Sugeno in 1974 [177] to
generalize additive measures. It seems widely accepted that additivity is not suitable as a required
property of set functions in many real situations, due to the lack of additivity in many facets
of human reasoning. To be able to express human subjectivity, Sugeno proposed to replace the
additivity property by a weaker one: monotonicity, and he called these non-additive monotonic
measures fuzzy measures. It is important to note however that fuzzy measures have nothing to
do with fuzzy sets.

The purpose of this chapter is to show the usefulness of fuzzy measures and integrals in multi-
criteria decision making. Two main classes of fuzzy integrals are investigated and characterized,
namely the Choquet and Sugeno integrals. Some subclasses are also studied in detail.

In the present section, we introduce the concept of fuzzy measure, also called capacity. We
will see that such a measure can be defined from a so-called pseudo-Boolean function. The
concept of fuzzy integral is also introduced. In Section 4.2 the Choquet integral is studied and

85



86 CHAPTER 4. FUZZY MEASURES AND INTEGRALS

characterized axiomatically. The link with the so-called Lovász extension of pseudo-Boolean
functions is pointed out as well. As particular Choquet integrals, the weighted arithmetic mean
and the ordered weighted averaging are also investigated. Section 4.3 deals in detail with the
Sugeno integral. We show that this integral can be written under several equivalent forms. We
also characterize the class of all the Sugeno integrals as well as some well-known subclasses.
Section 4.4 is devoted to the aggregation operators that are simultaneously Choquet and Sugeno
integrals. This family corresponds to the Boolean max-min functions already encountered in
Chapter 3.

4.1.1 The concept of fuzzy measure

We consider a discrete set of n elements N = {1, . . . , n}. Depending on the application, these
elements could be players of a cooperative game, criteria in a multicriteria decision problem,
attributes, experts or voters in an opinion pooling problem, etc. 2N indicates the power set of
N , i.e. the set of all subsets of N .

Definition 4.1.1 A (discrete) fuzzy measure on N is a set function µ : 2N → [0, 1] satisfying
the following conditions1:

i) µ(∅) = 0, µ(N) = 1,
ii) S ⊆ T ⇒ µ(S) ≤ µ(T ).

Note that the monotonicity condition ii) is obviously equivalent to:

µ(S ∪ i) ≥ µ(S), ∀i ∈ N, ∀S ⊆ N \ i. (4.1)

Moreover, the value of µ(N) is not very important; it is set equal to one for normalization reasons
only.

Thus, a fuzzy measure is a set of 2n real values obeying certain boundary and monotonicity
conditions, which can be put into a lattice form. For any S ⊆ N , µ(S) can be viewed as the
weight of importance or strength of the combination S for the particular decision problem under
consideration. Thus, in addition to the usual weights on criteria taken separately, weights on any
combination of criteria are also defined. Monotonicity then means that adding a new element to
a combination cannot decrease its importance.

We will always assume that the weights are numerical values and can add up. In other terms,
expressions like µ(S) + µ(T ) or µ(S ∪ i)− µ(S) can be interpreted.

Throughout this dissertation we will often write µS instead of µ(S).

We now give some usual definitions about fuzzy measures. We say that a fuzzy measure is

• additive if µS∪T = µS + µT whenever S ∩ T = ∅,
• superadditive if µS∪T ≥ µS + µT whenever S ∩ T = ∅,
• supermodular if µS∪T + µS∩T ≥ µS + µT for all S, T ⊆ N .

Subadditivity and submodularity can be defined as well by reversing the inequalities. Remark
that supermodularity, which is sometimes called convexity2 (see [170]), implies superadditivity.

1Definitions on infinite spaces usually require algebras and σ-algebras, but this is not necessary in the discrete
case (see full details in this respect in Denneberg [36] and Grabisch et al. [89]).

2Although convexity is often associated to supermodularity, it is also closely related to submodularity, see e.g.
Lovász [111, Proposition 4.1].
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If a fuzzy measure is additive then it suffices to define the n coefficients (weights) µ1, . . . , µn

to define the measure entirely. In general, one needs to define the 2n−2 coefficients corresponding
to the 2n subsets of N , except ∅ and N .

Another particular class of fuzzy measures is that of 0-1 fuzzy measures, whose values are
either 0 or 1.

It was very early noticed that fuzzy measures can model some kind of interaction between
criteria, but this issue was not formalized until the proposal by Murofushi and Soneda [130] of
an interaction index for a pair of criteria. Later, Grabisch proposed a generalization of this index
[81] to any subset of criteria, and Grabisch and Roubens proposed an axiomatic basis for the
interaction index [92], giving a consistent basis for dealing with the notion of interaction. We
elaborate on this subject in Chapter 5.

It should be mentioned that the concept of fuzzy measure predates its use by Sugeno. His-
torically, this concept has been first introduced in 1953 by Choquet [28] as a capacity. Later,
it was encountered under many different names, such as ‘confidence measure’ [43], ‘non-additive
probability’ [161], or, as in [183], ‘weighting function’.

In the sequel, we follow the tradition of Sugeno and use the name ‘fuzzy measure’.

In some domains, the monotonicity condition is not a requisite for set functions. In coop-
erative game theory, any real valued set function v : 2N → IR, with v(∅) = 0, is called the
characteristic function of a game (see e.g. Shapley [169]). Such a set function assigns to each
coalition S of players a real number v(S) representing the worth (i.e. the amount of money the
coalition will earn if the game is played) or the power of S. When a player i sows discord between
members of a coalition S, then the power of this coalition could decrease: v(S ∪ i) ≤ v(S).

One also defines the unanimity game for T ⊆ N , as the game vT such that vT (S) = 1 if and
only if S ⊇ T , and 0 otherwise.

4.1.2 Pseudo-Boolean functions

Recall that, for any subset S ⊆ N , eS represents the characteristic vector of S, i.e. the vector of
{0, 1}n whose i-th component is 1 if and only if i ∈ S. Geometrically, the characteristic vectors
are the 2n vertices of the hypercube [0, 1]n.

Definition 4.1.2 A pseudo-Boolean function is a function f : {0, 1}n → IR.

Any real valued set function v : 2N → IR can be assimilated unambiguously with a pseudo-
Boolean function. The correspondence is straightforward: we have

f(x) =
∑

T⊆N

v(T )
∏

i∈T

xi

∏

i/∈T

(1− xi), x ∈ {0, 1}n,

and v(S) = f(eS) for all S ⊆ N . We shall henceforth make this identification.
In particular, the pseudo-Boolean function that corresponds to a fuzzy measure is increasing

in each variable and fulfils the boundary conditions: f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Hammer and Rudeanu [96] showed that any pseudo-Boolean function has a unique expression
as a multilinear polynomial in n variables:

f(x) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ {0, 1}n, (4.2)
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with a(T ) ∈ IR.
In game theory, the real coefficients {a(T )}T⊆N are called the dividends of the coalitions in

game v, see [98, 145]. Moreover, equation (4.2) is the decomposition of the set function v into
unanimity games: indeed,

∏
i∈T xi corresponds to the unanimity game vT and we have, for all

S ⊆ N ,

v(S) = f(eS) =
∑

T⊆N

a(T )
∏

i∈T

(eS)i =
∑

T⊆N

a(T ) vT (S). (4.3)

Thus, any game v has a canonical representation in terms of unanimity games that determine a
linear basis for v. Note that Gilboa and Schmeidler [76] and Pap [146] extended this unanimity-
basis representation to general (infinite) spaces of players.

In combinatorics, a viewed as a set function on N is called the Möbius transform of v (see
e.g. Rota [154]), which is given by

a(S) =
∑

T⊆S

(−1)s−tv(T ), S ⊆ N, (4.4)

where s = |S| and t = |T |.
When a is given, it is possible to recover the original v by the so-called zeta transform3:

v(S) =
∑

T⊆S

a(T ), S ⊆ N. (4.5)

The existence of an inverse transformation shows clearly that the correspondance between a
and v is one-to-one, and a is a representation of v. In the sequel we will often write aT instead
of a(T ).

Of course, any set of 2n coefficients {aT |T ⊆ N} could not be the Möbius representation
of a fuzzy measure: the boundary and monotonicity conditions must be ensured. In terms of
the Möbius representation, those conditions are very easy to prove, see e.g. Chateauneuf and
Jaffray [25]:

Proposition 4.1.1 A set of 2n coefficients aT , T ⊆ N , corresponds to the Möbius represen-
tation of a fuzzy measure if and only if





a∅ = 0,
∑

T⊆N

aT = 1,

∑

T :i∈T⊆S

aT ≥ 0, ∀S ⊆ N, ∀i ∈ S.
(4.6)

Conditions (4.6) represent 2 equalities and

n∑

s=1

s

(
n

s

)
= n2n−1 (4.7)

inequalities.

3The link between the zeta transform and the classical Riemann zeta function is discussed in [37].
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4.1.3 Fuzzy integrals as a new aggregation tool

When a fuzzy measure is available on N , it is interesting to have tools capable of summarizing
all the values of a function to a single point, in terms of the underlying fuzzy measure. These
tools are the fuzzy integrals, a concept proposed by Sugeno [177, 178].

Fuzzy integrals are integrals of a real function with respect to a fuzzy measure, by analogy
with Lebesgue integral which is defined with respect to an ordinary (i.e. additive) measure. As
the integral of a function in a sense represents its average value, a fuzzy integral can be viewed
as a particular case of averaging aggregation operator.

Contrary to the weighted arithmetic means, fuzzy integrals are able to represent a certain
kind of interaction between criteria, ranging from redundancy (negative interaction) to synergy
(positive interaction). For this reason they have been thoroughly studied in the context of
multicriteria decision problems [79, 80, 84, 134].

There are several classes of fuzzy integrals, among which the most representative are those
of Sugeno and Choquet4.

The concept of Choquet integral was proposed by Schmeidler [160] and Murofushi and
Sugeno [131, 132], using a concept introduced by Choquet in capacity theory [28]. Since this in-
tegral is viewed here as an aggregation operator, we will adopt a connective-like notation instead
of the usual integral form, and the integrand will be a set of n values x1, . . . , xn of IR.

Definition 4.1.3 Let µ be a fuzzy measure on N . The (discrete) Choquet integral of a
function x : N → IR with respect to µ is defined by

Cµ(x) :=
n∑

i=1

x(i) [µ{(i),...,(n)} − µ{(i+1),...,(n)}],

with the usual convention that x(1) ≤ · · · ≤ x(n).

For instance, if x3 ≤ x1 ≤ x2, we have

Cµ(x1, x2, x3) = x3 [µ{3,1,2} − µ{1,2}] + x1 [µ{1,2} − µ{2}] + x2 µ{2}.

The Choquet integral is closely related to the Lebesgue integral, since both coincide when
the measure is additive:

Cµ(x) =
n∑

i=1

µi xi, x ∈ IR.

In this sense, the Choquet integral is a generalization of the Lebesgue integral.

We introduce now the concept of discrete Sugeno integral, viewed as an aggregation operator.
For theorical developments, see [88, 177, 178].

Definition 4.1.4 Let µ be a fuzzy measure on N . The (discrete) Sugeno integral of a
function x : N → [0, 1] with respect to µ is defined by

Sµ(x) :=
n∨

i=1

[x(i) ∧ µ{(i),...,(n)}].

4Definitions of fuzzy integrals are presented here in the restrictive case of finite spaces, for we deal with spaces
of criteria which are finite. We refer the reader to [131, 132, 133, 177] for more complete definitions.
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For instance, if x3 ≤ x1 ≤ x2, we have

Sµ(x1, x2, x3) = (x3 ∧ µ{3,1,2}) ∨ (x1 ∧ µ{1,2}) ∨ (x2 ∧ µ{2}).

Of course, given a fuzzy measure µ on N , the Choquet and Sugeno integrals can be regarded
as aggregation operators defined on IRn and [0, 1]n, respectively. But they are essentially different
in nature, since the latter is based on non-linear operators (min and max), and the former on
usual linear operators. Both compute a kind of distorded average of x1, . . . , xn. More general
definitions exist but will not be considered here (see [79, 89]).

In the following sections, we will investigate some properties of these fuzzy integrals as well
as some axiomatic characterizations. For instance, the Choquet integral fulfils (SPL) and the
Sugeno integral fulfils (SMin, SMax), which represent the counterpart of (SPL) for ordinal values.
In this sense, it can be said that the Choquet integral is suitable for cardinal aggregation (where
numbers have a real meaning), while the Sugeno integral seems to be more suitable for ordinal
aggregation (where only order makes sense). See Sections 6.1 and 6.5.

4.2 The Choquet integral

Before studying the Choquet integral, we have to mention that it is also known in the framework
of combinatorial optimization as Lovász extension. We now present this concept.

4.2.1 Lovász extension

Lovász [111, Sect. 3] has observed that any x ∈ (IR+)n \ {0} can be written uniquely in the form

x =
k∑

i=1

λi eSi (4.8)

where λ1, . . . , λk > 0 and ∅ 6= S1 ⊆/ · · · ⊆/ Sk ⊆ N . For example, we have

(1, 5, 3) = 2 (0, 1, 0) + 2 (0, 1, 1) + 1 (1, 1, 1),
(0, 5, 3) = 2 (0, 1, 0) + 3 (0, 1, 1).

Hence any function f : {0, 1}n → IR with f(0) = 0 can be extended to f̂ : (IR+)n → IR, by
f̂(0) = 0 and

f̂(x) =
k∑

i=1

λi f(eSi) (x =
k∑

i=1

λi eSi ∈ (IR+)n \ {0});

indeed, f̂ is well defined (due to the uniqueness of (4.8)) and f̂(x) = f(x) for all x ∈ {0, 1}n.
The function f̂ is called [74] the Lovász extension of f .

Now, the Lovász extension of an arbitrary function f : {0, 1}n → IR is defined by

f̂(x) = f(0) + f̂0(x), x ∈ (IR+)n,

where f̂0 is the Lovász extension of f0 = f − f(0).

As has been stated by Lovász ([111, Proposition 4.1]), f̂ is convex (resp. concave, linear)
if and only if f is submodular (resp. supermodular, modular). Conversely, the restriction of a
linear function to {0, 1}n is modular, but the restriction of a convex function to {0, 1}n need not
be submodular [111].
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The hypercube [0, 1]n can be subdivided into n! simplices of the form

Bπ := {x ∈ [0, 1]n |xπ(1) ≤ · · · ≤ xπ(n)}, π ∈ Πn.

Of course, for each π ∈ Πn, we have Bπ = Oπ ∩ [0, 1]n, where Oπ is defined by (3.44). Moreover,
Bπ is the convex hull of

{e{π(i),...,π(n)}}n+1
i=1 .

Singer [173, Sect. 2] has shown that f̂ is defined on each cone Kπ = {λBπ |λ ≥ 0} as the unique
affine function that coincides with f at the n+1 vertices of Bπ. More formally, f̂ can be written
as5:

f̂(x) = f(0) +
n∑

i=1

xπ(i) [f(e{π(i),...,π(n)})− f(e{π(i+1),...,π(n)})], x ∈ Kπ. (4.9)

It is well known [173] that Bπ is a polytope with vertices επ
i = e{π(i),...,π(n)} (i = 1, . . . , n+1).

Thus, on each polytope Bπ, the graph of f̂ is the portion of the unique hyperplane passing
through (επ

1 , f(επ
1 )), . . . , (επ

n+1, f(επ
n+1)) (which is, actually, their convex hull).

Concerning the convexity of f̂ , Singer [173, Theorem 3.3] proved the following result.

Theorem 4.2.1 Let f : {0, 1}n → IR, with Lovász extension f̂ : (IR+)n → IR. For any
π ∈ Πn, we set

Φπ(x) :=
n∑

i=1

xπ(i) [f(e{π(i),...,π(n)})− f(e{π(i+1),...,π(n)})], x ∈ IRn.

Then the following statements are equivalent:
1. f is submodular.
2. f̂ is convex.
3. f̂ is polyhedral convex.
4. We have

f̂(x) = f(0) + max
π∈Πn

Φπ(x), x ∈ (IR+)n.

5. We have
f(x) = f(0) + max

π∈Πn

Φπ(x), x ∈ {0, 1}n.

6. We have
f(0) + Φπ(x) ≤ f(x), x ∈ {0, 1}n, π ∈ Πn.

According to Singer [173], the restriction of f̂ to [0, 1]n is called the tight extension of f
associated to the standard triangulation {Bπ |π ∈ Πn} of [0, 1]n.

A practical form of f̂ is the following.

Proposition 4.2.1 Let f be a pseudo-Boolean function. Then the Lovász extension of f is
given by

f̂(x) =
∑

T⊆N

aT

∧

i∈T

xi, x ∈ (IR+)n, (4.10)

where a is the Möbius representation of f .

Proof. The function (4.10) agrees with f at all the vertices of [0, 1]n, and identifies with an affine
function on each cone Kπ, which is sufficient.

5Of course, continuity is ensured when passing from a cone to another.
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4.2.2 Properties of the Choquet integral and equivalent forms

Let µ be a fuzzy measure on N . By (4.9), we immediately see that the Choquet integral Cµ,
defined on (IR+)n, is nothing else than the Lovász extension of the pseudo-Boolean function fµ

which represents µ:
Cµ = f̂µ on (IR+)n.

Moreover, since the Choquet integral fulfils (SPL), by Proposition 3.5.1, we can define it on
En, where E ⊇ [0, 1].

Thus, the Choquet integral is a piecewise affine function on En and we have

Cµ(eS) = µS , S ⊆ N.

Moreover, we clearly see that Cµ is an increasing function if and only if µ is as well.

Proposition 4.2.1 can be rewritten as follows, see also Chateauneuf and Jaffray [25].

Proposition 4.2.2 Assume E ⊇ [0, 1]. Any Choquet integral Cµ : En → IR can be written
as

Cµ(x) =
∑

T⊆N

aT

∧

i∈T

xi, x ∈ En, (4.11)

where a is the Möbius representation of µ.

Of course, the set function a occuring in (4.11) is uniquely determined, that is
∑

T⊆N

aT

∧

i∈T

xi =
∑

T⊆N

a′T
∧

i∈T

xi, x ∈ En ⇔ a = a′.

Moreover, any Choquet integral can also be put in the form
∑

T⊆N

αT

∨

i∈T

xi.

To see this, we need a lemma.

Lemma 4.2.1 For all x ∈ IRn, we have

n∨

i=1

xi =
∑

K⊆N
K 6=∅

(−1)k+1
∧

i∈K

xi and
n∧

i=1

xi =
∑

K⊆N
K 6=∅

(−1)k+1
∨

i∈K

xi.

Proof. Let us prove the first identity. The other one can be treated similarly. Use induction on
n ∈ IN0. The result is true if n = 1 or n = 2. Suppose that it holds for n ≤ p and let us show
that it holds for n = p + 1. We have,

p+1∨

i=1

xi =
p∨

i=1

xi + xp+1 −
( p∨

i=1

xi

)
∧ xp+1

=
p∨

i=1

xi + xp+1 −
p∨

i=1

(xi ∧ xp+1)

=
∑

K⊆Np
K 6=∅

(−1)k+1
∧

i∈K

xi + xp+1 −
∑

K⊆Np
K 6=∅

(−1)k+1
∧

i∈K∪{p+1}
xi
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=
p+1∑

i=1

xi +
∑

K⊆Np
k≥2

(−1)k+1
∧

i∈K

xi +
∑

K⊆Np
k≥1

(−1)|K∪{p+1}|+1
∧

i∈K∪{p+1}
xi

=
p+1∑

i=1

xi +
∑

K⊆Np+1
k≥2

(−1)k+1
∧

i∈K

xi

=
∑

K⊆Np+1
K 6=∅

(−1)k+1
∧

i∈K

xi.

Lemma 4.2.1 must be compared to the well-known Poincaré formula which can be found in
probability theory: If E1, . . . , En are random events then we have

Pr(
n⋃

i=1

Ei) =
∑

K⊆N
K 6=∅

(−1)k+1 Pr(
⋂

i∈K

Ei).

Proposition 4.2.3 Let a and α be set functions 2N → IR. Then the following three asser-
tions are equivalent.

i)
∑

T⊆N

aT

∧

i∈T

xi =
∑

T⊆N

αT

∨

i∈T

xi, x ∈ En;

ii) a∅ = α∅ and aT = (−1)t+1
∑

K⊇T

αK , T 6= ∅;

iii) α∅ = a∅ and αT = (−1)t+1
∑

K⊇T

aK , T 6= ∅.

Proof. Let us prove the equivalence between i) and ii). The equivalence between i) and iii) can
be treated similarly.

We simply have, by Lemma 4.2.1,
∑

T⊆N

αT

∨

i∈T

xi = α∅ +
∑
T⊆N
T 6=∅

αT

∑
K⊆T
K 6=∅

(−1)k+1
∧

i∈K

xi

= α∅ +
∑

K⊆N
K 6=∅

[
(−1)k+1

∑

T⊇K

αT

] ∧

i∈K

xi.

We conclude by the uniqueness of the coefficients in (4.11).

It is also worth noting that if µ is a possibility measure π, defined by

π(S) =
∨

i∈S

π(i), S ⊆ N,

then, by (4.4) and Lemma 4.2.1, we have, for all T ⊆ N ,

aT = (−1)t+1
∑
K⊆T
K 6=∅

(−1)k+1
∨

i∈K

π(i) = (−1)t+1
∧

i∈T

π(i),

but this result has been known for a long time in possibility theory and evidence theory, see
Shafer [167].

As it can be easily verified, the Choquet integral fulfils the following aggregation properties
[80]: (Co), (In), (UIn), (Id), (Comp), (SPL). We shall show below that it also fulfils (CoAdd)
and (BOM).
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4.2.3 Some axiomatic characterizations

The Choquet integrals have become very popular in the field of fuzzy sets and multicriteria
decision making. This is the reason why searching interpretable characterizations of this class of
operators seems relevant. As already mentioned, an axiomatic characterization of any class of
operators should not be reduced to a mathematical game. It must either reveal an underlying
behavior that was not explicit in the operators, or provide a useful characterization.

Before going on, recall the following notations, already used in Section 3.5: for any M ∈
An(E, IR), with E ⊇ [0, 1], we set

θS := M(eS) and θS := M(eS), S ⊆ N.

First, we start with Proposition 3.5.2, which can be rewritten as follows (see also Figure 3.9).

Theorem 4.2.2 Assume E ⊇ [0, 1]. A two-place function M : E2 → IR fulfils (In, SPL) if
and only if there exists a fuzzy measure µ on {1, 2} such that M = Cµ.

Next, by adapting Theorems 3.5.1 and 3.5.6, we also have the following result.

Theorem 4.2.3 Assume E ⊇ [0, 1] and consider a two-place Choquet integral Cµ : E2 → IR.
Then

i) Cµ fulfils (B) or (AD) if and only if Cµ ∈ {min, max} ∪ {WAMω |ω ∈ [0, 1]2}
ii) Cµ fulfils (A) if and only if Cµ ∈ {min,max, P1, P2}.

Of course, all the n-place operators fulfilling (In, SPL) are not Choquet integrals. For in-
stance, the operator

M(x) =
(x1 + x2

2

)
∧ x3, x ∈ E3,

fulfils (In, SPL) but corresponds to no Choquet integral; indeed, the Lovász extension of the
pseudo-Boolean function f : {0, 1}3 → IR defined by

f(x) = (
x1 + x2

2
) ∧ x3 =

1
2
(x1 ∧ x3) +

1
2
(x2 ∧ x3), x ∈ {0, 1}3,

is given by

f̂(x) =
1
2
(x1 ∧ x3) +

1
2
(x2 ∧ x3)

and we have f̂(0, 1, 1/2) = 1/4 6= 1/2 = M(0, 1, 1/2).

The class of n-place Choquet integrals has been characterized by Schmeidler [160], see also
[33], [77], and [89, Theorem 8.6]. We present below a slightly different statement.

Theorem 4.2.4 Assume E ⊇ [0, 1]. M ∈ An(E, IR) fulfils (In, SPL, CoAdd) if and only if
there exists a fuzzy measure µ on N such that M = Cµ.

Proof. (Sufficiency) Let us show that Cµ fulfils (CoAdd), see also [148]. Consider two comono-
tonic vectors x, x′ ∈ En. Then we have

Cµ(x + x′) =
n∑

i=1

(x(i) + x′(i)) [µ{(i),...,(n)} − µ{(i+1),...,(n)}]

=
n∑

i=1

x(i) [µ{(i),...,(n)} − µ{(i+1),...,(n)}] +
n∑

i=1

x′(i) [µ{(i),...,(n)} − µ{(i+1),...,(n)}]

= Cµ(x) + Cµ(x′).



4.2. THE CHOQUET INTEGRAL 95

(Necessity) By Proposition 3.5.1, we can assume that M ∈ An([0, 1], IR). Fix π ∈ Πn and set
x ∈ Bπ. By (SPL), we have

M(x) = M([xπ(1), . . . , xπ(n)]π−1)
= M([0, xπ(2) − xπ(1), . . . , xπ(n) − xπ(1)]π−1) + xπ(1).

By (CoAdd) and (SPL), we have, for all i ∈ {2, . . . , n},

M([0, . . . , 0︸ ︷︷ ︸
i−1

, xπ(i) − xπ(i−1), . . . , xπ(n) − xπ(i−1)]π−1)

= M([0, . . . , 0︸ ︷︷ ︸
i−1

, xπ(i) − xπ(i−1), . . . , xπ(i) − xπ(i−1)]π−1)

+M([0, . . . , 0, 0︸ ︷︷ ︸
i

, xπ(i+1) − xπ(i), . . . , xπ(n) − xπ(i)]π−1)

= (xπ(i) − xπ(i−1)) θ{π(i),...,π(n)} + M([0, . . . , 0, 0︸ ︷︷ ︸
i

, xπ(i+1) − xπ(i), . . . , xπ(n) − xπ(i)]π−1)

and thus, recursively,

M(x) =
n∑

i=2

(xπ(i) − xπ(i−1)) θ{π(i),...,π(n)} + xπ(1) = Cµ(x),

with µT = M(eT ) = θT for all T ⊆ N . Moreover, by (In), µ is a fuzzy measure.

We now intend to show that the class of Choquet integrals can also be characterized by (In,
SPL, BOM). For this purpose, we need two lemmas.

Lemma 4.2.2 Let n ∈ IN0, n ≥ 2. If M ∈ An([0, 1], [0, 1]) fulfils (In, SPL, BOM) and if
there exists S ⊆ N such that θS ∈ ]0, 1[ then M fulfils (CoAdd).

Proof. The proof is simply an adaptation of that of Lemma 3.5.1. Let x, y be two comonotonic
vectors in [0, 1]n with xi + yi ∈ [0, 1] for all i ∈ N . Thus there exists π ∈ Πn such that

xπ(1) ≤ · · · ≤ xπ(n) and yπ(1) ≤ · · · ≤ yπ(n).

Let us show that
M(x + y) = M(x) + M(y). (4.12)

As in the proof of Lemma 3.5.1, we can assume that xi, yi ≤ inf{θS , 1 − θS} for all i ∈ N .
Let π′ ∈ Πn such that π′(i) > π′(j) for all i ∈ S and all j /∈ S, and consider the ordered square
matrix X of n rows ri and n columns cj (i, j ∈ N), where ri is defined as follows (for i ∈ N):

ri =
[
1
2

(xπ(i)

θS
+ 1

)
eS +

1
2

yπ(i)

1− θS
eS

]

π′
.

On the one hand, by (SPL), we have, for all i ∈ N :

M([ri]π′−1) =
1
2

yπ(i)

1− θS
+

1
2

( xπ(i)

θS
+ 1− yπ(i)

1− θS

)
θS =

xπ(i) + yπ(i)

2
+

θS

2
,

and thus
M([M([r1]π′−1), . . . , M([rn]π′−1)]π−1) =

1
2

M(x + y) +
θS

2
.
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On the other hand, for all j ∈ N , we have

M([cj ]π−1) =





1
2(M(x)

θS
+ 1), if j ∈ π′(S),

1
2

M(y)
1−θS

, otherwise.

However, by (2.6) and (2.2), M fulfils (Comp). Hence, by (SPL), we have,

M([M([c1]π−1), . . . ,M([cn]π−1)]π′−1) = M
[ 1

2

(M(x)
θS

+ 1
)
eS +

1
2

M(y)
1− θS

eS

]

=
1
2

[M(x) + M(y)] +
θS

2
.

Since M fulfils (BOM), we have (4.12).

Lemma 4.2.3 Let n ∈ IN0, n ≥ 2. If M ∈ An([0, 1], IR) fulfils (In, SPL) and if θS ∈ {0, 1}n

for all S ⊆ N , then there exists a 0-1 fuzzy measure µ on N such that M = Cµ.

Proof. Let π ∈ Πn. By (In), there exists k ∈ {0, . . . , n− 1} such that

θ{π(i),...,π(n)} =
{

1, ∀i ∈ {1, . . . , k},
0, ∀i ∈ {k + 1, . . . , n}.

Let x ∈ Bπ. By (In) and (SPL), we have

M([xπ(1), . . . , xπ(n)]π−1) ≤ M([k ¯ xπ(k), (n− k)¯ xπ(n)]π−1)
= xπ(k) + M([k ¯ 0, (n− k)¯ (xπ(n) − xπ(k))]π−1)
= xπ(k)

and

M([xπ(1), . . . , xπ(n)]π−1) ≥ M([(k − 1)¯ xπ(1), (n− k + 1)¯ xπ(k)]π−1)
= M([(k − 1)¯ 0, (n− k + 1)¯ (xπ(k) − xπ(1))]π−1) + xπ(1)

= xπ(k) − xπ(1) + xπ(1)

= xπ(k).

Thus, we have
M(x) = M([xπ(1), . . . , xπ(n)]π−1) = xπ(k) = Cµ(x)

with µ{π(k),...,π(n)} − µ{π(k+1),...,π(n)} = 1.

Theorem 4.2.5 Assume E ⊇ [0, 1]. M ∈ An(E,E) fulfils (In, SPL, BOM) if and only if
there exists a fuzzy measure µ on N such that M = Cµ.

Proof. (Sufficiency) Let us show that Cµ fulfils (BOM). Observe first that if x1 ≤ · · · ≤ xn then,
for any π ∈ Πn, we have

Cµ([x1, . . . , xn]π) =
n∑

i=1

xi [µ{π−1(i),...,π−1(n)} − µ{π−1(i+1),...,π−1(n)}].
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Now consider an ordered square matrix X ∈ En×n and π, π′ ∈ Πn. By (In), we have

Cµ([x11, . . . , x1n]π′) ≤ · · · ≤ Cµ([xn1, . . . , xnn]π′)

and by the previous identity, we have

Cµ([Cµ([x11, . . . , x1n]π′), . . . , Cµ([xn1, . . . , xnn]π′)]π)

=
n∑

i=1

Cµ([xi1, . . . , xin]π′) [µ{π−1(i),...,π−1(n)} − µ{π−1(i+1),...,π−1(n)}]

=
n∑

i,j=1

xij [µ{π′−1(j),...,π′−1(n)} − µ{π′−1(j+1),...,π′−1(n)}][µ{π−1(i),...,π−1(n)} − µ{π−1(i+1),...,π−1(n)}]

which does not change when permuting π and π′. Hence Cµ fulfils (BOM).
(Necessity) By Proposition 3.5.1, we can assume that M ∈ An([0, 1], [0, 1]). If there exists

S ⊆ N such that θS ∈ ]0, 1[ then, by Lemma 4.2.2, M fulfils (CoAdd) and, by Theorem 4.2.4, M
is a Choquet integral.

Otherwise, if θS ∈ {0, 1}n for all S ⊆ N , then we can immediately conclude by Lemma 4.2.3.

The following characterization has been suggested by D. Dubois.

Theorem 4.2.6 Assume [0, 1] ⊆ E ⊆ IR+. The Choquet integrals on En are exactly those
M ∈ An(E, IR) which fulfil (In, WId) and

M(λx + (1− λ) x′) = λM(x) + (1− λ) M(x′), λ ∈ [0, 1], (4.13)

for all comonotonic vectors x, x′ ∈ En.

Proof. (Sufficiency) Trivial.
(Necessity) It is clear that, by (4.13), M is an affine function on each set Kπ ∩En (π ∈ Πn),

and thus is the Lovász extension of a pseudo-Boolean function f . By (In, WId), f corresponds
to a fuzzy measure, which is sufficient.

By Theorem 3.5.2, we also have the following result.

Theorem 4.2.7 Assume E ⊇ [0, 1]. The Choquet integral Cµ ∈ An(E,E) fulfils (B) if and
only if

Cµ ∈ {minS , maxS |S ⊆ N} ∪ {WAMω |ω ∈ [0, 1]n}.

An extended Choquet integral C is an extended aggregation operator M ∈ A(E, IR) such that,
for all n ∈ IN0, M (n) is a Choquet integral. Concerning such extended aggregation operators, we
present the following result.

Theorem 4.2.8 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, GBOM) if and only if
M is an extended Choquet integral.

Proof. (Sufficiency) The proof is similar to that of Theorem 4.2.5.
(Necessity) It is clear that, for all n ∈ IN0, M (n) fulfils (In, SPL, BOM). We then conclude

by Theorem 4.2.5.

Theorems 3.5.3, 3.5.4, 3.5.5 and 3.5.7 provide successively the following results.
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Theorem 4.2.9 Assume E ⊇ [0, 1]. C ∈ A(E, E) is an extended Choquet integral and fulfils
(GB) if and only if

• either: for all n ∈ IN0, there exists S ⊆ Nn such that C(n) = minS,
• or: for all n ∈ IN0, there exists S ⊆ Nn such that C(n) = maxS,
• or: for all n ∈ IN0, there exists ω ∈ [0, 1]n such that C(n) = WAMω.

Theorem 4.2.10 Assume E ⊇ [0, 1]. C ∈ A(E, E) is an extended Choquet integral and fulfils
(D) if and only if

• either: C = (min(n))n∈IN0,
• or: C = (max(n))n∈IN0,
• or: there exists θ ∈ [0, 1] such that, for all n ∈ IN0, we have C(n) = WAMω with

ωi =
(1− θ)n−i θi−1

∑n
j=1(1− θ)n−j θj−1

, ∀i ∈ Nn.

Theorem 4.2.11 Assume E ⊇ [0, 1]. C ∈ A(E, E) is an extended Choquet integral and fulfils
(SD) if and only if

C = (min(n))n∈IN0 or (max(n))n∈IN0 or (P(n)
1 )n∈IN0 or (P(n)

n )n∈IN0 or (AM(n))n∈IN0 .

Theorem 4.2.12 Assume E ⊇ [0, 1]. C ∈ A(E, E) is an extended Choquet integral and fulfils
(A) if and only if

C = (min(n))n∈IN0 or (max(n))n∈IN0 or (P(n)
1 )n∈IN0 or (P(n)

n )n∈IN0 .

4.2.4 Weighted arithmetic means

The best known and most often used weighted mean operator in many applications is the weighted
arithmetic mean operator (WAM), defined by (1.2).

It is easy to prove that WAM operators fulfil the following properties: (Co), (In), (UIn), (Id),
(Comp), (SPL), (SSN), (Add), (B), (Sep). Moreover, one can readily see that any WAMω is a
Choquet integral Cµ with respect to an additive fuzzy measure (probability measure):

µT =
∑

i∈T

ωi, T ⊆ N.

The corresponding Möbius representation is given by:
{

ai = ωi, ∀i ∈ N ,
aT = 0, ∀T ⊆ N such that |T | 6= 1,

As a consequence, we can see that the weighted arithmetic means are the additive Choquet
integrals.

Theorem 4.2.13 The Choquet integral Cµ ∈ An(E, IR) fulfils (Add) if and only if there exists
ω ∈ [0, 1]n such that Cµ = WAMω.

Using Theorem 4.2.4, we also have the following corollary.

Corollary 4.2.1 Assume E ⊇ [0, 1]. M ∈ An(E, IR) fulfils (In, SPL, Add) if and only if
there exists ω ∈ [0, 1]n such that M = WAMω.
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The class of WAM operators includes two important special cases, namely:
• the arithmetic mean AM, when ωi = 1/n for all i,
• the k-th projection Pk, when ωk = 1.

It is clear that a WAMω function fulfils (Sy) if and only if ωi = 1/n for all i (arithmetic
mean). It fulfils (SIn) if and only if ωi > 0 for all i.

The family of weighted arithmetic means can be characterized from some results of Sec-
tion 3.5. For example, adding (SSN) to the characterizations of Proposition 3.5.2 and Theo-
rem 3.5.2 leads to the following two corollaries (recall that, by Proposition 2.2.2, (SSi, SSN)
implies (SPL)).

Corollary 4.2.2 M ∈ A2([0, 1], [0, 1]) fulfils (In, SSi, SSN) if and only if there exists ω ∈
[0, 1]2 such that M = WAMω.

Corollary 4.2.3 M ∈ An([0, 1], [0, 1]) fulfils (In, SSi, SSN, B) if and only if there exists
ω ∈ [0, 1]n such that M = WAMω.

From Corollary 3.5.3, we immediately deduce the following characterization of the arithmetic
mean.

Corollary 4.2.4 Assume E ⊇ [0, 1]. M ∈ An(E, E) fulfils (Sy, SIn, SPL, B) if and only if
M = AM.

In addition to the previous results, some characterizations of the family of weighted arithmetic
means are presented in Aczél [4, Sect. 5.3.1] (see also Proposition 9 in [7, Chapter 15]).

Proposition 4.2.4 The function M ∈ A2(IR, IR) has the properties

M(x + s, y + s) = M(x, y) + s and M(r x, r y) = r M(x, y) (x, y, s, r ∈ IR, r 6= 0)

if and only if, there exists θ ∈ IR such that

M(x, y) = (1− θ) x + θ y (x, y ∈ IR).

If M is symmetric, then θ = 1/2.

Proposition 4.2.5 M ∈ An(IR, IR) fulfils (Co, Add) and is such that M(x0, . . . , x0) = x0

for an x0 ∈ IR0 if and only if there exists ω ∈ IRn with
∑

i ω1 = 1 such that

M(x) =
n∑

i=1

ωi xi, x ∈ IRn.

In the previous two propositions, it is clear that if M fulfils (In) then the weights θ and ωi

are non-negative.

Proposition 4.2.6 M ∈ An(IR, IR) fulfils (Sy, Id, Add) if and only if M = AM.

The following result can be extracted from [9, pp. 413–414].

Proposition 4.2.7 Let E = IR or IR+. If M ∈ An(E, IR) fulfils (SSi, Add) then

M(x) =
n∑

i=1

ai xi, ∀x ∈ En,

where a1, . . . , an are arbitrary constants.



100 CHAPTER 4. FUZZY MEASURES AND INTEGRALS

From Theorem 3.4.7, we can deduce the following.

Proposition 4.2.8 M ∈ An(IR, IR) fulfils (Id, ISUII) if and only if

M(x) =
n∑

i=1

ai xi, x ∈ IRn,

with
∑

i ai = 1, ai ∈ IR. If, moreover, M fulfils (In) then ai ≥ 0. If M fulfils (Sy) then ai = 1/n.

For extended aggregation operators, we also have the following two corollaries. They can be
immediately deduced from Theorem 3.5.3 and Corollaries 3.5.4 and 3.5.5.

Corollary 4.2.5 M ∈ A([0, 1], [0, 1]) fulfils (In, SSi, SSN, GB) if and only if, for all n ∈ IN0,
there exists ω ∈ [0, 1]n such that M (n) = WAMω.

Corollary 4.2.6 Assume E ⊇ [0, 1]. M ∈ A(E,E) fulfils (Sy, SIn, SPL) and (D or SD or
GB) if and only if, for all n ∈ IN0, M (n) = AM.

Theorem 4.2.14 Let θ ∈ IR. M ∈ A(IR, IR) fulfils (Id, D) and is such that

M(x1, x2) = (1− θ) x1 + θ x2, (x1, x2) ∈ IR2,

if and only if, for all n ∈ IN0,

M(x) =
1

Dn

n∑

i=1

(1− θ)n−i θi−1xi, x ∈ IRn,

where Dn =
∑n

j=1(1− θ)n−j θj−1.

Proof. (Sufficiency) We have already observed in Theorem 3.5.4 that M fulfils (Id, D).
(Necessity) The proof (by induction over n) is an adaptation of that of Theorem 3 in [4, Sect.

5.3.1]. Suppose the result true for n ≥ 2. By (D), we have

M (n+1)(x1, . . . , xn+1) = M (n+1)(n¯M (n)(x1, . . . , xn), xn+1)
= G(M (n)(x1, . . . , xn), xn+1)
= M (n+1)(x1, n¯M (n)(x2, . . . , xn+1)),

or (if, for example, θ 6= 0) with x1 = · · · = xn−1 = 0,

G
(θn−1xn

Dn
, xn+1

)
= M (n+1)

(
0, n¯ (1− θ) θn−2xn + θn−1xn+1

Dn

)

= f
((1− θ) θn−2xn + θn−1xn+1

Dn

)
,

therefore

G(x, xn+1) = f
(1− θ

θ
x +

θn−1xn+1

Dn

)
.

Thus

M (n+1)(x1, . . . , xn+1) = G(M (n)(x1, . . . , xn), xn+1)

= f
(1− θ

θ
M (n)(x1, . . . , xn) +

θn−1xn+1

Dn

)

= f
( 1
Dn

n+1∑

i=1

(1− θ)n+1−iθi−2xi

)
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and finally because of (Id)

x = M (n+1)(x, . . . , x) = f
(Dn+1

θ Dn
x
)
,

that is,

f(t) =
θ Dn

Dn+1
t,

M (n+1)(x1, . . . , xn+1) =
1

Dn+1

n+1∑

i=1

(1− θ)n+1−iθi−1xi,

which was to be proved.

Yager and Rybalov [198] investigated the extended weighted arithmetic means that fulfil the
self-identity property. Recall that self-identity (SId) relates the aggregation process at cardinal-
ities n and n+1 in such a way that adding as the (n+1)-th element the aggregated value of the
previous n elements must give the original aggregated value.

Theorem 4.2.15 Let M ∈ A(E,E) defined by M (n) = WAMω(n) for all n ∈ IN0. Then M
fulfils (SId) if and only if, for all n ∈ IN0, we have

1 = ω
(1)
1 ≥ . . . ≥ ω

(n)
1

and

ω
(n)
i = ω

(n)
1

( 1

ω
(i)
1

− 1

ω
(i−1)
1

)
, i = 2, . . . , n.

We see that under (SId), the extended weighted arithmetic mean is uniquely determined by
selecting ω

(2)
1 , . . . , ω

(n)
1 . The weights ω

(n)
i are then defined by the ratio of ω

(n)
1 with first weights

in the previous aggregations.
As a particular case, we can consider the extended arithmetic mean, for which we have

ω
(n)
i = 1

n . We might also imagine that there exists α ∈ [0, 1] such that

ω
(i)
1 = α ω

(i−1)
1 , i = 2, . . . , n.

That is, we require that the first weight in each succeeding aggregation is reduced by α proportion.
In this case we have ω

(n)
1 = αn−1 and

ω
(n)
i = αn−i(1− α), i = 2, . . . , n.

The following recursive formula also holds:

M(x1, . . . , xn+1) = α M(x1, . . . , xn) + (1− α) xn+1.

We note this form of aggregation known as exponential smoothing [22] is a classic non-symmetric
type of linear aggregation.
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4.2.5 Ordered weighted averaging operators

The ordered weighted averaging aggregation operators (OWA), defined by (1.3), were proposed
in 1988 by Yager [192]. Since their introduction, they have been applied to many fields as
neural networks [190, 194], data base systems [191, 195], fuzzy logic controllers [60, 193], and
group decision making [31, 192]. The OWA operators can also be used in decision making under
uncertainty to modelize the anticipated utility [147, 166].

Their structural properties [174] and their links with fuzzy integrals [77, 86] were also inves-
tigated. For a recent list of references, see [103].

Thus defined, an OWA operator is given explicitly by a weighted arithmetic mean of order
statistics. A fundamental aspect of such an operator is the re-ordering step, in particular a
score xi is not associated with a particular weight ωi, but rather a weight is associated with
a particular ordered position of score. This ordering step introduces a non-linearity into the
aggregation process.

Example 4.2.1 Assume ω = (0.4, 0.3, 0.2, 0.1) and x = (0.7, 1, 0.3, 0.6). In this case carrying
out the reordering process we get that x(1) = 0.3, x(2) = 0.6, x(3) = 0.7 and x(4) = 1. Then
performing the aggregation

∑n
i=1 ωi x(i) we get

OWAω(0.7, 1, 0.3, 0.6) = (0.4)(0.3) + (0.3)(0.6) + (0.2)(0.7) + (0.1)(1) = 0.54

OWA operators fulfil a number of well-known and easy-to-prove properties [31, 192], namely:
(Sy), (Co), (In), (UIn), (Id), (Comp), (SPL), (CoAdd), (BOM). More precisely, it is a well known
fact (see e.g. [68, 135]) that OWA operators are a particular case of discrete Choquet integrals
with respect to a fuzzy measure depending only on the cardinal of subsets. In fact, the class of
OWA operators coincides with the class of Choquet integrals which fulfil (Sy), see [78, 79]. This
result can be stated as follows.

Theorem 4.2.16 Let µ be a fuzzy measure on N . Then the following assertions are equiv-
alent.

i) µ depends only on the cardinality of subsets
ii) there exists ω ∈ [0, 1]n such that Cµ = OWAω

iii) Cµ fulfils (Sy).

As Choquet integrals have been thoroughly studied in the context of multicriteria decision
problems, the OWA operators can benefit from these studies.

The fuzzy measure µ associated to an OWAω is given by

µT =
n∑

i=n−t+1

ωi, T ⊆ N, T 6= ∅, (4.14)

and its Möbius representation by [86, Theorem 1]

aT =
t−1∑

j=0

(
t− 1

j

)
(−1)t−1−j ωn−j , T ⊆ N, T 6= ∅. (4.15)

Both representations depend only on the cardinal of the subsets.
Conversely, the weights associated to OWAω are given by

ωn−t = µT∪i − µT =
∑

K⊆T

aK∪i, i ∈ N, T ⊆ N \ i. (4.16)
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Now, let us show that the Möbius representation can take a very simple form. Consider the
difference operator

∆k xk := xk+1 − xk

for sequences (xk)k∈IN. It is well known that we have (cf. Berge [19, Chap. 1, Sect. 8])

(∆t
k xk)k=0 =

t∑

j=0

(
t

j

)
(−1)t−j xj , t ∈ IN. (4.17)

By (4.17), we have
aT = (∆t−1

k ωn−k)k=0, T ⊆ N, T 6= ∅. (4.18)

The class of OWA operators includes some important special cases, namely:
• the min operator, when ω1 = 1,
• the max operator, when ωn = 1,
• the arithmetic mean AM, when ωi = 1/n for all i,
• the k-th order statistic OSk, when ωk = 1,
• the median (x(n/2) + x(n/2+1))/2, when n is even and ωn/2 = ωn/2+1 = 1/2,
• the median x(n+1

2
), when n is odd and ωn+1

2
= 1,

• the mean excluding the extremes as used by some jury of international olympic
competitions, when ω1 = ωn = 0 and ωi = 1

n−2 for i 6= 1, n.

The two-place OWA operators have been already characterized in Corollary 3.5.1 by (Sy, In,
SPL). For n-place operators, some characterizations can be deduced from those of the Choquet
integrals, see also [119].

Theorem 4.2.17 Assume E ⊇ [0, 1] and let M ∈ An(E, IR). The following statements are
equivalent.

i) M fulfils (Sy, In, SPL, CoAdd)
ii) M fulfils (Sy, In, SPL, BOM)
iii) there exists ω ∈ [0, 1]n such that M = OWAω.

Theorem 4.2.18 Assume E ⊇ [0, 1]. M ∈ A(E,E) fulfils (Sy, In, SPL, GBOM) if and only
if, for all n ∈ IN0, there exists ω ∈ [0, 1]n such that M (n) = OWAω.

The following result can also be useful.

Theorem 4.2.19 i) The OWAω operator fulfils (SIn) if and only if ωi > 0 for all i.
ii) The OWAω operator fulfils (SSN) on [0, 1]n if and only if ωn+1−i = ωi for all i.

Proof. i) Trivial.
ii) Let x ∈ [0, 1]n such that x1 ≤ · · · ≤ xn. Using (SSN), we have

M(1− x1, . . . , 1− xn) = 1−M(x1, . . . , xn) ⇔
n∑

i=1

ωi (1− xn+1−i) = 1−
n∑

i=1

ωi xi

⇔
n∑

i=1

(ωn+1−i − ωi) xi = 0.

Hence the result.
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Fodor, Marichal and Roubens [68] defined the quasi-OWA operators as a generalization of
the OWA operators. These operators are of the form

M(x) = f−1
[ n∑

i=1

ωi f(x(i))
]
, with

n∑

i=1

ωi = 1, ωi ≥ 0, (4.19)

where f is a continuous strictly monotonic function. Properties which are fulfilled by the quasi-
OWA operators are: (Sy), (Co), (In), (UIn), (Comp), (BOM).

We then define the extended quasi-OWA operators as follows: M is an extended quasi-OWA
operator if there exists a continuous strictly monotonic function f such that, for all n ∈ IN0,
M (n) is of the form (4.19). Note that the extended quasi-OWA operators fulfil (GBOM).

Quasi-OWA operators and extended quasi-OWA operators have still to be characterized but
we can prove the following theorem [68].

Theorem 4.2.20 Assume E ⊇ [0, 1]. M ∈ A(E, E) is an extended quasi-OWA operator
fulfilling (D) if and only if it corresponds to the extended min operator or extended max operator
or extended quasi-arithmetic mean operators.

Proof. (Sufficiency) Trivial.
(Necessity) Assume that there exists a continuous strictly monotonic function f : E → IR

such that, for each n ∈ IN0, M (n) is given by (4.19). Define Ω := f(E) = {f(x) |x ∈ E}. The
extended operator F ∈ A(Ω, Ω) defined by

F (z1, . . . , zn) := f [M(f−1(z1), . . . , f−1(zn))] =
n∑

i=1

ωi z(i), ∀z ∈ Ωn, ∀n ∈ IN0,

fulfils (Sy, In, SPL, D). We then can conclude by using Corollary 3.5.5.

Ovchinnikov [142] introduced the concept of weighted order statistic averaging (WOSA) op-
erator as a compensative operator (Comp) of the form

Mω(x) =
n∑

i=1

ωi x(i), (4.20)

where weights ωi’s are real numbers.
It is evident that not every operator in the form (4.20) is compensative. The following

theorem describes the class of WOSA operators [142].

Theorem 4.2.21 Assume E ⊇ [0, 1]. An operator M ∈ An(E, IR) of the form (4.20) fulfils
(Comp) if and only if

∑n
i=1 ωi = 1 and, for any k, 0 ≤ ∑n

i=k ωi ≤ 1.

The class of WOSA operators includes all OWA operators and both classes have been char-
acterized in [142] by means of an analytic property which is the directional differentiability at
zero.

Actually the OWA operators are exactly those WOSA operators which fulfil (In). More
precisely, we have the following characterization, which is to be compared with Theorem 4.2.17.

Theorem 4.2.22 Assume E ⊇ [0, 1]. M ∈ An(E, IR) fulfils (Sy, Comp, SPL, CoAdd) if and
only if there exists ω ∈ IRn such that M = WOSAω.
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Proof. (Sufficiency) Trivial.
(Necessity) In the proof of Theorem 4.2.4, it has been proved that if M ∈ An(E, IR) fulfils

(SPL, CoAdd) then it is a Choquet integral with respect to a measure µ satisfying µ∅ = 0 and
µN = 1, but not necessarily monotonic. By (Sy), M is of the form (4.20). We then conclude by
adding (Comp).

4.3 The Sugeno integral

In this section, we investigate the Sugeno integral under the viewpoint of aggregation. In par-
ticular, it will be shown that this integral can be written in the form of a weighted max-min
function, which will be introduced and studied below. Although the coefficients involved in these
functions are not really weights, but rather thresholds or aspiration degrees (see Section 6.5.3),
we will speak in terms of weights.

The formal analogy between the weighted max-min function and the multilinear polynomial
is obvious: minimum corresponds to product, maximum does to sum. Moreover, it is emphasized
that weighted max-min functions can be calculated as medians, i.e., the qualitative counterparts
of multilinear polynomials.

This section aims at offering a better understanding of the nature of the Sugeno integral as
an aggregation operator. All the results proved by the author can be found in Marichal [115].

The notations θS := M(eS) and θS := M(eS) will sometimes be used.

4.3.1 Weighted max-min functions

If fµ is the pseudo-Boolean function which represents a given fuzzy measure µ, then we can
write6

fµ(x) =
∨

T⊆N

[
µT ∧ (

∧

i∈T

xi)
]
, x ∈ {0, 1}n.

However, such an expression can sometimes be simplified as the following example shows: as-
suming that N = {1, 2} and µ1 = 1, µ2 = 0, we have

fµ(x) = x1 ∨ (x1 ∧ x2) = x1. (4.21)

Thus, in a more general way, we see that there exist several set functions c : 2N → [0, 1] fulfilling
c∅ = 0 and ∨

T⊆N

cT = 1

such that
fµ(x) =

∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]
, x ∈ {0, 1}n.

We now investigate a natural extension on [0, 1]n of such pseudo-Boolean functions: the
weighted max-min function.

Definition 4.3.1 For any set function c : 2N → [0, 1] such that c∅ = 0 and
∨

T⊆N

cT = 1,

6This relies heavily on the assumption that µ is monotonic (as opposed to (4.2), which is always valid).
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the weighted max-min function W∨∧
c : [0, 1]n → [0, 1] associated to c is defined by

W∨∧
c (x) =

∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]
, x ∈ [0, 1]n.

Observe that we have
W∨∧

c (eS) =
∨

T⊆S

cT , S ⊆ N. (4.22)

As already observed in (4.21), the set function c which defines W∨∧
c is not uniquely determined.

The next proposition precises conditions under which two weighted max-min functions are iden-
tical.

Proposition 4.3.1 Let c and c′ be set functions defining W∨∧
c and W∨∧

c′ respectively. Then
the following three assertions are equivalent:

i) W∨∧
c′ = W∨∧

c

ii) W∨∧
c′ (eS) = W∨∧

c (eS), S ⊆ N

iii) for all T ⊆ N , T 6= ∅, we have
{

c′T = cT , if cT >
∨

K⊆/ T cK ,
0 ≤ c′T ≤

∨
K⊆T cK , if cT ≤

∨
K⊆/ T cK .

Proof. i) ⇒ ii) Trivial.
ii) ⇒ iii). Let T ⊆ N , T 6= ∅. On the one hand, we have, by (4.22),

0 ≤ c′T ≤
∨

K⊆T

c′K =
∨

K⊆T

cK .

On the other hand, assuming that cT >
∨

K⊆/ T cK , we obtain

cT =
∨

K⊆T

cK =
∨

K⊆T

c′K

implying cT = c′T ; indeed, otherwise there would exist K∗ ⊆/ T such that

cT = c′K∗ ≤
∨

L⊆K∗
c′L =

∨

L⊆K∗
cL ≤

∨

K⊆/ T

cK < cT

which is a contradiction.
iii) ⇒ i). Assume cT ≤

∨
K⊆/ T cK and let K∗ ⊆/ T such that cK∗ =

∨
K⊆/ T cK . Then we have

cK∗ ≥ cT and
cK∗ ∧ (

∧

i∈K∗
xi) ≥ cT ∧ (

∧

i∈T

xi)

and so cT can be replaced by any number lying between 0 and cK∗ =
∨

K⊆T cK without altering
W∨∧

c .

Let c be any set function defining W∨∧
c and let T ⊆ N , T 6= ∅. If cT >

∨
K⊆/ T cK then cT

cannot be modified without altering W∨∧
c . In the other case, it can be replaced by any value

lying between 0 and
∨

K⊆T cK .
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If c is such that

∀T ⊆ N,T 6= ∅ : cT = 0 ⇔ cT ≤
∨

K⊆/ T

cK

then all the cT ’s are taken as small as possible and we say that W∨∧
c is put in its canonical form.

By contrast, if c is such that

∀T ⊆ N : cT =
∨

K⊆T

cK

then the cT ’s are taken as large as possible and we say that W∨∧
c is put in its complete form. In

this case, c is a fuzzy measure since it is increasing. In fact, W∨∧
c is put in its complete form if

and only if c is increasing.

For instance, all the possible expressions of x1 ∨ (x1 ∧ x2) as a two-place weighted max-min
function are given by

x1 ∨ (λ ∧ x1 ∧ x2), λ ∈ [0, 1].

The case λ = 0 corresponds to the canonical form and the case λ = 1 corresponds to the complete
form.

Proposition 4.3.2 We can determine the complete form of any function W∨∧
c by taking

cT = W∨∧
c (eT ) for all T ⊆ N . We then get its canonical form by considering successively the

T ’s in decreasing cardinality order and setting cT = 0 whenever

cT ≤
∨

i∈T

cT\i, T 6= ∅.

Proof. Obtaining the complete form follows from (4.22). Now, fix T ⊆ N , T 6= ∅. If cK =∨
L⊆K cL for all K ⊆ T , then

∨

K⊆/ T

cK =
∨

K⊆/ T

∨

L⊆K

cL =
∨

K⊆/ T

k=t−1

∨

L⊆K

cL =
∨

K⊆/ T

k=t−1

cK ,

which is sufficient.

Proposition 4.3.3 Let c and c′ be set functions defining W∨∧
c and W∨∧

c′ respectively. Then
we have

W∨∧
c′ = W∨∧

c ⇒
∨

K⊆/ T

c′K =
∨

K⊆/ T

cK , T 6= ∅.

Proof. It suffices to show that

∨

K⊆/ T

cK =
∨

K⊆/ T

W∨∧
c (eK)

(
=

∨

K⊆/ T

∨

L⊆K

cL

)
,

which is trivial since {cK |K ⊆/ T} = {cL |L ⊆ K, K ⊆/ T}.
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4.3.2 Weighted min-max functions

By exchanging the position of the max and min operations in Definition 4.3.1, we can define the
weighted min-max functions as follows.

Definition 4.3.2 For any set function d : 2N → [0, 1] such that d∅ = 1 and
∧

T⊆N

dT = 0,

the weighted min-max function W∧∨
d : [0, 1]n → [0, 1] associated to d is defined by

W∧∨
d (x) =

∧

T⊆N

[
dT ∨ (

∨

i∈T

xi)
]
, x ∈ [0, 1]n.

Observe that we have
W∧∨

d (eS) =
∧

T⊆N\S
dT , S ⊆ N. (4.23)

Moreover, the set function d which defines W∧∨
d is not uniquely determined; indeed, we have, for

instance, x1 ∧ (x1 ∨ x2) = x1. We then have a result similar to Proposition 4.3.1.

Proposition 4.3.4 Let d and d′ be set functions defining W∧∨
d and W∧∨

d′ respectively. Then
the following three assertions are equivalent:

i) W∧∨
d′ = W∧∨

d

ii) W∧∨
d′ (eS) = W∧∨

d (eS), S ⊆ N

iii) for all T ⊆ N , T 6= ∅, we have
{

d′T = dT , if dT <
∧

K⊆/ T dK ,∧
K⊆T dK ≤ d′T ≤ 1, if dT ≥

∧
K⊆/ T dK .

Let d be any set function defining W∧∨
d and let T ⊆ N , T 6= ∅. If dT <

∧
K⊆/ T dK then dT

cannot be modified without altering W∧∨
d . In the other case, it can be replaced by any value

lying between
∧

K⊆T dK and 1.
If d is such that

∀T ⊆ N, T 6= ∅ : dT = 1 ⇔ dT ≥
∧

K⊆/ T

dK

then all the dT ’s are taken as large as possible and we say that W∧∨
d is put in its canonical form.

By contrast, if d is such that
∀T ⊆ N : dT =

∧

K⊆T

dK

then the dT ’s are taken as small as possible and we say that W∧∨
d is put in its complete form. In

this case, d is decreasing. In fact, W∧∨
d is put in its complete form if and only if d is decreasing.

Proposition 4.3.5 We can determine the complete form of any function W∧∨
d by taking

dT = W∧∨
d (eT ) for all T ⊆ N . We then get its canonical form by considering successively the

T ’s in decreasing cardinality order and setting dT = 1 whenever

dT ≥
∧

i∈T

dT\i, T 6= ∅.
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4.3.3 Correspondence formulas and equivalent forms

We now prove that any weighted max-min function can be put in the form of a weighted min-max
function and conversely. The next proposition gives the correspondence formulas.

Proposition 4.3.6 Let c and d be set functions defining W∨∧
c and W∧∨

d respectively. Then
we have

W∨∧
c = W∧∨

d ⇔
∨

K⊆T

cK =
∧

K⊆N\T
dK ∀T ⊆ N.

Proof. (⇒) By (4.22) and (4.23), we have, for all T ⊆ N ,
∨

K⊆T

cK = W∨∧
c (eT ) = W∧∨

d (eT ) =
∧

K⊆N\T
dK .

(⇐) Let d be any set function defining W∧∨
d . Using classical distributivity, we can find a set

function c′ defining a W∨∧
c′ such that W∨∧

c′ = W∧∨
d . We then observe that, for all T ⊆ N ,

∨

K⊆T

c′K = W∨∧
c′ (eT ) = W∧∨

d (eT ) =
∧

K⊆N\T
dK =

∨

K⊆T

cK .

By Proposition 4.3.1, we simply have W∨∧
c = W∧∨

d .

When W∨∧
c and W∧∨

d are put in their complete forms, the correspondence formulas become
simpler.

Corollary 4.3.1 For any increasing set function c defining W∨∧
c and any decreasing set

function d defining W∧∨
d , we have

W∨∧
c = W∧∨

d ⇔ cT = dN\T ∀T ⊆ N.

The following example illustrates the use of the correspondance formulas.

Example 4.3.1 Let N = {1, 2, 3}. We have

(0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x2 ∧ x3) = (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (x1 ∨ x2), x ∈ [0, 1]3.

Indeed, starting from the left-hand side which is the canonical form of a weighted max-min func-
tion, we can compute its complete form, then the complete form of the corresponding weighted
min-max function and finally the canonical form:

(0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x2 ∧ x3)
= 0 ∨ (0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (0 ∧ x3) ∨ (0.3 ∧ x1 ∧ x2) ∨ (0.1 ∧ x1 ∧ x3) ∨ (1 ∧ x2 ∧ x3)

∨(1 ∧ x1 ∧ x2 ∧ x3)
= 1 ∧ (1 ∨ x1) ∧ (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (0 ∨ x1 ∨ x2) ∧ (0.3 ∨ x1 ∨ x3) ∧ (0.1 ∨ x2 ∨ x3)

∧(0 ∨ x1 ∨ x2 ∨ x3)
= (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (x1 ∨ x2).

We now show that, on each simplex Bπ, W∨∧
c and W∧∨

d are medians weighted by n − 1
coefficients. To present this, we need a technical lemma which was established by Dubois and
Prade [47].
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Lemma 4.3.1 Let x, x′ ∈ [0, 1]n with x1 ≤ . . . ≤ xn and x′1 ≥ . . . ≥ x′n.
(i) If x′1 = 1 then

n∨

i=1

(xi ∧ x′i) = median(x1, . . . , xn, x′2, . . . , x
′
n).

(ii) If x′n = 0 then

n∧

i=1

(xi ∨ x′i) = median(x1, . . . , xn, x′1, . . . , x
′
n−1).

Theorem 4.3.1 i) For any increasing set function c defining W∨∧
c , we have, for all x ∈

[0, 1]n,

W∨∧
c (x) =

n∨

i=1

[x(i) ∧ c{(i),...,(n)}]

= median(x1, . . . , xn, c{(2),...,(n)}, c{(3),...,(n)}, . . . , c{(n)}).

ii) For any decreasing set function d defining W∧∨
d , we have, for all x ∈ [0, 1]n,

W∧∨
d (x) =

n∧

i=1

[x(i) ∨ d{(1),...,(i)}]

= median(x1, . . . , xn, d{(1)}, d{(1),(2)}, . . . , d{(1),...,(n−1)}).

Proof. i) Let x ∈ [0, 1]n. Since c is increasing, we have

n∨

i=1

[x(i) ∧ c{(i),...,(n)}] =
n∨

i=1

∨
T⊆{(i),...,(n)}

T3(i)

[cT ∧ x(i)]

=
n∨

i=1

∨
T⊆{(i),...,(n)}

T3(i)

[
cT ∧ (

∧

j∈T

xj)
]

=
∨

T⊆N

[
cT ∧ (

∧

j∈T

xj)
]

which proves the first equality. The second one follows from Lemma 4.3.1.
ii) Let c be an increasing set function defined by cT = dN\T for all T ⊆ N . For all x ∈ [0, 1]n,

we have

W∧∨
d (x) = W∨∧

c (x) (by Corollary 4.3.1)
= median(x1, . . . , xn, c{(2),...,(n)}, c{(3),...,(n)}, . . . , c{(n)}) (by i))
= median(x1, . . . , xn, d{(1)}, d{(1),(2)}, . . . , d{(1),...,(n−1)})

=
n∧

i=1

[x(i) ∨ d{(1),...,(i)}] (by Lemma 4.3.1),

and the proof is complete.
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4.3.4 Alternative expressions of the Sugeno integral

Theorem 4.3.1 shows that the class of the Sugeno integrals coincides with the family of weighted
max-min functions which, in turn, coincides with the family of weighted min-max functions. This
allows to derive alternative expressions of the Sugeno integral. Note that the expression in terms
of median was already established in 1978 by Kandel and Byatt [104].

Theorem 4.3.2 Let x ∈ [0, 1]n and µ be a fuzzy measure on N . Then we have

Sµ(x) =
n∨

i=1

[x(i) ∧ µ{(i),...,(n)}]

=
n∧

i=1

[x(i) ∨ µ{(i+1),...,(n)}]

=
∨

T⊆N

[
µT ∧ (

∧

i∈T

xi)
]

=
∧

T⊆N

[
µN\T ∨ (

∨

i∈T

xi)
]

= median(x1, . . . , xn, µ{(2),...,(n)}, µ{(3),...,(n)}, . . . , µ{(n)}).

Let us consider an example. Assume that N = {1, 2, 3} and x ∈ [0, 1]3 with x3 ≤ x1 ≤ x2.
Then

Sµ(x1, x2, x3) = x3 ∨ (x1 ∧ µ{1,2}) ∨ (x2 ∧ µ{2})
= (x3 ∨ µ{1,2}) ∧ (x1 ∨ µ{2}) ∧ x2

= median(x1, x2, x3, µ{1,2}, µ{2}).

We can observe that, as an aggregation operator, the Sugeno integral with respect to a
measure µ is an extension on the entire hypercube [0, 1]n of the pseudo-Boolean function fµ which
defines µ. The same conclusion had been obtained for the Choquet integral (see Section 4.2.2).
Notice also that, on each simplex Bπ, the Sugeno integral identifies with a weighted median and
the Choquet integral with a weighted arithmetic mean.

4.3.5 Some axiomatic characterizations

The class of Sugeno integrals can be characterized by means of some selected properties, see also
[33, 149].

Theorem 4.3.3 Let M : [0, 1]n → IR. Then the following assertions are equivalent:
i) M fulfils (In, Id, CoMin, CoMax)
ii) M fulfils (In, SMin, SMax)
iii) M fulfils (In, Id, SMinB, SMaxB)
iv) There exists a set function c : 2N → [0, 1] such that M = W∨∧

c

v) There exists a set function d : 2N → [0, 1] such that M = W∧∨
d

vi) There exists a fuzzy measure µ on N such that M = Sµ

Proof. i) ⇒ ii) Let x ∈ [0, 1]n and r ∈ [0, 1]. Since x and (r, . . . , r) ∈ [0, 1]n are comonotonic,
we have,

M(x1 ∧ r, . . . , xn ∧ r)
(CoMin)

= M(x1, . . . , xn) ∧M(r, . . . , r)
(Id)
= M(x1, . . . , xn) ∧ r,
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and M fulfils (SMin). One can prove similarly that M also fulfils (SMax).
ii) ⇒ iii) Trivial (see also Proposition 2.2.5).
iii) ⇒ iv) The proof is very similar to that of Theorem 3.4.10.
Let x ∈ [0, 1]n. On the one hand, for all T ⊆ N , we have

M(x)
(In)

≥ M [(
∧

i∈T

xi) eT ]
(by (2.8))

= θT ∧ (
∧

i∈T

xi)

and thus
M(x) ≥

∨

T⊂N

[
θT ∧ (

∧

i∈T

xi)
]
.

On the other hand, let T ∗ ⊆ N such that θT ∗ ∧ (
∧

i∈T ∗ xi) is maximum and set

J := {j ∈ N |xj ≤ θT ∗ ∧ (
∧

i∈T ∗
xi)}.

We should have J 6= ∅; indeed, if xj > θT ∗ ∧ (
∧

i∈T ∗ xi) for all j ∈ N , then we have, since θN = 1,

θN ∧ (
∧

i∈N

xi) > θT ∗ ∧ (
∧

i∈T ∗
xi)

which contradicts the definition of T ∗. Moreover, we should have θJ ≤ θT ∗ ∧ (
∧

i∈T ∗ xi), for
otherwise we would have, assuming N \ J 6= ∅,

θJ ∧ (
∧

i∈N\J
xi) > θT ∗ ∧ (

∧

i∈T ∗
xi),

a contradiction. Finally, we have,

M(x)
(In)

≤ M
[(

θT ∗ ∧ (
∧

i∈T ∗
xi)

)
eJ + eJ

]

(by (2.9))
=

[
θT ∗ ∧ (

∧

i∈T ∗
xi)

]
∨ θJ

= θT ∗ ∧ (
∧

i∈T ∗
xi)

=
∨

T⊆N

[
θT ∧ (

∧

i∈T

xi)
]
.

iv) ⇒ v) ⇒ vi) See Propositions 4.3.6 and 4.3.1.
vi) ⇒ i) Of course, Sµ fulfils (In, Id). Next, consider two comonotonic vectors x, x′ ∈ [0, 1]n.

Then we have

Sµ(x1 ∧ x′1, . . . , xn ∧ x′n) =
n∨

i=1

[(x(i) ∧ x′(i)) ∧ µ{(i),...,(n)}]

=
[ n∨

i=1

[x(i) ∧ µ{(i),...,(n)}]
]
∧

[ n∨

i=1

[x′(i) ∧ µ{(i),...,(n)}]
]

= Sµ(x1, . . . , xn) ∧ Sµ(x′1, . . . , x
′
n)

and Sµ fulfils (CoMin). The same argument allows to show that Sµ also fulfils (CoMax). See
also [148].
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Another characterization of the class of Sugeno integrals is proposed in Section 6.5. In this
characterization, it is assumed that the aggregation operator a priori depends on a fuzzy measure,
see Theorem 6.5.1.

The following characterization, restricted to the case n = 2, is a particular case of Theo-
rem 3.3.7 (see also Figure 3.7). It shows that, under (In, Id), the (A) property combined with
(Co) produce exactly the same effect as that of (CoMin, CoMax) or (SMinB, SMaxB).

Theorem 4.3.4 A two-place function M : [0, 1]2 → [0, 1] fulfils (Co, In, Id, A) if and only
if there exists a fuzzy measure µ on {1, 2} such that M = Sµ.

This result shows that any two-place Sugeno integral fulfils (A). One can easily verify that it
also fulfils (AD) and (B). This is not the case for the Choquet integral (see Theorem 4.2.3).

Theorem 4.3.5 Any two-place Sugeno integral fulfils (A, AD, B).

The form of n-place Sugeno integrals fulfilling (B) is not known yet. However, when n ≥ 3,
one can say that not all the Sugeno integrals fulfil (B), as we can easily verify for the following
Sugeno integral

M(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3)

and the matrix

X =




0 1 1
1 1 0
0 0 1


 .

An extended Sugeno integral S is an extended aggregation operator M ∈ A(E, IR) such that,
for all n ∈ IN0, M (n) is a Sugeno integral. Concerning such extended aggregation operators, we
present the following result.

Theorem 4.3.6 Let M ∈ A([0, 1], [0, 1]). Then the following assertions are equivalent.
i) M is an extended Sugeno integral and fulfils (SD)
ii) M is an extended Sugeno integral and fulfils (D)
iii) M is an extended Sugeno integral and fulfils (A)
iv) M fulfils (Co, In, Id, A)
v) there exist α, β ∈ [0, 1] such that, for all n ∈ IN0, we have

M(x) = (α ∧ x1) ∨
( n−1∨

i=2

(α ∧ β ∧ xi)
)
∨ (β ∧ xn) ∨

( n∧

i=1

xi

)
, x ∈ [0, 1]n.

Proof. iv) ⇔ v) See Theorem 3.3.8.
iii) ⇒ iv) Trivial.
iv) & v) ⇒ iii) See Theorems 3.3.8 and 4.3.3.
i) ⇒ ii) See (2.12).
ii) ⇒ v) The proof can be compared with that of Theorem 3.5.4. By Theorem 4.3.3, the

result holds true for n = 2. Suppose it holds for a fixed n ≥ 2 and show it still holds for n + 1.
Let (x1, . . . , xn+1) ∈ [0, 1]n+1 and set x := (x1, . . . , xn). Since M fulfils (D) and (SMin, SMax),
we have

M (n+1)(x1, . . . , xn+1) = M (n+1)(n¯M (n)(x), xn+1)

=

{
xn+1 ∨ [M (n)(x) ∧ θ

(n+1)
n+1 ] if xn+1 ≤ M (n)(x),

M (n)(x) ∨ [xn+1 ∧ θ
(n+1)
n+1 ] if xn+1 ≥ M (n)(x).
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Let us show that θ
(n+1)
n+1 is uniquely determined. The same can be done for θ

(n+1)
n+1 . Using

induction, we have

θ
(n+1)
n+1

(D)
= M (n+1)(1, n¯ θ

(n)
n )

(ind.)
= M (n+1)(1, n¯ α) = α ∨ θ

(n+1)
1

and
θ
(n+1)
1

(D)
= M (n+1)(n¯ θ

(n)
1 , 0)

(ind.)
= M (n+1)(n¯ α, 0) = α ∧ θ

(n+1)
n+1 .

Hence θ
(n+1)
n+1 = α.

Consequently, M (n+1)(x1, . . . , xn+1) is uniquely determined.
v) ⇒ i) By Theorem 4.3.3, we only have to prove that M fulfils (SD). Fix n ∈ IN0 and

K = {i1, . . . , ik} ⊆ Nn with i1 < · · · < ik. Let x ∈ [0, 1]n. Since M fulfils (A), we have, setting
r := n + k2 − k,

M
(
M (k)(xi1 , . . . , xik) eK +

∑

i/∈K

xi ei

)
= M(y1, . . . , yr)

with y1 = x1, yr = xn and {y1, . . . , yr} = {x1, . . . , xn}. We then have

M(y1, . . . , yr) = (α ∧ y1) ∨
( r∨

i=1

(α ∧ β ∧ yi)
)
∨ (β ∧ yr) ∨

( r∧

i=1

yi

)

= (α ∧ x1) ∨
( n∨

i=1

(α ∧ β ∧ xi)
)
∨ (β ∧ xn) ∨

( n∧

i=1

xi

)

= M(x1, . . . , xn).

Hence M fulfils (SD).

4.3.6 Weighted maximum and minimum operators

Min and max operators have been extended by Dubois and Prade [47], in a way which is consistent
with possibility theory: the weighted minimum (wmin) and maximum (wmax).

Using the concept of possibility and necessity of fuzzy events [45, 200], one can evaluate
the possibility that a relevant goal is attained, and the necessity that all the relevant goals
are attained by the help of wmin and wmax operators. The formal analogy with the weighted
arithmetic mean (WAM) is obvious.

Definition 4.3.3 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
n∨

i=1

ωi = 1,

the weighted maximum operator wmaxω associated to ω is defined by

wmaxω(x) =
n∨

i=1

(ωi ∧ xi), x ∈ [0, 1]n.

For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
n∧

i=1

ωi = 0,

the weighted minimum operator wminω associated to ω is defined by

wminω(x) =
n∧

i=1

(ωi ∨ xi), x ∈ [0, 1]n.
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Any wmaxω operator is a W∨∧
c function whose canonical form is defined by:

{
ci = ωi, ∀i ∈ N ,
cT = 0, ∀T ⊆ N such that |T | 6= 1,

and complete form by (cT = µT ):

cT =
∨

i∈T

ωi, ∀T ⊆ N.

In this case, if c is increasing then it represents a possibility measure π which is characterized by
the following property:

π(S ∪ T ) = π(S) ∨ π(T ), ∀S, T ⊆ N.

Likewise, any wminω operator is a W∧∨
d function whose canonical form is defined by:

{
di = ωi, ∀i ∈ N ,
dT = 1, ∀T ⊆ N such that |T | 6= 1,

and complete form by (dT = µN\T ):

dT =
∧

i∈T

ωi, ∀T ⊆ N.

In this case, if d is decreasing then the set function c′, defined by c′T = dN\T for all T ⊆ N ,
represents a necessity measure N which is characterized by the following property:

N (S ∩ T ) = N (S) ∧N (T ), ∀S, T ⊆ N.

The operators wmaxω and wminω have been characterized by Fodor and Roubens [71]. We
present hereafter a slightly more general statement.

Theorem 4.3.7 i) M ∈ An([0, 1], IR) fulfils (WId, SMinB, Max) if and only if there exists
ω ∈ [0, 1]n such that M = wmaxω.

ii) M ∈ An([0, 1], IR) fulfils (WId, SMaxB, Min) if and only if there exists ω ∈ [0, 1]n such
that M = wminω.

Proof. i) (Sufficiency) Trivial.
(Necessity). For all i ∈ N , we have θi ∈ [0, 1]; indeed, by (SMinB), we have θi = θi ∧ 1 ≤ 1,

and by (Max), θi = θi ∨ θ∅ = θi ∨ 0 ≥ 0. On the other hand, for all x ∈ [0, 1]n, we have, setting
ωi = θi ∈ [0, 1],

M(x)
(Max)

=
n∨

i=1

M(xi ei)
(SMinB)

=
n∨

i=1

(ωi ∧ xi).

Moreover,
∨n

i=1 ωi = M(1, . . . , 1) = 1 as required.
ii) Similar to i).

We know that the weighted minimum and maximum operators are particular Sugeno integrals.
More precisely, we have proved the following, see also [47, 149] .

Theorem 4.3.8 Let µ be a fuzzy measure on N . Then the following assertions are equivalent.
i) µ is a possibility measure
ii) there exists ω ∈ [0, 1]n such that Sµ = wmaxω

iii) Sµ fulfils (Max).
The following assertions are equivalent.
iv) µ is a necessity measure
v) there exists ω ∈ [0, 1]n such that Sµ = wminω

vi) Sµ fulfils (Min).
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4.3.7 Ordered weighted maximum and minimum operators

Dubois et al. [53] used the ordered weighted maximum (owmax) and minimum (owmin) for
modelling soft partial matching. The basic idea of owmax (and owmin) is the same as in the
OWA operator introduced by Yager [192]. That is, in both papers weights are associated with
a particular rank rather than a particular element. The main difference between OWA and
owmax (and owmin) is in the underlying non-ordered aggregation operation. OWA uses weighted
arithmetic mean while owmax and owmin apply weighted maximum and minimum. At first
glance, this does not seem to be an essential difference. However, Dubois and Prade [47] proved
that owmax and owmin are equivalent to the median of the ordered values and some appropriately
chosen additional numbers used instead of the original weights.

Definition 4.3.4 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

1 = ω1 ≥ . . . ≥ ωn,

the ordered weighted maximum operator owmaxω associated to ω is defined by

owmaxω(x) =
n∨

i=1

(ωi ∧ x(i)), x ∈ [0, 1]n.

For any weight vector ω′ = (ω′1, . . . , ω′n) ∈ [0, 1]n such that

ω′1 ≥ . . . ≥ ω′n = 0,

the ordered weighted minimum operator owminω′ associated to ω′ is defined by

owminω′(x) =
n∧

i=1

(ω′i ∨ x(i)), x ∈ [0, 1]n.

In Definition 4.3.4, the inequalities ω1 ≥ . . . ≥ ωn and ω′1 ≥ . . . ≥ ω′n are not restrictive.
Indeed, if there exists i ∈ {1, . . . , n− 1} such that ωi ≤ ωi+1 and ω′i ≤ ω′i+1 then we have

(ωi ∧ x(i)) ∨ (ωi+1 ∧ x(i+1)) = ωi+1 ∧ x(i+1),

(ω′i ∨ x(i)) ∧ (ω′i+1 ∨ x(i+1)) = ω′i ∨ x(i).

This means that ωi can be replaced by ωi+1 in owmaxω and ω′i+1 by ω′i in owminω′ .

Any owmaxω operator is a W∨∧
c function whose canonical form is defined by:

∀T ⊆ N,T 6= ∅ : cT =
{

0, if ωn−t+1 = ωn−t+2,
ωn−t+1, else,

and complete form by (cT = µT ):

∀T ⊆ N,T 6= ∅ : cT = ωn−t+1.

Likewise, any owminω′ operator is a W∧∨
d function whose canonical form is defined by:

∀T ⊆ N,T 6= ∅ : dT =
{

1, if ω′t = ω′t−1,
ω′t, else,

and complete form by (dT = µN\T ):

∀T ⊆ N,T 6= ∅ : dT = ω′t.

The next proposition shows that any ordered weighted maximum operator can be put in the
form of an ordered weighted minimum operator and conversely.
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Proposition 4.3.7 Let ω and ω′ be weight vectors defining owmaxω and owminω′ respec-
tively. Then we have

owminω′ = owmaxω ⇔ ω′i = ωi+1 ∀i ∈ {1, . . . , n− 1}.

Proof. If the fuzzy measure µ defines the complete form of owmaxω then we have

µ{(i+1),...,(n)} = ωi+1, i ∈ {1, . . . , n− 1}.

Theorem 4.3.2 then allows to conclude.

It is interesting to note that, according to Lemma 4.3.1, we have, for all x ∈ [0, 1]n,

owmaxω(x) = median(x1, . . . , xn, ω2, . . . , ωn),
owminω′(x) = median(x1, . . . , xn, ω′1, . . . , ω

′
n−1).

We now show that the owmaxω and owminω′ operators are exactly those weighted max-min
functions (or Sugeno integrals) which fulfil (Sy). To do this, we need a lemma which is due to
Grabisch [78].

Lemma 4.3.2 The Sugeno integral Sµ fulfils (Sy) if and only if

µS = µT whenever |S| = |T |.

We then have the following characterization.

Theorem 4.3.9 Let µ be a fuzzy measure on N . Then the following assertions are equivalent.
i) µ depends only on the cardinality of subsets
ii) there exists ω ∈ [0, 1]n such that Sµ = owmaxω

iii) there exists ω′ ∈ [0, 1]n such that Sµ = owminω′

iv) Sµ fulfils (Sy).

Proof. i) ⇒ ii) Let x ∈ [0, 1]n. Setting ωi := µ{(i),...,(n)} for all i ∈ N , we have

Sµ(x) =
n∨

i=1

(x(i) ∧ ωi).

ii) ⇒ iii) See Proposition 4.3.7.
iii) ⇒ iv) Trivial.
iv) ⇒ i) See Lemma 4.3.2.

Note that other characterizations of these families have been obtained in [71] by means of
ordered versions of (SMin), (SMax), (Min) and (Max), which seem to be unappealing properties.

4.3.8 Associative medians

Definition 4.3.5 For any α ∈ [0, 1], the n-place associative median operator amed(n)
α asso-

ciated to α is defined by

amed(n)
α (x) = median

( n∧

i=1

xi,
n∨

i=1

xi, α
)
, x ∈ [0, 1]n.
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Observe that, for all α ∈ [0, 1] and all x ∈ [0, 1]n, we have

median
( n∧

i=1

xi,
n∨

i=1

xi, α
)

= median(x1, . . . , xn, α, . . . , α︸ ︷︷ ︸
n−1

).

Thus, any amedα operator with n variables is a W∨∧
c function (or a Sugeno integral) whose

canonical form is defined by:





ci = α, for all i ∈ N ,
cT = 0, for all T ⊆ N such that 1 < t < n,

cN =
{

1, if α < 1,
0, if α = 1,

and complete form by (cT = µT ):

{
cT = α, for all T ⊆ N such that 1 ≤ t < n,
cN = 1.

Moreover, from Theorem 4.3.2, we immediately have, for all x ∈ [0, 1]n,

amed(n)
α (x) = x(1) ∨

[ n∨

i=2

(x(i) ∧ α)
]

= x(1) ∨ (x(n) ∧ α) = x(n) ∧ (x(1) ∨ α).

It follows that any Sugeno integral Sµ is an associative median if and only if the fuzzy measure
µ is constant on 2N \ {∅, N}.

Coming back to associative operators defined on [0, 1]2, we have the following characterization.
It follows from Theorems 3.3.9 and 4.3.9.

Theorem 4.3.10 Let M ∈ A2([0, 1], [0, 1]). Then the following assertions are equivalent:
i) M fulfils (Sy, Co, In, Id, A)
ii) there exists α ∈ [0, 1] such that M = amed(2)

α

iii) there exists a fuzzy measure µ on {1, 2} with µ{1} = µ{2} such that M = Sµ.

It should be mentioned that the equivalence i) ⇔ ii) was already established by Fung and
Fu [75] in 1975 and in a revisited way by Dubois and Prade [44] in 1984.

In this context, the second part of Theorem 3.3.9 takes the following form.

Corollary 4.3.2 M ∈ A([0, 1], [0, 1]) fulfils (Sy, Co, In, Id, A) if and only if there exists
α ∈ [0, 1] such that M = (amed(n)

α )n∈IN0.

4.4 Common area between the two classes of integrals

We now investigate the intersection between the class of Choquet integrals and that of Sugeno in-
tegrals. We prove that this intersection corresponds to the family of Boolean max-min functions.
Some subfamilies are also studied.
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4.4.1 Boolean max-min and min-max functions

Recall the definition of a Boolean max-min function (see Definition 3.4.1) and introduce its dual
form: the Boolean min-max function.

Definition 4.4.1 i) For any set function c : 2N → {0, 1} such that c∅ = 0 and
∨

T⊆N

cT = 1,

the Boolean max-min function B∨∧c associated to c is defined by

B∨∧c (x) = W∨∧
c (x) =

∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]
.

ii) For any set function d : 2N → {0, 1} such that d∅ = 1 and
∧

T⊆N

dT = 0,

the Boolean min-max function B∧∨d associated to d is defined by

B∧∨d (x) = W∧∨
d (x) =

∧

T⊆N

[
dT ∨ (

∨

i∈T

xi)
]
.

Thus defined, a Boolean max-min function (resp. Boolean min-max function) is nothing
else than a weighted max-min function (resp. weighted min-max function) whose canonical and
complete forms are defined by set functions taking their values in {0, 1}. Moreover, we can write,
for any x ∈ [0, 1]n,

B∨∧c (x) =
∨

T⊆N
cT =1

∧

i∈T

xi ∈ {x1, . . . , xn}, (disjunctive normal form)

B∧∨d (x) =
∧

T⊆N
dT =0

∨

i∈T

xi ∈ {x1, . . . , xn}, (conjunctive normal form).

In terms of fuzzy measures, if the set function c is increasing, it represents a 0-1 fuzzy measure.
More precisely, Murofushi and Sugeno [135, Sect. 2] showed the following result.

Proposition 4.4.1 If µ is a 0-1 fuzzy measure on N then the Choquet and the Sugeno
integral take the following form:

Cµ = Sµ = B∨∧µ .

We now show a stronger result: the common part between the class of Choquet integrals and
that of Sugeno integrals coincides with the class of Boolean max-min functions.

Theorem 4.4.1 Let M ∈ An([0, 1], IR). Then the following assertions are equivalent.
i) There exists a 0-1 fuzzy measure µ on N such that M = Sµ.
ii) There exist fuzzy measures µ and ν on N such that M = Cµ = Sν .
iii) M fulfils (UIn) and there exists a fuzzy measure µ on N such that M = Sµ.
iv) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
v) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .
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Proof. i) ⇒ ii) See Proposition 4.4.1.
ii) ⇒ iii) Evident, since Cµ fulfils (UIn).
iii) ⇒ iv) By Proposition 4.4.1, it suffices to show that µ is a 0-1 fuzzy measure. Suppose that

there exists T ⊆ N such that µT ∈ ]0, 1[. We can write N = {t1, . . . , tn} and T = {tk, . . . , tn},
with k ∈ {2, . . . , n}. Let x ∈ [0, 1]n such that

xt1 ≤ · · · ≤ xtk−1
< µT < xtk ≤ · · · ≤ xtn .

By Theorem 4.3.2, we always have

Sµ(x) = median(x1, . . . , xn, µ{t2,...,tn}, . . . , µT , . . . , µ{tn}) = µT

and Sµ does not fulfils (UIn).
iv) ⇔ v) See Corollary 4.3.1.
iv) ⇒ i) Evident.

Since any B∨∧c function is a Choquet integral (see Proposition 4.4.1), it fulfils (SPL) and, by
Proposition 3.5.1, it can be defined on any En, where E ⊇ [0, 1]. By using Lemma 4.2.3 and
Theorem 3.5.2, we deduce the following result.

Theorem 4.4.2 Let M ∈ An(E, IR), with E ⊇ [0, 1]. Then the following assertions are
equivalent.

i) There exists a 0-1 fuzzy measure on N such that M = Cµ.
ii) M fulfils (In, SPL) and M(eT ) ∈ {0, 1} for all T ⊆ N .
iii) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
iv) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .

Moreover, if M = B∨∧c then M fulfils (B) if and only if there exists a non-empty subset S ⊆ N
such that M = minS or maxS.

We already noticed that the class of Sugeno integrals fulfilling (B) is not described yet. But
the second part of the previous theorem describes the subclass of Boolean max-min functions
fulfilling this property.

According to Theorems 3.4.10, 3.4.16 and 3.4.20, we also have the following result.

Theorem 4.4.3 Let M ∈ An([a, b], [a, b]). Then the following assertions are equivalent.
i) M fulfils (In, OS’).
ii) M fulfils (In, Id, CM’).
iii) M fulfils (Co, Id, OS).
iv) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
v) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .

Recall also the statement of Theorem 3.4.12

Theorem 4.4.4 Let M ∈ An(E, IR), where E is any real interval, finite or infinite. Then
the following assertions are equivalent.

i) M fulfils (Co, Id, CM).
ii) M fulfils (Co, Id, CM’).
iii) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
iv) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .
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4.4.2 Partial maximum and minimum operators

The partial minimum and maximum operators (minS and maxS) are defined by (1.6) and (1.7).
Any minS operator is a B∨∧c whose canonical form is defined by:

∀T ⊆ N,T 6= ∅ : cT =
{

1, if T = S,
0, otherwise,

and complete form by (cT = µT ):

∀T ⊆ N,T 6= ∅ : cT =
{

1, if T ⊇ S,
0, otherwise.

As a particular Choquet integral (4.11), the associated Möbius representation identifies with the
above canonical form:

∀T ⊆ N, T 6= ∅ : aT =
{

1, if T = S,
0, otherwise.

Likewise, any maxS operator is a B∧∨d whose canonical form is defined by:

∀T ⊆ N, T 6= ∅ : dT =
{

0, if T = S,
1, otherwise,

and complete form by (dT = µN\T ):

∀T ⊆ N, T 6= ∅ : dT =
{

0, if T ⊇ S,
1, otherwise.

One can easily show that the associated Möbius representation is given by (see Lemma 4.2.1):

∀T ⊆ N,T 6= ∅ : aT =
{

(−1)t+1, if T ⊆ S,
0, otherwise.

Moreover, for all non-empty subset S ⊆ N , we have

minS = wmineS
and maxS = wmaxeS .

It follows that any Sugeno integral Sµ is a partial maximum operator (resp. partial minimum
operator) if and only if µ is a 0-1 possibility measure (resp. 0-1 necessity measure).

It should be noted that the unanimity game vS for S ⊆ N , as a particular fuzzy measure (see
Section 4.1.1), defines the partial minimum minS .

The following characterization can be easily deduced from Theorems 4.3.7 and 4.4.1.

Theorem 4.4.5 i) M ∈ An([0, 1], IR) fulfils (UIn, WId, SMinB, Max) if and only if there
exists a non-empty subset S ⊆ N such that M = maxS.

ii) M ∈ An([0, 1], IR) fulfils (UIn, WId, SMaxB, Min) if and only if there exists a non-empty
subset S ⊆ N such that M = minS.
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4.4.3 Projections, order statistics and medians

The projections Pk and the order statistics OSk are respectively defined by (1.4) and (1.5).
Any projection Pk is a B∨∧c whose canonical form is given by cT = 1 if T = {k}, and

0 otherwise. This set function c also represents the associated Möbius representation. The
complete form is then given by cT = 1 if T 3 k, and 0 otherwise.

By using Theorem 3.4.17, we can deduce the following result.

Theorem 4.4.6 M ∈ An(IR, IR) fulfils (Co, Id, CMIS) if and only if there exists k ∈ N such
that M = Pk.

Any order statistic OSk is a B∨∧c whose canonical form is defined by

∀T ⊆ N, T 6= ∅ : cT =
{

1, if t = n− k + 1,
0, otherwise,

and complete form by (cT = µT ):

∀T ⊆ N, T 6= ∅ : cT =
{

1, if t ≥ n− k + 1,
0, otherwise.

Of course, it is also a B∧∨d function whose canonical form is defined by:

∀T ⊆ N, T 6= ∅ : dT =
{

0, if t = k,
1, otherwise,

and complete form by (dT = µN\T ):

∀T ⊆ N, T 6= ∅ : dT =
{

0, if t ≥ k,
1, otherwise.

Thus, we retrieve formulas (3.51):

x(k) =
∨

T⊆N
t=n−k+1

∧

i∈T

xi =
∧

T⊆N
t=k

∨

i∈T

xi, k ∈ N.

By Theorem 4.3.2, we also have, if x ∈ [0, 1]n,

x(k) = median(x1, . . . , xn, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
n−k

), k ∈ N.

Note also that any order statistic OSk is an OWAω associated to ω = ek. In particular, by (4.15),
the associated Möbius representation is given by

∀T ⊆ N : aT =
{

(−1)t−n+k−1
( t−1
n−k

)
, if t ≥ n− k + 1,

0, otherwise.

According to Theorem 3.4.14, we know that the order statistics on any En form the class of
functions satisfying (Sy, Co, Id, CM) and are also the Boolean max-min functions fulfilling (Sy).
As a consequence, we have the following result.
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Theorem 4.4.7 Let M ∈ An([0, 1], IR). Then the following assertions are equivalent.
i) M fulfils (Sy) and there exists a 0-1 fuzzy measure µ such that M = Cµ.
ii) M fulfils (Sy) and there exists a 0-1 fuzzy measure µ such that M = Sµ.
iii) M fulfils (UIn) and there exists ω ∈ [0, 1]n such that M = owmaxω.
iv) M fulfils (Sy) and there exists a set function c such that M = B∨∧c .
v) There exists k ∈ N such that M = OSk.

A particular case of order statistic is the so-called median of an odd number of scores. When
the scores are ordered, the median corresponds to the middle value: if x1, . . . , x2k−1 ∈ E, we
have

median(x1, . . . , x2k−1) = x(k) =
∨

1≤i1<···<ik≤2k−1

(xi1 ∧ · · · ∧ xik)

=
∧

1≤i1<···<ik≤2k−1

(xi1 ∨ · · · ∨ xik).

For instance, we have

median(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)
= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

Regarding medians, we have the following immediate characterization.

Theorem 4.4.8 Let k ∈ IN0 and M ∈ A2k−1(E, IR).
i) If E ⊆ IR+ contains x and 1/x simultaneously, then M is an order statistic fulfilling (Rec)

if and only if M = median.
ii) If E = [0, 1] then M is an order statistic fulfilling (SSN) if and only if M = median.

4.5 Set relations between some subclasses of integrals

Before closing the chapter, we summarize some set relations between subfamilies of Choquet and
Sugeno integrals on [0, 1]n, see Figure 4.1.

The following relations can be deduced from the results presented in this chapter.

{Cµ |µ : 2N → [0, 1]} ∩ {Sµ |µ : 2N → [0, 1]} = {B∨∧c | c : 2N → {0, 1}}
{WAMω |ω ∈ [0, 1]} ⊂ {Cµ |µ : 2N → [0, 1]}
{wmaxω |ω ∈ [0, 1]} ∪ {wminω |ω ∈ [0, 1]} ⊂ {Sµ |µ : 2N → [0, 1]}
{wmaxω |ω ∈ [0, 1]} ∩ {B∨∧c | c : 2N → {0, 1}} = {maxS |S ⊆ N}
{wminω |ω ∈ [0, 1]} ∩ {B∨∧c | c : 2N → {0, 1}} = {minS |S ⊆ N}
{WAMω |ω ∈ [0, 1]} ∩ {B∨∧c | c : 2N → {0, 1}} = {Pi | i ∈ N}
{maxS |S ⊆ N} ∩ {minS |S ⊆ N} = {Pi | i ∈ N}
{Cµ |µ : 2N → [0, 1]} ∩ {M |M fulfils (Sy)} = {OWAω |ω ∈ [0, 1]}
{Sµ |µ : 2N → [0, 1]} ∩ {M |M fulfils (Sy)} = {owmaxω |ω ∈ [0, 1]} = {owminω′ |ω′ ∈ [0, 1]}
{B∨∧c | c : 2N → {0, 1}} ∩ {M |M fulfils (Sy)} = {OSi | i ∈ N}
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Figure 4.1: Set relations between some subclasses of integrals

Notes

1. The equivalence between the discrete Choquet integral and the Lovász extension is pre-
sented in Section 4.2.1. It seems that this connection was previously unknown. It allows
us to have a geometrical interpretation of the graph of this function. Moreover, it leads to
a practical representation by means of the Möbius transform (see Proposition 4.2.1).

2. Some axiomatic characterizations of the class of Choquet integrals have been presented.
Unfortunately, those involving (CoAdd) and (BOM) are of little interest since these axioms
are not very appealing in multicriteria decision making. In Section 6.1.3, we present another
characterization, which is much more natural.

3. The class of the Sugeno integrals has been characterized in Theorem 4.3.3 by means of
rather technical conditions. We present in Section 6.5.3 a more interesting characterization,
in which it is assumed that the fuzzy measure is ordinal in nature.



Chapter 5

Power indices and interactions
between criteria

This chapter is devoted to the investigation of interaction phenomena between criteria in MCDM
problems. As we make use of several concepts borrowed from cooperative game theory, we use
the related terminology. This is not a restriction since any fuzzy measure is a particular game.

Let vN be a cooperative game on the finite set of players N , that is, a set function vN : 2N →
IR such that vN (∅) = 0. For any coalition S ⊆ N , the real number vN (S) represents the worth
of S. The superscript N will be omitted if there is no ambiguity. The set of all games defined
on N is denoted GN . The pseudo-Boolean function fv which defines v will simply be denoted by
f . We also define

G :=
⋃

n∈IN0

GNn .

In multicriteria decision making, when N represents a set of criteria, v is a fuzzy measure
acting as a weight function and the value v(S) represents the weight assigned to the combination
S of criteria.

The outline of this chapter is as follows. The concept of power indices is presented in Sec-
tion 5.1. Axiomatic characterizations of Shapley and Banzhaf power indices are also presented.
In Section 5.2 the notion of interaction indices is presented in a formal way. The Shapley and
Banzhaf interaction indices appear as extensions of the corresponding power indices. Some
characterizations are also mentioned. In Section 5.3 we show that these interaction indices are
equivalent representations of the set function v. This is done through the use of the so-called
multilinear extensions, but also by means of fractal and cardinality matrices. Finally, in Sec-
tion 5.4 a new definition of interaction is proposed and studied. It is built from the concept of
maximal chains defined in the lattice related to the power set of N .

5.1 Power indices

5.1.1 Shapley and Banzhaf values

A simple game on N is a monotonic game v such that v(S) ∈ {0, 1} for all S ⊆ N . Coalitions
with v(S) = 1 are called winning, the rest are losing. Simple games model the allocation of
power in committees: a coalition is winning if it controls the decisions.

For solving simple games, Shapley [169] assigned to each player i ∈ N a payoff φv
Sh(i) which

125
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indicates the individual power of i in the game1. Such a number is called “Shapley value” or
“Shapley power index” of player i with respect to v and is defined by (t = |T |):

φv
Sh(i) :=

∑

T⊆N\i

(n− t− 1)! t!
n!

[v(T ∪ i)− v(T )]. (5.1)

If i joins a coalition T ⊆ N \ i, he might receive a payoff that corresponds to v(T ∪ i)− v(T ).
A swing occurs in a simple game when a player i joining T obtains v(T ∪ i) − v(T ) = 1 and
transforms the coalition from losing to winning. We quote from Shapley and Shubik [171]:

...our definition of the power of an individual member depends on the chance he has
of being critical to the success of a winning coalition.

The Shapley power index (5.1) can be interpreted as the weighted proportion of the number of
coalitions which are winning in presence of i and losing in its absence. To make this clearer, it
is interesting to rewrite the index as follows:

φv
Sh(i) =

1
n

n−1∑

t=0

1(n−1
t

)
∑

T⊆N\i
|T |=t

[v(T ∪ i)− v(T )]. (5.2)

Thus, the average value of v(T ∪ i) − v(T ) is computed first over the coalitions of same size
t ∈ {0, . . . , n − 1} and then over all the possible sizes. Consequently, the coalitions containing
about n/2 players are the less important in the average, since they are numerous and a same
player j is very often involved into them.

Note that in terms of the Möbius representation the Shapley power index is written as [169]:

φv
Sh(i) =

∑

T3i

1
t

a(T ), i ∈ N. (5.3)

There is in fact another common way of defining a power index, due to Banzhaf [15] (see also
Dubey and Shapley [40]). The so-called “Banzhaf value” or “Banzhaf power index”, defined as

φv
B(i) :=

1
2n−1

∑

T⊆N\i
[v(T ∪ i)− v(T )], (5.4)

can be viewed as an alternative to the Shapley value. It assigns to player i the probability that
a swing occurs in a simple game when i joins a coalition picked at random from among the 2n−1

coalitions not including i.
This power index has been applied to settle constitutional issues in the courts. We quote

from Banzhaf [15]:

...The voting power of a legislator is not necessary proportional to the number of
voters he can cast... The power of a legislator X...(corresponds)...to the number of
possible combinations of the entire legislature in which X can alter the outcome by
changing his vote...

In terms of the Möbius representation the Banzhaf power index is written as:

φv
B(i) =

∑

T3i

1
2t−1

a(T ), i ∈ N.

1This non-standard notation will be justified in Section 5.2.
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The definition of Shapley and Banzhaf values can be extended to non-simple games2. In that
case, the notion of swing is replaced by what could be called the marginal contribution, i.e. the
difference of worth v(T ∪ i) − v(T ) when player i joins coalition T . The Shapley (or Banzhaf)
value related to player i is then a weighted average value of the marginal contribution of i alone
in all coalitions. Such a value expresses a power index.

In this context, the parallelism between game theory and multicriteria decision making is
clear and has been pointed out in 1992 by Murofushi [129]. The overall importance of a criterion
i ∈ N into a decision problem is not solely determined by the number v(i), but also by all v(T )
such that i ∈ T . Indeed, we may have v(i) = 0, suggesting that element i is unimportant, but it
may happen that for many subsets S ⊆ N , v(S ∪ i) is much greater than v(S), suggesting that
i is actually important. Thus, the importance of criteria can be represented by a power index.

Note that, when v is additive, we clearly have v(T ∪ i) − v(T ) = v(i) for all i ∈ N and all
T ⊆ N \ i, and hence

φv
Sh(i) = φv

B(i) = v(i), i ∈ N. (5.5)

If v is non-additive then some criteria are dependent and (5.5) generally does not hold anymore.
This shows that it is reasonable to search for a coefficient of overall importance for each criterion.

5.1.2 Axiomatic and approximation approaches

We define a value or power index of the game v ∈ GN to be a function φv : N → IR. Of course,
this can be viewed as a vector (φv(1), . . . , φv(n)) ∈ IRn called payoff vector. Such a vector may
be identified with the additive game w ∈ GN in which the worth of every coalition is the sum of
payoffs of its members:

w(S) =
∑

i∈S

φv(i), S ⊆ N. (5.6)

A major problem in game theory is how to distribute the worth v(N) of the total coalition
among its members in a way that takes into account the worths of the various coalitions. Formally,
such a distribution is a payoff vector satisfying

∑
i∈N φv(i) = v(N). As we will see later, the

Shapley value, which was obtained with an axiomatic approach [169], provides a solution to this
problem.

Before presenting an axiomatic characterization which is due to Weber [187], we introduce
some definitions.

An element i ∈ N is said to be a dummy player if v(T ∪ i) = v(T ) + v(i) for all T ⊆ N \ i.
In other words, his marginal contribution to any coalition is simply his individual worth.

For any permutation π ∈ Πn, the game πv is defined by πv(π(S)) = v(S), where π(S) =
{π(i) | i ∈ S}.

Let vN be a game on N . The reduced game with respect to T, ∅ 6= T ⊆ N , is a game denoted
v

(N\T )∪[T ]
[T ] defined on the set (N \ T ) ∪ [T ] of (n − t + 1) players where [T ] indicates a single

hypothetical player, which is the representative of the players in T . The reduced game v[T ] is
defined as follows for any S ⊆ N \ T :

v[T ](S) := v(S)
v[T ](S ∪ [T ]) := v(S ∪ T ).

Let us consider the following axioms.
2Note that, historically, the Shapley value was first introduced [169] for non-simple games. It was then applied

in the particular case of simple games [171].
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• Linearity axiom (L): φv is a linear function on GN , that is φv+v′ = φv +φv′ , and φr v = r φv,
for any v, v′ ∈ GN and any r > 0.

• Dummy axiom (D’): if i ∈ N is a dummy player, then φv(i) = v(i).

• Monotonicity axiom (M): if v is monotonic, then φv(i) ≥ 0, for all i ∈ N .

• Symmetry axiom (S): for all v ∈ GN and all π ∈ Πn, we have φv(i) = φπv(π(i)) for all
i ∈ N .

• Efficiency axiom (E) [169]: for any v ∈ GN , we have
∑

i∈N φv(i) = v(N).

• 2-efficiency axiom (2-E) [137]: for any v ∈ GN , we have φv(i) + φv(j) = φv[ij]([ij]).

Let us comment on these axioms. (L) implies that values are linear combinations of the basic
information related to the game. (D’) means clearly that a dummy player has a value equal to
its own worth. (M) says that if the presence of a player in a coalition never “hurts” it, then his
power index must be non-negative. (S) requires that the names of the players play no role in
determining the value, which should be sensitive only to how the game responds to the presence
of a player in a coalition. (E) assures the players share the total amount v(N) among them in
terms of their respective values. (2-E) expresses the fact that the sum of the values of two players
should be equal to the value of these players considered as twins in the corresponding reduced
game.

On the basis of these axioms, Weber [187] showed the following result.

Theorem 5.1.1 Let φv be a value defined for any v ∈ GN .

(i) If φv fulfils (L) then there exists a family of real constants3 {ai
T |T ⊆ N} such that

φv(i) =
∑

T⊆N

ai
T v(T ).

(ii) If φv fulfils (L, D’) then there exists a family of real constants {pi
T |T ⊆ N \ i} satisfying∑

T⊆N\i pi
T = 1 such that

φv(i) =
∑

T⊆N\i
pi

T [v(T ∪ i)− v(T )]. (5.7)

(iii) If φv fulfils (L, D’, M) then, in addition, pi
T ≥ 0, for all i ∈ N and all T ⊆ N \ i.

(iv) Let φv be a value of the form (5.7) for all i ∈ N , v ∈ GN . If φv fulfils (S) then there exists
a family of constants p0, . . . , pn−1 such that pi

T = p|T | for all i ∈ N and all T ⊆ N \ i.

(v) If φv fulfils (L, D’, S, E) then it is the Shapley value.

According to Weber [187], the values fulfilling (L, D’, M) form the class of probabilistic values.
As a justification, he proposed the following probabilistic interpretation of these values. Assume
that {pi

T |T ⊆ N \ i} is a probability distribution over the collection of coalitions not containing
i and suppose that the participation of player i consists merely of joining some coalition S, and
then receiving as a reward his marginal contribution v(S ∪ i)− v(S) to the coalition. If, for each

3Here, constant means independent of v.
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T ⊆ N \ i, pi
T is the (subjective) probability that he joins coalition T , then (5.7) is simply his

expected payoff from the game.
Both the Shapley and Banzhaf values are instances of probabilistic values. φv

B(i) arises from
the subjective belief that i is equally likely to join any coalition whereas φv

Sh(i) arises from the
belief that the coalition he joins is equally likely to be of any size t (0 ≤ t ≤ n− 1) and that all
coalitions of size t are equally likely.

According to Grabisch and Roubens [93], the values fulfilling (L, D’, M, S) form the class of
cardinal-probabilistic values. This is justified by the fact that each coefficient pi

T only depends
on the cardinal of T .

Concerning the axiomatization of Banzhaf value, the following result has been shown by
Grabisch and Roubens [92].

Theorem 5.1.2 Let φv be a value defined for any v ∈ G. If φv fulfils (L, D’, S, 2-E) then it
is the Banzhaf value.

Notice that Nowak [137] showed a similar result, but without using (L). Lehrer [109] also
axiomatized the Banzhaf value using a weaker form of (2-E).

In addition to the above axiomatic approach, it is natural to ask whether the Shapley and
Banzhaf values can be obtained by an approximation approach. The best linear approximation
to a game v is a set function v defined by v(S) = a0 +

∑
i∈S ai, and which minimizes

∑

T⊆N

[v(T )− v(T )]2.

The best linear approximation has been characterized by Hammer and Holzman [95]. It is such
that ai = φv

B(i) for all i ∈ N .
Generally,

∑
i∈N φv

B(i) 6= v(N) and condition (E) is not satisfied. We can easily overcome
this drawback by normalization. Should we normalize by an additive amount or a multiplicative
factor? The answer can be found in Hammer and Holzman [95]:

• ai = φv
B(i)+ 1

n [v(N)−∑
j φv

B(j)] defines the best linear approximation under the constraints
a0 = 0 and

∑
i∈N ai = v(N) but fails to satisfy (D’) and the monotonicity of v is not ensured.

• ai =
φv

B(i)∑
j φv

B(j)
v(N) satisfies (E) but also has its problems (see [40] for a discussion).

Note that the Shapley value can also be obtained by the approximation approach. But the
least squares criterion in choosing a best approximation has to be replaced by a suitable weighted
least squares criterion. The next result is due to Charnes et al. [24].

Theorem 5.1.3 For any game v ∈ GN , the additive game w ∈ GN that corresponds to the
Shapley value of v (i.e., w(S) =

∑
i∈S φv

Sh(i)) minimizes

∑

T⊆N

ρT [v(T )− w(T )]2

among all additive games w satisfying w(N) = v(N), provided ρT =
(n−2

t−1

)−1
for T 6= ∅, N .

We elaborate on these approximation considerations in Chapter 7.
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5.2 The concept of interaction

In addition to the notion of power index, an interesting concept is that of interaction among
players or criteria. Actually, the problem of modelling interaction remains a difficult question
in multicriteria decision making, often overlooked in practical applications. Although every-
body agrees that interaction phenomena do exist in real situations, the lack of suitable tool to
model them frequently causes the practitioner to assume that his criteria are independent and
exhaustive. This comes primarily from the absence of a precise definition of interaction.

However, the problem has recently been addressed under the viewpoint of cooperative game
theory and multicriteria decision making, and an approach which seems suitable has been pointed
out. The origin of the idea is due to Murofushi and Soneda [130], who propose an interaction
index among a pair of criteria, based on multiattribute utility theory. Later, Grabisch [81] and
Roubens [156] generalized this index to any subset S, thus giving rise to the so-called Shapley
and Banzhaf interaction indices.

5.2.1 The Shapley and Banzhaf interaction indices

We have observed in Section 5.1 that when a game is not additive, then some players interact. Of
course, it would be interesting to appraise the degree of interaction among any subset of players.

Consider a pair {i, j} ⊆ N of players. It may happen that v(i) and v(j) are small and at
the same time v(ij) is large. The converse could have happened as well, and in the latter case,
players i and j have little incentive to cooperate. Clearly, the number φv(i) merely measures the
average added worth that player i brings to all possible coalitions, but it does not explain why
player i may have a large importance. In other words, it gives no information on the phenomena
of interaction or cooperation existing among players. Taking again the above example of players
i and j, the difference

a(ij) = v(ij)− v(i)− v(j) (5.8)

seems to reflect the degree of interaction between these players. Actually we could say:

• players i and j have interest to cooperate, or exhibit a positive interaction when the worth
of coalition ij is more than the sum of individual worths: a(ij) > 0,

• players i and j have no interest to cooperate, or exhibit a negative interaction when the
worth of coalition ij is less than the sum of individual worths: a(ij) < 0,

• players i and j can act independently in case of equality: a(ij) = 0.

Of course, a similar interpretation exists for criteria in multicriteria decision making: the
difference (5.8) is positive if there is a synergy effect between i and j. These two criteria then
interfere in a positive way. The difference is negative in case of overlap effect between i and j.
The criteria then interfere in a negative way. Finally, the difference is zero when the individual
importances v(i) and v(j) add up without interfering. In this case, there is no interaction between
i and j.

As for power indices, a proper definition of interaction should consider not only v(i), v(j), v(ij)
but also the worths of all subsets containing i and j. We may say that i and j have incentives
to cooperate when the marginal contribution of j to every subset that contains i is greater that
the marginal contribution of j to the same subset when i is excluded, i.e. when

v(T ∪ ij)− v(T ∪ i) > v(T ∪ j)− v(T ), T ⊆ N \ ij.
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Players i and j can act independently in case of equality for all T and have no interest to
cooperate when the inequality is reversed for all T .

Thus the interaction between players i an j can be considered as the average of the marginal
contributions of j in the presence of i minus the average of the marginal contributions of j in
the absence of i which corresponds to the weighted sum over all coalitions T ⊆ N \ ij of

v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T ).

Murofushi and Soneda [130] have proposed the following definition, borrowing concepts from
multiattribute utility theory. The interaction index of elements i, j is defined by

Iv(ij) :=
∑

T⊆N\ij

(n− t− 2)! t!
(n− 1)!

[v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T )],

and can be interpreted as a weighted average of the added value produced by putting i and
j together, all coalitions being considered. When Iv(ij) is positive (resp. negative), then the
interaction between i and j is said to be positive (resp. negative).

The interaction index among a combination S of players or criteria has been introduced by
Grabisch [81] as a natural extension of the case |S| = 2. The Shapley interaction index related
to v, is defined by

Iv
Sh(S) :=

∑

T⊆N\S

(n− t− s)! t!
(n− s + 1)!

∑

L⊆S

(−1)s−lv(L ∪ T ), S ⊆ N, (5.9)

that is, in terms of the Möbius representation [81],

Iv
Sh(S) =

∑

T⊇S

1
t− s + 1

a(T ), S ⊆ N. (5.10)

Viewed as a set function, the Shapley interaction index coincides on singletons with the Shapley
value (5.1).

Roubens [156] developed a parallel notion of interaction index, based on the Banzhaf value
(5.4): the Banzhaf interaction index, defined by

Iv
B(S) :=

1
2n−s

∑

T⊆N\S

∑

L⊆S

(−1)s−lv(L ∪ T ), S ⊆ N, (5.11)

that is, in terms of the Möbius representation [156],

Iv
B(S) =

∑

T⊇S

(
1
2
)t−s a(T ), S ⊆ N. (5.12)

We can see that the interaction indices Iv
Sh and Iv

B provide extensions of the notion of value,
where a value is a function over the set of players (hence the notation φv(i)) while the extension
is defined over all subsets of players. Clearly, the notion of interaction among players should have
a meaning only for at least two players. The interaction of a single player, or of the empty set,
has no meaning with regard to the intuitive idea of interaction. However, from a mathematical
point of view, Iv

Sh and Iv
B can be considered as set functions, i.e. defined for all subsets of N .
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In Section 5.4, we will introduce a third interaction index, namely the chaining interaction
index

Iv
R(S) :=

∑

T⊆N\S
s

(n− s− t)! (s + t− 1)!
n!

∑

L⊆S

(−1)s−lv(L ∪ T ), ∅ 6= S ⊆ N,

which also extends the Shapley value. In terms of the Möbius representation, it takes a very
simple form:

Iv
R(S) =

∑

T⊇S

s

t
a(T ), ∅ 6= S ⊆ N.

Let δSv : 2N → IR be the s-th order derivative of v at S defined recursively by δiv(T ) =
v(T )− v(T \ i), δijv(T ) = δi(δjv(T )) = δj(δiv(T )), etc., for all T ⊆ N .

It is easy to show by induction over s that

δSv(T ∪ S) =
∑

L⊆S

(−1)s−lv(L ∪ T ), ∀S ⊆ N, ∀T ⊆ N \ S. (5.13)

In particular, for S = {i}, we obtain the marginal contribution of player i to the coalition
T ⊆ N \ i:

δiv(T ∪ i) = v(T ∪ i)− v(T ).

For S = {i, j}, we obtain the marginal interaction between i and j, conditioned to the presence
of elements of the coalition T ⊆ N \ ij:

δijv(T ∪ ij) = v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T ).

More generally, δSv(T ∪ S) represents the marginal interaction between the elements of the
coalition S ⊆ N in the presence of elements of the coalition T ⊆ N \ S.

Thus we can see that Iv
Sh, Iv

B and Iv
R are interaction indices of the form

Iv(S) =
∑

T⊆N\S
pS

T δSv(T ∪ S), with pS
T ≥ 0,

∑

T⊆N\S
pS

T = 1.

Such interactions are called probabilistic interactions.

It should be noted that the concept of interaction between elements is not really new. It had
already been introduced in statistical analysis of factorial experiments, where the main effects
(average contributions) of a number of different factors are investigated simultaneously. The
interactions among factors have then been defined to model a degree of dependence between
them (see e.g. [30, Chap. 5]).

5.2.2 Axiomatic characterizations

We define an interaction index of the game v ∈ GN to be a function Iv : 2N → IR. Thus,
Iv(S) expresses the amount of interaction among s players in coalition S for the game v. Iv(i)
represents the value related to player i.

In this section, we present a characterization similar to that of Section 5.1.2 for power indices.
In addition to the definitions mentioned there, we introduce the following concepts.

Recall that the unanimity game for T ⊆ N is the game vT such that vT (S) = 1 if and only
if S ⊇ T and vT (S) = 0 otherwise. A slightly different type of simple game is denoted v̂T and is
defined by v̂T (S) = 1 if and only if S⊃

6=T and vT (S) = 0 otherwise.
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Let vN be a game on N , and i ∈ N . The restriction of vN to N \ i, denoted vN\i, is defined
by vN\i(S) = vN (S) for all S ⊆ N \ i. In fact, this is equivalent to consider for vN only coalitions
not containing i. The game on N \ i in the presence of i, denoted v

N\i
∪i , is defined by

v
N\i
∪i (S) = vN (S ∪ i)− vN (i), S ⊆ N \ i.

This is roughly equivalent to consider for vN only coalitions containing i. Substraction of vN (i)
is introduced only to satisfy the constraint v

N\i
∪i (∅) = 0.

Let us consider some properties that might be satisfied by an interaction index.

• Linearity axiom (L): Iv is a linear function on GN , that is Iv+v′ = Iv + Iv′ , and Ir v = r Iv,
for any v, v′ ∈ GN and any r > 0.

• Dummy axiom (D): if i ∈ N is a dummy player for v ∈ GN , then

(D’) Iv(i) = v(i).
(D”) Iv(S ∪ i) = 0, ∀S ⊆ N \ i, S 6= ∅.

• Symmetry axiom (S): for all v ∈ GN and all π ∈ Πn, we have Iv(i) = Iπv(π(S)) for all
S ⊆ N .

• Recursivity axiom (R): Iv obeys the following recurrence formula, for any v ∈ GN ,

IvN
(S) = Iv

N\i
∪i (S \ i)− IvN\i

(S \ i), ∀S ⊆ N, S 6= ∅, ∀i ∈ S. (5.14)

• Positive interaction axiom (P): For any game v̂T , T ⊆ N , we have

I v̂T (S ∪ i) ≥ 0, ∀S ⊆ T, ∀i /∈ T.

• Unanimity games axiom (U): For any unanimity game vT , IvT (S) is maximal for S = T .
The maximal value is taken equal to one.

• Efficiency axiom (E) [169]: for any v ∈ GN , we have
∑

i∈N Iv(i) = v(N).

• 2-efficiency axiom (2-E) [137]: for any v ∈ GN , we have Iv(i) + Iv(j) = Iv[ij]([ij]).

(L) implies that values and interactions are linear combinations of the basic information
related to the game: the worth of each subset of players.

(D) means that a dummy player has a value equal to its worth and that he/she does not
interact with any outside coalition.

(S) indicates that the names of the players play no role in determining the values and inter-
actions.

(R) postulates that interaction at level s is linked to the difference of interactions defined at
level s − 1. More precisely, the interaction between the players in S is equal to the interaction
between the players in S \ i in the omnipresence of i, minus the interaction between the players
of S \ i in the absence of i.

In the case of coalition of two players, relation (5.14) gives:

IvN
(ij) = Iv

N\i
∪i (j)− IvN\i

(j) = Iv
N\j
∪j (i)− IvN\j

(i)
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which means that the interaction between i and j is equal to the value of j in the omnipresence
of i minus the value of j in the absence of i. Of course, the interaction is a symmetric function
of i and j.

(P) indicates that there exists a positive interaction or synergy between i /∈ T and S ⊆ T
within the simple game v̂T . Indeed, neither i nor S can make T \ S to be a winning coalition,
but only the contribution of both.

(U) corresponds to the following observation. Consider any unanimity game vT . If a player
i does not belong to T , he/she is a dummy in vT and plays no active role in that game. On the
contrary, any player i that belongs to T plays a major role transforming a losing coalition T \ i
into a winning one T : vT (T \ i) = 0, vT ((T \ i) ∪ i) = vT (T ) = 1. As this is true for any i ∈ T
and only for these elements, the interaction IvT (S) should be maximal for S = T .

For normalization reasons, we consider that the maximal value should be equal to one.

(E) and (2-E) are dedicated to values and have been already explained in Section 5.1.2.

Adopting an approach similar to that of Weber [187], Grabisch and Roubens [92] proved the
following.

Theorem 5.2.1 Let Iv be an interaction index defined for any v ∈ G.
(i) If Iv fulfils (L) then, for every S ⊆ N , there exists a family of real constants {aS

T |T ⊆ N}
such that

Iv(S) =
∑

T⊆N

aS
T v(T ).

(ii) If Iv fulfils (L, D) then, for every S ⊆ N , there exists a family of real constants {pS
T |T ⊆

N \ S} such that
Iv(S) =

∑

T⊆N\S
pS

T δSv(T ∪ S). (5.15)

(iii) If Iv fulfils (L, D, S) then there exists a family of real constants {ps
t (n) | s = 0, . . . , n; t =

0, . . . , n− s} such that
Iv(S) =

∑

T⊆N\S
ps

t (n) δSv(T ∪ S).

(iv) If Iv fulfils (L, D, S, R) then, in addition,

ps
t (n) = p1

t (n− s + 1).

In other words, the coefficients ps
t (n) depend only on t and n− s.

(v) If Iv fulfils (L, D, S, R, E) then it is the Shapley interaction index.
(vi) If Iv fulfils (L, D, S, R, 2-E) then it is the Banzhaf interaction index.

Note that the recursivity axiom (R) permits to link interaction indices to values in a unique
way. That is, if for example the Shapley value is chosen, the interaction index based on the
Shapley value is uniquely determined, and the coefficients ps

t (n) are known. The same will be
true for any value, provided it satisfies (L, D, S).

In addition to the previous result, Grabisch and Roubens [91, 93] proved the following.

Theorem 5.2.2 Let Iv be an interaction index defined for any v ∈ GN .
(i) If Iv fulfils (L, D, P) then pS

T ≥ 0 for all S ⊆ N , S 6= ∅, and all T ⊆ N \ S.
(ii) If Iv fulfils (L, D, P, U) then, in addition,

∑
T⊆N\S pS

T = 1 for all S ⊆ N .
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According to Grabisch and Roubens [93], the interaction indices fulfilling (L, D, P, U) form
the class of probabilistic interactions. Those fulfilling (L, D, P, U, S) form the class of cardinal-
probabilistic interactions. Iv

B and Iv
Sh belong to these classes and have the following probabilistic

interpretation: let us suppose that any coalition S ⊆ N joins a coalition T ⊆ N \ S at random
with a probability pS

T . Then the interaction index (5.15) can be thought of as the mathematical
expectation of the marginal interaction δSv(T ∪ S). Depending on the given randomization
scheme, this interaction index takes a well defined form:

• if the coalition S is equally likely to join any coalition T ⊆ N \ S, its probability to join is
pS

T = 1
2n−s and we get IB.

• if the coalition S is equally likely to join any coalition T ⊆ N \S of size t (0 ≤ t ≤ n−s) and
that all coalitions of size t are equally likely, its probability to join is pS

T = 1
n−s+1

(n−s
t

)−1

and we get ISh.

The results of Theorems 5.2.1 and 5.2.2 are summarized in Figure 5.1.

5.3 Equivalent representations of a set function

As already mentioned, real valued set functions, which are not necessarily additive, are exten-
sively used in decision theory. This section mostly concentrates on some alternative representa-
tions of set functions and on their usefulness in game theory and in multicriteria decision making.
All the results presented in this section are written in Grabisch, Marichal and Roubens [87].

Consider a real valued set function v : 2N → IR. There exist several equivalent ways to define
v. The first one is to give for any subset S the number v(S). The second one is to observe that
v can be expressed in a unique way as:

v(S) =
∑

T⊆S

a(T ), S ⊆ N,

where a is the Möbius transform of v, see Section 4.1.2.
We know that the set function a is a representation of v. More formally, a set function

w : 2N → IR is a representation of v if there exists an invertible transform T such that

w = T (v) and v = T −1(w).

In addition to the Möbius representation of v, we introduce the following definitions:

• The dual representation of v, denoted v∗, is defined by

v∗(S) := v(N)− v(N \ S), S ⊆ N.

• The co-Möbius representation of v, denoted b, is defined by

b(S) :=
∑

T⊇N\S
(−1)n−tv(T ) =

∑

T⊆S

(−1)t v(N \ T ), S ⊆ N. (5.16)

In evidence theory (Shafer [167]), v corresponds to the belief function, v∗ is called the plau-
sibility function, a corresponds to the mass or basic probability assignment and b is called the
commonality function.
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(L, D, S, R, E)
Shapley interaction Iv

Sh(S)

ps
t (n) =

1
n− s + 1

(
n− s

t

)−1

(L, D, P, U, S)
ps

t ≥ 0,
∑

T⊆N\S
ps

t = 1

(cardinal-probabilistic interaction)

(L, D, S, R, 2-E)
Banzhaf interaction Iv

B(S)

ps
t (n) =

1
2n−s

(L, D, S, R)
ps

t (n) = p1
t (n− s + 1)

(L, D, P, U)
pS

T ≥ 0,
∑

T⊆N\S
pS

T = 1

(probabilistic interaction)

(L, D, S)
pS

T = ps
t

(cardinal interaction)

(L, D, P)
pS

T ≥ 0

(L, D): Iv(S) =
∑

T⊆N\S
pS

T δSv(T ∪ S), pS
T ∈ IR

´
´́

Q
QQ

(L): Iv(S) =
∑

T⊆N

aS
T v(T ), aS

T ∈ IR

Figure 5.1: Classification of interactions
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If v(∅) = 0 then v∗ is a representation of v since (v∗)∗ = v. Moreover, for any v, it is already
known that the Möbius transform is invertible and thus is a representation of v. The main aim
of this section is to show that b is also a representation of v, as well as the interaction indices IB

and ISh. All these representations are linear, that is, such that T is a linear operator. We also
give all the conversion formulas between v, a, b, IB and ISh.

In the following three subsections, we will give some technical results involving pseudo-
Boolean functions and some of their extensions. These results will be very useful as we continue.

5.3.1 The use of pseudo-Boolean functions

Let us introduce the concept of derivatives of pseudo-Boolean functions, which will be useful in
the sequel, see e.g. [95].

Definition 5.3.1 Given S = {i1, . . . , is} ⊆ N , the s-th order derivative of a pseudo-Boolean
function f : {0, 1}n → IR with respect to xi1 , . . . , xis is the function ∆S f : {0, 1}n → IR defined
inductively as

∆S f(x) = ∆i1(∆S\i1 f)(x),

where ∆i f(x) (i ∈ N) is the (first) derivative defined by

∆i f(x) := f(x |xi = 1)− f(x |xi = 0), x ∈ {0, 1}n,

and, as usual, ∆∅ f(x) = f(x) for all x ∈ {0, 1}n. For all S ⊆ N , ∆S f(x) will be called the
S-derivative of f(x).

Thus defined, ∆S f(x) depends only on the variables xi for i /∈ S, but we still regard it as a
function on {0, 1}n. For instance, we have, for all T ⊆ N ,

(∆if)(eT ) =
{

f(eT )− f(eT\i), if i ∈ T ,
f(eT∪i)− f(eT ), if i /∈ T .

If f is given under the form (4.2) then we can easily see that:

∆S f(x) =
∑

T⊇S

a(T )
∏

i∈T\S
xi, ∀x ∈ {0, 1}n, ∀S ⊆ N. (5.17)

Hence we have
(∆S f)(eT ) =

∑

L⊆T

a(L ∪ S), ∀S ⊆ N, ∀T ⊆ N \ S. (5.18)

In fact, we can easily see that

(∆Sf)(eT ) = δSv(T ∪ S), ∀S, T ⊆ N, (5.19)

and, by (5.13), we have

(∆S f)(eT ) =
∑

L⊆S

(−1)s−lv(L ∪ T ), ∀S ⊆ N, ∀T ⊆ N \ S. (5.20)

Moreover, by combining (5.20) and (5.16), we obtain

b(S) = (∆S f)(eS) = (∆S f)(eN\S), S ⊆ N, (5.21)
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and by using (5.17),
b(S) =

∑

T⊇S

a(T ), S ⊆ N. (5.22)

Now, by (5.19), we can see that the interaction indices IB and ISh are of the form:

I(S) =
∑

T⊆N\S
pS

T (∆S f)(eT ), S ⊆ N,

and equations (5.11) and (5.9) become:

IB(S) =
1

2n−s

∑

T⊆N\S
(∆S f)(eT ), S ⊆ N, (5.23)

ISh(S) =
1

n− s + 1

∑

T⊆N\S

(
n− s

t

)−1

(∆S f)(eT ), S ⊆ N. (5.24)

The following result shows that equations (5.23) and (5.24) can be rewritten in another form.

Proposition 5.3.1 We have

IB(S) =
1
2n

∑

x∈{0,1}n

(∆S f)(x), S ⊆ N, (5.25)

ISh(S) =
1

n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

(∆S f)(x), S ⊆ N. (5.26)

Proof. Given S ⊆ N , we simply have
1
2n

∑

x∈{0,1}n

(∆S f)(x) =
1
2n

∑

T⊇S

a(T )
∑

x∈{0,1}n

∏

i∈T\S
xi (by (5.17))

=
1
2n

∑

T⊇S

a(T )
∑

K⊆N\(T\S)

1

=
∑

T⊇S

(
1
2
)t−sa(T )

= IB(S) (by (5.12)),

and

1
n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

(∆S f)(x)

=
1

n + 1

∑

T⊇S

a(T )
∑

x∈{0,1}n

(
n∑
i xi

)−1 ∏

i∈T\S
xi (by (5.17))

=
1

n + 1

∑

T⊇S

a(T )
∑

K⊆N\(T\S)

(
n

k

)−1

=
1

n + 1

∑

T⊇S

a(T )
n−t+s∑

k=0

(
n− t + s

k

)(
n

k

)−1

=
∑

T⊇S

1
t− s + 1

a(T )

= ISh(S) (by (5.10)),
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which proves the result.

It should be noted that equations (5.12) and (5.10) can be easily obtained from (5.23) and
(5.24) respectively by using the following formula:

∑

T⊆N\S
ps

t (∆S f)(eT ) =
∑

T⊇S

[ n−t∑

k=0

(
n− t

k

)
ps

k+t−s

]
a(T ), S ⊆ N. (5.27)

The proof of this formula is simple: setting L′ := L ∪ S, we have, from (5.18),

∑

T⊆N\S
ps

t (∆S f)(eT ) =
∑

T⊆N\S
ps

t

∑

L⊆T

a(L ∪ S)

=
∑

L′⊇S

[ ∑

T :L′\S⊆T⊆N\S
ps

t

]
a(L′)

=
∑

L′⊇S

[ n−s∑

t=l′−s

(
n− l′

t− l′ + s

)
ps

t

]
a(L′)

=
∑

L′⊇S

[ n−l′∑

k=0

(
n− l′

k

)
ps

k+l′−s

]
a(L′),

which proves (5.27).

5.3.2 Multilinear extension of pseudo-Boolean functions

From any pseudo-Boolean function f : {0, 1}n → IR, we can define a variety of extensions
f̄ : [0, 1]n → IR which interpolate f at the 2n vertices of [0, 1]n, that is f̄(eS) = f(eS) = v(S) for
all S ⊆ N . For instance, we have seen that the Choquet integral with respect to a set function
v is the Lovász extension of the pseudo-Boolean function which defines v, see Section 4.2.

The S-derivative of any extension f̄ is defined inductively in the same way as for f . In
particular, we have

∆S f̄(x) = ∆S f(x), ∀x ∈ {0, 1}n, ∀S ⊆ N.

Let us introduce the notation x := (x, . . . , x) ∈ [0, 1]n for all x ∈ [0, 1]. By (5.18) and (5.21),
we immediately have

a(S) = (∆S f̄)(0), S ⊆ N

b(S) = (∆S f̄)(1), S ⊆ N

for any extension f̄ of f .

The polynomial expression (4.2) was used in game theory in 1972 by Owen [144] as the
multilinear extension of a game.

Definition 5.3.2 If the pseudo-Boolean function f has the unique multilinear expression
(4.2) then the multilinear extension of f (MLE) is the function g : [0, 1]n → IR defined by

g(x) :=
∑

T⊆N

f(eT )
∏

i∈T

xi

∏

i/∈T

(1− xi) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ [0, 1]n. (5.28)
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It has been proved by Owen [145] that g is the only multilinear function (i.e. linear in each
of the variables xi) on [0, 1]n that coincides with f on {0, 1}n. More precisely, g corresponds to
the classical linear interpolation (with respect to each of the n variables) of f .

It is easy to see that:

∆S g(x) =
∑

T⊇S

a(T )
∏

i∈T\S
xi, ∀x ∈ [0, 1]n, ∀S ⊆ N, (5.29)

and, by (5.17), we can observe that ∆S g is the MLE of ∆S f .

From (5.12) and (5.29), we can readily see that the Banzhaf interaction index related to S
is obtained by integrating the S-derivative of the MLE of game v over the hypercube. Formally,
this result can be stated as follows.

Proposition 5.3.2 We have

IB(S) =
∫

[0,1]n
(∆S g)(x) dx, S ⊆ N. (5.30)

This result can be interpreted by analogy with (5.25): IB(S) is the average value of ∆S f over
{0, 1}n, but also the average value of its MLE over [0, 1]n.

From (5.29), we immediately have:

(∆S g)(x) =
∑

T⊇S

a(T ) xt−s, ∀x ∈ [0, 1], ∀S ⊆ N. (5.31)

Consequently, we have, using (5.22), (5.12), and (5.10):

a(S) = (∆S g)(0), S ⊆ N (5.32)
b(S) = (∆S g)(1), S ⊆ N (5.33)

IB(S) = (∆S g)(1/2), S ⊆ N (5.34)

ISh(S) =
∫ 1

0
(∆S g)(x) dx, S ⊆ N. (5.35)

We see that the Banzhaf interaction index related to S is the value of the S-derivative of
the MLE of game v on the center of the hypercube [0, 1]n, while the Shapley interaction index
related to S is obtained by integrating the S-derivative of the MLE of game v along the main
diagonal of the hypercube. This latter result has been proved by Owen [145] when |S| = 1.

5.3.3 Links with the Lovász extension

Let f̂ be the Lovász extension of f on [0, 1]n. It is easy to see that:

∆S f̂(x) =
∑

T⊇S

a(T )
∧

i∈T\S
xi, ∀x ∈ [0, 1]n, ∀S ⊆ N, (5.36)

and, by (5.17), we can observe that ∆S f̂ is the Lovász extension of ∆S f .
The following lemma will be very useful in the sequel.

Lemma 5.3.1 We have
∫

[0,1]n

∧

i∈S

xi dx =
1

s + 1
, S ⊆ N. (5.37)
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Proof. Observe first that we can assume S = N . Next, we have
∫

[0,1]n

∧

i∈N

xi dx =
∑

π∈Πn

∫

Bπ

xπ(1) dx

=
∑

π∈Πn

∫ 1

0

∫ xπ(n)

0
· · ·

∫ xπ(2)

0
xπ(1) dxπ(1) · · · dxπ(n)

=
∑

π∈Πn

1
(n + 1)!

=
1

n + 1
.

From (5.10), (5.36) and (5.37), we can readily see that the Shapley interaction index related
to S is obtained by integrating the S-derivative of the Lovász extension of game v over the
hypercube. This result, which is to be compared with (5.30), can be stated as follows.

Proposition 5.3.3 We have

ISh(S) =
∫

[0,1]n
∆S f̂(x) dx, S ⊆ N. (5.38)

From (5.36), we immediately have

(∆S f̂)(x) = a(S) + x
∑
T⊃S
T 6=S

a(T ), ∀x ∈ [0, 1], ∀S ⊆ N.

Consequently, we have, using (5.22):

a(S) = (∆S f̂)(0), S ⊆ N

b(S) = (∆S f̂)(1), S ⊆ N

a(S) + b(S)
2

= (∆S f̂)(1/2), S ⊆ N

a(S) + b(S)
2

=
∫ 1

0
(∆S f̂)(x) dx, S ⊆ N

5.3.4 Some conversion formulas derived from the MLE

It is easy to see that, for any function g of the form (5.28), the operator ∆S identifies with the
classical S-derivative, that is,

∆S g(x) =
∂s g(x)

∂xi1 · · · ∂xis

where S = {i1, . . . , is}.

The Taylor formula for functions of several variables then can be applied to g. This leads to the
equality:

g(x) =
∑

T⊆N

∏

i∈T

(xi − yi) ∆T g(y), x, y ∈ [0, 1]n. (5.39)

Replacing x by eS and y by y provides:

v(S) =
∑

T⊆N

∏

i∈T

((eS)i − y) (∆T g)(y), ∀y ∈ [0, 1], ∀S ⊆ N. (5.40)
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On the basis of (5.32)–(5.34), we can obtain the conversions from a, b, IB to v by replacing y
respectively by 0, 1 and 1/2 in (5.40). The corresponding formulas can be found in Tables 5.3
and 5.4 (Section 5.3.7).

By successive derivations of (5.39), we obtain:

∆S g(x) =
∑

T⊇S

∏

i∈T\S
(xi − yi)∆T g(y), ∀x, y ∈ [0, 1]n, ∀S ⊆ N.

In particular, we have:

(∆S g)(x) =
∑

T⊇S

(x− y)t−s (∆T g)(y), ∀x, y ∈ [0, 1], ∀S ⊆ N. (5.41)

We can get all the conversions between a, b, and IB by replacing x and y by 0, 1, and 1/2 in
(5.41). The corresponding formulas are written in Tables 5.3 and 5.4.

Combining (5.35) and (5.41), we immediately have:

ISh(S) =
∑

T⊇S

[∫ 1

0
(x− y)t−s dx

]
(∆T g)(y)

=
∑

T⊇S

(1− y)t−s+1 − (−y)t−s+1

t− s + 1
(∆T g)(y), ∀y ∈ [0, 1], ∀S ⊆ N. (5.42)

We then obtain the conversions from a, b, IB to ISh by replacing y successively by 0, 1, and 1/2
in (5.42), see Tables 5.3 and 5.4.

The conversions from ISh to a, b, IB, are a little bit more delicate. Let {Bn}n∈IN be the
sequence of Bernoulli numbers defined recursively by





B0 = 1,

n∑

k=0

(
n + 1

k

)
Bk = 0, n ∈ IN0.

The first elements of the sequence are:

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1
42

, . . . . (5.43)

The Bernoulli polynomials are then defined by

Bn(x) =
n∑

k=0

(
n

k

)
Bk xn−k, ∀n ∈ IN, ∀x ∈ IR.

It is well known that these polynomials fulfil the following properties (see e.g. [1]):

Bn(0) = Bn, ∀n ∈ IN (5.44)
Bn(1) = (−1)n Bn, ∀n ∈ IN (5.45)

Bn(1/2) = (
1

2n−1
− 1)Bn, ∀n ∈ IN (5.46)

Bn(x + y) =
n∑

k=0

(
n

k

)
Bk(x) yn−k, ∀n ∈ IN, ∀x, y ∈ IR (5.47)

∫ 1

0
Bn(x) dx = 0, ∀n ∈ IN0. (5.48)

We have the following lemma.
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Lemma 5.3.2 For all S, K ⊆ N such that S ⊆ K, we have:

∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1
= xk−s, x ∈ [0, 1]; (5.49)

Proof. We have

∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1
=

k∑

t=s

(
k − s

t− s

)
Bt−s(x)

1
k − t + 1

=
k−s∑

u=0

(
k − s

u

)
Bu(x)

1
k − s− u + 1

=
∫ 1

0

k−s∑

u=0

(
k − s

u

)
Bu(x) yk−s−u dy

=
∫ 1

0

k−s∑

u=0

(
k − s

u

)
Bu(y) xk−s−u dy (by (5.47))

= xk−s (by (5.48)).

We then have the following result.

Proposition 5.3.4 We have

(∆S g)(x) =
∑

T⊇S

Bt−s(x) ISh(T ), ∀x ∈ [0, 1], ∀S ⊆ N ; (5.50)

Proof. We have

∑

T⊇S

Bt−s(x) ISh(T ) =
∑

T⊇S

Bt−s(x)
∑

K⊇T

1
k − t + 1

a(K) (by (5.10))

=
∑

K⊇S

a(K)
∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1

=
∑

K⊇S

a(K) xk−s (by (5.49))

= (∆S g)(x) (by (5.31)).

We then obtain the conversions from ISh to a, b, IB by replacing x successively by 0, 1, and
1/2 in (5.50), and by using (5.44)–(5.46).

5.3.5 Fractal and cardinality transformations

We now present the matrix form of the linear transforms that allow to go from a representation
to another one. We also show that the corresponding matrices have remarkable properties.

Any pair (x, y) extracted from the set {v, a, b, IB, ISh} can produce a matricial relation

y = T ◦ x
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where x, y : 2N → IR and where T is a transformation matrix of dimension 2n × 2n if the 2n

elements of 2N are ordered according to some sequence.
Let us consider the following total ordering of the elements of 2N ,

O : ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . . , N.

This order is obtained as follows. We consider the natural sequence of integers from 0 to 2n− 1,
that is 0, 1, 2, . . . , i, . . . , 2n − 1, and its binary notation [0]2, [1]2, . . . , [i]2, . . . , [2n − 1]2, which
is (with n digits) 000 · · · 00, 000 · · · 01, 000 · · · 10, . . . , 111 · · · 11. To any number [i]2 in binary
notation corresponds a unique subset I ⊆ N such that j ∈ I if and only if the (n + 1 − j)-th
digit in [i]2 is 1.

We obtain the vectors of IR2n
:

xt
(n) = (x(∅) x({1}) x({2}) x({1, 2}) . . . x(N) )

yt
(n) = ( y(∅) y({1}) y({2}) y({1, 2}) . . . y(N) )

(here the superscript t represents the transposition operation) and we determine the matricial
relation

y(n) = T(n) ◦ x(n)

with

T(n) =




∅ {1} · · · N

∅ T (∅, ∅) T (∅, {1}) · · · T (∅, N)
{1} T ({1}, ∅) T ({1}, {1}) · · · T ({1}, N)
...

...
...

...
N T (N, ∅) T (N, {1}) · · · T (N, N)




.

Three particular transformations will be considered:

(i) the fractal transformation linked to a “fractal matrix” T = F defined with the help of one
“basic fractal matrix” F(1) which is supposed to be invertible.

F(1) :=
(

f1 f2

f3 f4

)
, fi ∈ IR, i = 1, 2, 3, 4

F−1
(1) :=

(
g1 g2

g3 g4

)

F(k) :=
(

f1 F(k−1) f2 F(k−1)

f3 F(k−1) f4 F(k−1)

)
, k = 2, . . . , n.

It can be shown that the inverse matrix is also fractal. In general we have:

F−1
(k) =

(
g1 F−1

(k−1) g2 F−1
(k−1)

g3 F−1
(k−1) g4 F−1

(k−1)

)
, k = 2, . . . , n.

(ii) the upper-cardinality transformation linked to an “upper-cardinality matrix” T = C based
on a sequence of real numbers (c0, c1, . . . , ck, . . . , cn), c0 = 1, and

C(1) :=
(

c0 c1

0 c0

)
, C l

(1) :=
(

cl−1 cl

0 cl−1

)
, l = 1, . . . , n

C(2) :=

(
C1

(1) C2
(1)

0 C1
(1)

)
, C l

(2) :=

(
C l

(1) C l+1
(1)

0 C l
(1)

)
, l = 1, . . . , n− 1

C(k) :=

(
C1

(k−1) C2
(k−1)

0 C1
(k−1)

)
, k = 2, . . . , n.
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Using the sequence O to order the rows and the columns of C(n), one obtains (blanks
replace zeroes):

C(n) =




∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3} · · ·
∅ c0 c1 c1 c2 c1 c2 c2 c3

{1} c0 c1 c1 c2

{2} c0 c1 c1 c2

{1, 2} c0 c1

{3} c0 c1 c1 c2

{1, 3} c0 c1

{2, 3} c0 c1

{1, 2, 3} c0
...




.

(iii) the lower-cardinality transformation linked to a “lower-cardinality matrix” T = Ct based
on a sequence of real numbers (c0, c1, . . . , ck, . . . , cn), c0 = 1, and

Ct
(1) :=

(
c0 0
c1 c0

)
, . . .

Ct
(k) :=

(
C1 t

(k−1) 0
C2 t

(k−1) C1 t
(k−1)

)
, k = 2, . . . , n.

Both fractal and cardinality transformations correspond to a two-place real valued set function
Φ. We introduce the product of two such transformations Φ and Ψ to define:

(Φ ◦Ψ)(A,B) :=
∑

C⊆N

Φ(A,C)Ψ(C,B), A, B ⊆ N.

In the case of the upper-cardinality transformation (see Denneberg and Grabisch [37])

Φ(A,B) = Φ(∅, B \A) =
{

c|B\A|, if A ⊆ B,
0, otherwise,

and this definition justifies the terminology used.
If we are concerned with a lower-cardinality transformation,

Φ(A,B) = Φ(A \B, ∅) =
{

c|A\B|, if B ⊆ A,
0, otherwise.

Let us now consider the families:

GF := {F : 2N × 2N → IR |F is built on a basic invertible fractal matrix F(1)}
GC := {C : 2N × 2N → IR |C is determined by a sequence (ck)}
GC := {Ct : 2N × 2N → IR |Ct is determined by a sequence (ck)}

The three families form a multiplicative group for the composition law (◦) with neutral
element

I(A,B) :=
{

1, if A = B,
0, else.

The families GC and GC form an Abelian group (i.e. commutative) but the property of
commutativity is generally not satisfied for GF .
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In the case of the upper-cardinality transformation, y(n) = C(n) x(n) can be rewritten as

y(S) =
∑

T⊇S

ct−s x(T ), S ⊆ N. (5.51)

Moreover, if C1 and C2 represent two upper-cardinality transformations, the sequence (ck)
related to C1 ◦ C2 corresponds to (see [37])

ck =
k∑

l=0

(
k

l

)
c1
k−l c

2
l =

k∑

l=0

(
k

l

)
c2
k−l c

1
l , k = 0, . . . , n. (5.52)

The inverse C−1 of the upper-cardinality transformation C is obtained with c−1
0 = 1 and

c−1
k = −

k−1∑

l=0

(
k

l

)
ck−l c

−1
l , k = 1, . . . , n. (5.53)

It is obvious that the lower-cardinality transformation y(n) = Ct
(n) x(n) can be rewritten as

y(S) =
∑

T⊆S

cs−t x(T ), S ⊆ N.

If C1 t and C2 t represent two lower-cardinality transformations, the sequence (ck) related
to C1 t ◦ C2 t corresponds to the formula (5.52) and the inverse (Ct)−1 of the lower-cardinality
transformation Ct is obtained with (5.53).

If a fractal transformation F is considered, y(n) = F(n) x(n) can be rewritten as

y(S) =
∑

T⊆N

F (S, T ) x(T ), S ⊆ N.

We know that F−1 is also a fractal transformation and we can easily check that

F−1
(n)(S, T ) =

(−1)t−s

(detF(1))n
F(n)(N \ T,N \ S), ∀S, T ⊆ N. (5.54)

Moreover, the composition of two fractal transformations F 1 and F 2 corresponds to a fractal
transformation with basic fractal matrix F(1) = F 1

(1) ◦ F 2
(1).

It should be noted that any fractal transformation with a basic fractal matrix:

F(1) =
(

1 ρ
0 1

)
or

(
1 0
ρ 1

)

is an upper (lower)-cardinality transformation with the sequence ck = ρk. The converse is also
true.

From classical results in combinatorics [154], all conversion formulas between v, a and b are
well known. We can observe that all the transformations between v, a, b and IB are fractal. For
instance, the Möbius representation (4.4) can be rewritten under the fractal form

a(n) = M(n) ◦ v(n)

with the use of the basic fractal matrix:

M(1) =
(

1 0
−1 1

)
. (5.55)
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We see that transformation M also corresponds to a lower-cardinality transformation with
ck = (−1)k and we immediately obtain that

v(n) = M−1
(n) ◦ a(n)

where M−1 corresponds to the basic fractal matrix:

M−1
(1) =

(
1 0
1 1

)
,

or the lower-cardinality transformation with sequence ck = 1, which gives (4.5).

More generally, one can easily see that the generating conversion formula (5.40) corresponds,
for any fixed y ∈ [0, 1], to a fractal transformation whose basic fractal matrix is

F(1) =
(

1 −y
1 1− y

)
.

By (5.54), the formula (5.40) can immediately be inverted into

(∆S g)(y) =
∑

T⊆N

(−1)t−s
∏

i∈N\S
((eT )i − y) v(T ), y ∈ [0, 1]. (5.56)

Replacing y respectively by 0, 1 and 1/2 in (5.56), we obtain the conversions from v to a, b and
IB, see Table 5.3.

The generating conversion formula (5.41) corresponds, for any fixed x, y ∈ [0, 1], to a fractal
transformation with basic fractal matrix:

F(1) =
(

1 x− y
0 1

)
.

Observe that this transformation also corresponds to an upper-cardinality transformation with
sequence ck = (x− y)k.

We have just shown that all the transformations between v, a, b and IB are fractal. The
corresponding basic fractal matrices are summarized in Table 5.1.

Due to (5.51), it is clear that the generating conversion formula (5.42) corresponds, for any
fixed y ∈ [0, 1], to an upper-cardinality transformation with sequence

ck =
∫ 1

0
(x− y)k dx =

(1− y)k+1 − (−y)k+1

k + 1
,

whereas the inverse transformation (5.50) corresponds to an upper-cardinality transformation
with sequence c−1

k = Bk(y). Thus, all the transformations between a, b, IB and ISh are upper-
cardinality transformations. The corresponding sequences are summarized in Table 5.2.

5.3.6 Pascal matrices

Now, let us turn to the two remaining cases: the transformations from v to ISh and the converse,
which are neither fractal, nor upper-cardinal. From (5.9), we obtain, by setting T ′ := T ∪ L
(which implies L = T ′ ∩ S and T = T ′ \ S):

ISh(S) =
∑

T ′⊆N

|N \ (S ∪ T ′)|! |T ′ \ S|!
(n− s + 1)!

(−1)|S\T
′| v(T ′), S ⊆ N,
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v a b IB

v

(
1 0
0 1

) (
1 0
1 1

) (
1 −1
1 0

) (
1 −1/2
1 1/2

)

a

(
1 0
−1 1

) (
1 0
0 1

) (
1 −1
0 1

) (
1 −1/2
0 1

)

b

(
0 1
−1 1

) (
1 1
0 1

) (
1 0
0 1

) (
1 1/2
0 1

)

IB

(
1/2 1/2
−1 1

) (
1 1/2
0 1

) (
1 −1/2
0 1

) (
1 0
0 1

)

Table 5.1: Basic fractal matrices for the equivalent representations (v, a, b, IB).

a b IB ISh

a

{
c0 = 1
ck>0 = 0 ck = (−1)k ck = (−1

2)k ck = Bk

b ck = 1
{

c0 = 1
ck>0 = 0 ck = (1

2)k ck = (−1)kBk

IB ck = (1
2)k ck = (−1

2)k

{
c0 = 1
ck>0 = 0 ck = ( 1

2k−1 − 1)Bk

ISh ck = 1
k+1 ck = (−1)k

k+1 ck = 1+(−1)k

(k+1)2k+1

{
c0 = 1
ck>0 = 0

Table 5.2: Cardinality sequences for the equivalent representations (a, b, IB, ISh).
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which can also be written under the form

ISh(S) =
∑

T⊆N

(−1)|S\T |

(n− s + 1)
( n−s
|T\S|

) v(T ), S ⊆ N. (5.57)

With matricial notations, this identity is written:

IS (n) = H(n) ◦ a(n) = H(n) ◦M(n) ◦ v(n) (5.58)

where H(n) is an upper-cardinality matrix based on the sequence hk = 1
k+1 , and M(n) is the

fractal matrix generated by (5.55).
The inverse formula can be found in [37, 83]: for all S ⊆ N , we have, using adequate

correspondance formulas,

v(S) =
∑

K⊆S

a(K) =
∑

K⊆S

∑

T⊇K

Bt−k ISh(T ) =
∑

T⊆N

ISh(T )
∑

K⊆T∩S

Bt−k

=
∑

T⊆N

ISh(T )
|T∩S|∑

k=0

(
|T ∩ S|

k

)
Bt−k,

that is
v(S) =

∑

T⊆N

β
|T |
|T∩S| ISh(T ), S ⊆ N, (5.59)

with

βl
k :=

k∑

j=0

(
k

j

)
Bl−j . (5.60)

The first values of βl
k are:

k\l 0 1 2 3 4
0 1 −1/2 1/6 0 −1/30
1 1/2 −1/3 1/6 −1/30
2 1/6 −1/6 2/15
3 0 −1/30
4 −1/30

Some properties of the βl
k are shown in [37, 83]. Note that the inverse formula (5.59) corresponds

to
v(n) = M−1

(n) ◦H−1
(n) ◦ IS (n).

Although these transformations between ISh and v are neither fractal nor cardinal, their associ-
ated matrices have nevertheless a remarkable structure, and we call them Pascal matrices:

(i) a direct Pascal matrix P based on a sequence of real numbers (p0, p1, . . . , pk, . . . , pn), such
that:

P(1) :=
(

p0 p1

p0 p0 + p1

)
, P l

(1) :=
(

pl−1 pl

pl−1 pl−1 + pl

)
, l = 1, . . . , n

P(2) :=

(
P 1

(1) P 2
(1)

P 1
(1) P 1

(1) + P 2
(1)

)
, P l

(2) :=

(
P l

(1) P l+1
(1)

P l
(1) P l

(1) + P l+1
(1)

)
, l = 1, . . . , n− 1

P(k) :=

(
P 1

(k−1) P 2
(k−1)

P 1
(k−1) P 1

(k−1) + P 2
(k−1)

)
, k = 2, . . . , n.
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(ii) an inverse Pascal matrix Q based on a sequence of real numbers (q0, q1, . . . , qk, . . . , qn), such
that:

Q(1) :=
(

q0 − q1 q1

−q0 q0

)
, Ql

(1) :=
(

ql−1 − ql ql

−ql−1 ql−1

)
, l = 1, . . . , n

Q(2) :=

(
Q1

(1) −Q2
(1) Q2

(1)

−Q1
(1) Q1

(1)

)
, Ql

(2) :=

(
Ql

(1) −Ql+1
(1) Ql+1

(1)

−Ql
(1) Ql

(1)

)
, l = 1, . . . , n− 1

Q(k) :=

(
Q1

(k−1) −Q2
(k−1) Q2

(k−1)

−Q1
(k−1) Q1

(k−1)

)
, k = 2, . . . , n.

The name ‘Pascal matrix’ comes from the fact that, as in the Pascal triangle, elements are
obtained by the sum of two preceding elements. Direct Pascal matrices are constructed from the
upper left-hand corner, while inverse Pascal matrices start from the lower right-hand corner. An
example of each kind is shown below (n = 2), where for P(2) the sequence of Bernoulli numbers
have been chosen (thus retrieving the βl

k coefficients and all their properties shown in [37, 83]),
and for Q(2) the sequence hk = 1

k+1 , k = 0, 1, 2, defined above (see (5.58)) (thus retrieving the
coefficients of (5.57)):

P(2) = M−1
(2) ◦H−1

(2) =




1 −1/2 −1/2 1/6
1 1/2 −1/2 −1/3
1 −1/2 1/2 −1/3
1 1/2 1/2 1/6




Q(2) = H(2) ◦M(2) =




1/3 1/6 1/6 1/3
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2

1 −1 −1 1




Any Pascal matrix can be written as the product of an upper-cardinal matrix and either the
Möbius matrix M or its inverse:

P(n), p0,...,pn
= M−1

(n) ◦ C(n), p0,...,pn

Q(n), q0,...,qn
= C(n), q0,...,qn

◦M(n)

(the generating sequence is written in subscript), as it can be easily verified. The set of (direct
or inverse) Pascal matrices does not form a group since the product of two such matrices is no
more a Pascal matrix. However, since the inverse of an upper-cardinality transformation is again
upper-cardinal, it follows that the inverse of a direct (resp. inverse) Pascal matrix is an inverse
(resp. direct) Pascal matrix.

5.3.7 Explicit transformation formulas

We now give all the conversion formulas between the five representations v, a, b, IB, ISh of a set
function v. All these representations are linear, that is, such that the transform T is a linear
operator which can be written under a matrix form. The explicit transformation formulas are
gathered in Tables 5.3 and 5.4.
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v a b

v(S) = v(S)
∑

T⊆S

a(T )
∑

T⊆N\S
(−1)tb(T )

a(S) =
∑

T⊆S

(−1)s−tv(T ) a(S)
∑

T⊇S

(−1)t−sb(T )

b(S) =
∑

T⊇N\S
(−1)n−tv(T )

∑

T⊇S

a(T ) b(S)

IB(S) = (
1
2
)n−s

∑

T⊆N

(−1)|S\T |v(T )
∑

T⊇S

(
1
2
)t−sa(T )

∑

T⊇S

(−1
2
)t−sb(T )

ISh(S) =
∑

T⊆N

(−1)|S\T |

(n− s + 1)
( n−s
|T\S|

) v(T )
∑

T⊇S

1
t− s + 1

a(T )
∑

T⊇S

(−1)t−s

t− s + 1
b(T )

Table 5.3: Alternative representations in terms of v, a, b

IB ISh

v(S) =
∑

T⊆N

(
1
2
)t(−1)|T\S|IB(T )

∑

T⊆N

[ |T∩S|∑

k=0

(
|T ∩ S|

k

)
Bt−k

]
ISh(T )

a(S) =
∑

T⊇S

(−1
2
)t−sIB(T )

∑

T⊇S

Bt−s ISh(T )

b(S) =
∑

T⊇S

(
1
2
)t−sIB(T )

∑

T⊇S

(−1)t−sBt−s ISh(T )

IB(S) = IB(S)
∑

T⊇S

(
1

2t−s−1
− 1)Bt−s ISh(T )

ISh(S) =
∑

T⊇S

1 + (−1)t−s

(t− s + 1) 2t−s+1
IB(T ) ISh(S)

Table 5.4: Alternative representations in terms of IB and ISh
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5.4 The chaining interaction index

The purpose of this section is to introduce a new interaction index belonging to the family of
cardinal-probabilistic interaction indices: the chaining interaction index Iv

R, for which one has

ps
t (n) = s

(n− s− t)! (s + t− 1)!
n!

. (5.61)

We can already notice that Iv
R(i) = Iv

Sh(i) for all i ∈ N . Thus Iv
R(S) can be considered as an

extension of the Shapley value to determine the interaction between the players of the coalition
S ⊆ N .

The results presented in this section have been proved by Marichal and Roubens [122].

5.4.1 Definition

Let us consider the lattice L(N) related to the power set of N . We can represent L(N) as a
graph called Hasse Diagram H(N) whose nodes correspond to the coalitions S ⊆ N and the
edges represent adding a player to the bottom coalition to get the top coalition. A maximal
chain of H(N) is an ordered collection of n + 1 nested distinct coalitions

M = (∅ = M0 ⊆/ M1 ⊆/ · · · ⊆/ Mn−1 ⊆/ Mn = N).

The set of maximal chains of H(N) is denoted C(N). Let M be an element of C(N) and MS

the minimal coalition belonging to M that contains S. The cardinality of C(N) is equal to n!
and we define

Iv
R(S) =

1
n!

∑

M⊆C(N)

δSv(MS), ∅ 6= S ⊆ N.

The value Iv
R(i) corresponds to the Shapley value related to i as it was mentioned by Edelman [58]

dealing with cooperative games in which only certain coalitions are allowable.

We now prove that Iv
R is a cardinal-probabilistic interaction

Iv(S) =
∑

T⊆N\S
ps

t (n) δSv(T ∪ S) (ps
t (n) ≥ 0,

∑

T⊆N\S
ps

t (n) = 1),

for which ps
t (n) is defined by (5.61).

If CS,S∪T represents the subclass included in C(N) of maximal chains that have {S ∪ T} as
minimal coalition including S, we have

Iv
R(S) =

1
n!

∑

T⊆N\S

∣∣∣CS,S∪T
∣∣∣ δSv(S ∪ T )

=
∑

T⊆N\S
ps

t (n) δSv(T ∪ S)

with ps
t (n) = 1

n!

∣∣∣CS,S∪T
∣∣∣, s = 1, . . . , n, t = 0, . . . , n− s (notice that

∣∣∣CS,S∪T
∣∣∣ only depends on s

and t).

For example, if N = {1, 2, 3}, we have

C{1},{1} = {(∅ ⊆/ {1} ⊆/ {1, 2} ⊆/ {1, 2, 3}), (∅ ⊆/ {1} ⊆/ {1, 3} ⊆/ {1, 2, 3})}
C{1},{1,2} = {(∅ ⊆/ {2} ⊆/ {1, 2} ⊆/ {1, 2, 3})}
C{1},{1,3} = {(∅ ⊆/ {3} ⊆/ {1, 3} ⊆/ {1, 2, 3})}

C{1},{1,2,3} = {(∅ ⊆/ {2} ⊆/ {2, 3} ⊆/ {1, 2, 3}), (∅ ⊆/ {3} ⊆/ {2, 3} ⊆/ {1, 2, 3})}
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p1
0(3) =

2
6
, p1

1(3) =
1
6
, p1

2(3) =
2
6

C{1,2},{1,2} = {(∅ ⊆/ {1} ⊆/ {1, 2} ⊆/ {1, 2, 3}), (∅ ⊆/ {2} ⊆/ {1, 2} ⊆/ {1, 2, 3})}
C{1,2},{1,2,3} = {(∅ ⊆/ {1} ⊆/ {1, 3} ⊆/ {1, 2, 3}), (∅ ⊆/ {2} ⊆/ {2, 3} ⊆/ {1, 2, 3}),

(∅ ⊆/ {3} ⊆/ {1, 3} ⊆/ {1, 2, 3}), (∅ ⊆/ {3} ⊆/ {2, 3} ⊆/ {1, 2, 3})}.

It is easy to observe that CS,S∪T corresponds to a disjoint union of sets of maximal chains
defined in sublattices of L(N). In particular, we can see that

∣∣∣CS,S∪T
∣∣∣ =

∣∣∣C(N \ (S ∪ T ))
∣∣∣×

∣∣∣
⋃

i∈S

C((S \ i) ∪ T )
∣∣∣.

We then have, for all s = 1, . . . , n and all t = 0, . . . , n− s,

ps
t (n) =

1
n!

∣∣∣CS,S∪T
∣∣∣ =

s

n!
|C(N \ (S ∪ T ))| × |C((S \ 1) ∪ T )|

= s
(n− s− t)! (s + t− 1)!

n!
.

The chaining interaction index Iv
R is of cardinal-probabilistic type since, if S 6= ∅,

∑

T⊆N\S
ps

t (n) =
n−s∑

t=0

(
n− s

t

)
s

(n− s− t)! (s + t− 1)!
n!

=
s! (n− s)!

n!

n−s∑

t=0

(
s + t− 1

s− 1

)
= 1.

5.4.2 Some equivalent representations

It has been proved in Section 5.3 that Iv
Sh and Iv

B are representations of v. We prove here that
Iv
R also is a representation of v. More precisely, we prove the following two identities.

IR(S) =
∑

T⊇S

s

t
a(T ), ∅ 6= S ⊆ N (5.62)

a(S) =
∑

T⊇S

(−1)t−s s

t
IR(T ), ∅ 6= S ⊆ N. (5.63)

On the one hand, we have (see (5.27))
∑

T⊆N\S
ps

t (n) δSv(T ∪ S) =
∑

T⊇S

ξs
t (n) a(T )

with

ξs
t (n) =

n−t∑

k=0

(
n− t

k

)
ps

k+t−s(n), t = s, . . . , n.

When ps
t (n) is given by (5.61), the previous identity becomes

ξs
t (n) =

s (n− t)! (t− 1)!
n!

n−t∑

k=0

(
k + t− 1

t− 1

)
=

s

t
, t = s, . . . , n,
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which proves (5.62). On the other hand, we have, by (5.62),

∑

T⊇S

(−1)t−s s

t
IR(T ) =

∑

T⊇S

(−1)t−s s

t

∑

K⊇T

t

k
a(K)

=
∑

K⊇S

s

k

[ ∑

T :S⊆T⊆K

(−1)t−s
]
a(K)

=
∑

K⊇S

s

k

[ k∑

t=s

(
k − s

t− s

)
(−1)t−s

]
a(K)

=
∑

K⊇S

s

k
(1− 1)k−s a(K) = a(S),

which proves (5.63).
It is interesting to note how simple formula (5.62) is. Moreover, comparing Iv

R and Iv
Sh one

can see that the terms of the summation are weighted by elements which are linearly decreasing
with the argument t = |T |, whereas these elements are exponentially decreasing for Iv

B.
The conversion formulas between IR and v can be given as follows:

IR(S) =
∑

T⊆N

s (−1)|S\T |

n
( n−1
|S∪T |−1

) v(T ), ∅ 6= S ⊆ N, (5.64)

v(S) =
∑

T⊆N\S

(−1)t

t + 1

∑

i∈S

IR(T ∪ i), ∅ 6= S ⊆ N. (5.65)

Indeed, using (5.13), we obtain, by setting T ′ := T ∪ L (which implies L = T ′ ∩ S and
T = T ′ \ S):

IR(S) =
∑

T⊆N\S
s
(n− s− t)! (s + t− 1)!

n!

∑

L⊆S

(−1)s−lv(L ∪ T )

=
∑

T ′⊆N

s

n

(n− |S ∪ T ′|)! (|S ∪ T ′| − 1)!
(n− 1)!

(−1)|S\T
′|v(T ′)

which proves (5.64). On the other hand, we have, by (4.5) and (5.63),

v(S) =
∑

T⊆S

∑

K⊇T

(−1)k−t t

k
IR(K)

=
∑

K⊆N

1
k

IR(K)
∑

T⊆K∩S

(−1)k−tt

=
∑

K⊆N

1
k

IR(K)
|K∩S|∑

t=0

(
|K ∩ S|

t

)
(−1)k−tt

︸ ︷︷ ︸
(∗)

where the second sum (∗) equals (−1)k+1 if |K ∩ S| = 1 and 0 otherwise. Therefore

v(S) =
∑

K⊆N
|K∩S|=1

(−1)k+1

k
IR(K)

which proves (5.65).
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The conversion formulas between IR and ISh can also be given. We have

IR(S) =
∑

T⊇S

γs
t ISh(T ), ∅ 6= S ⊆ N, (5.66)

ISh(S) = IR(S) +
∑
T⊃S
T 6=S

(−1)t−s s− 1
t (t− s + 1)

IR(T ), ∅ 6= S ⊆ N, (5.67)

with

γs
t =

∫ 1

0
s xs−1 Bt−s(x) dx =

t−s∑

k=0

(
t− s

k

)
s

t− k
Bk, t = s, . . . , n,

where {Bn}n∈IN is the sequence of Bernoulli numbers (5.43) and Bn(x) is the n-th Bernoulli
polynomial, see Section 5.3.4.

The first values of γs
t are:

s\t 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1/6 0 −1/60 0 1/126
3 1 1/4 1/60 −1/40 −1/210
4 1 3/10 1/30 −1/35
5 1 1/3 1/21
6 1 5/14
7 1

Let us prove (5.66). It has been established in Section 5.3 that (see Table 5.4):

a(S) =
∑

T⊇S

Bt−s ISh(T ), S ⊆ N.

Therefore, by (5.62),

IR(S) =
∑

K⊇S

s

k

∑

T⊇K

Bt−k ISh(T ) =
∑

T⊇S

γs
t ISh(T )

with

γs
t =

∑

K:S⊆K⊆T

s

k
Bt−k =

t∑

k=s

(
t− s

k − s

)
s

k
Bt−k

=
t−s∑

k=0

(
t− s

k

)
s

k + s
Bt−s−k =

t−s∑

k=0

(
t− s

k

)
s

t− k
Bk

=
∫ 1

0
s

t−s∑

k=0

(
t− s

k

)
xt−k−1Bk dx

=
∫ 1

0
s xs−1 Bt−s(x) dx.

Let us prove (5.67). It has been established in Section 5.3 that (see Table 5.3):

ISh(S) =
∑

T⊇S

1
t− s + 1

a(T ), S ⊆ N.
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Therefore, by (5.63),

ISh(S) =
∑

K⊇S

1
k − s + 1

∑

T⊇K

(−1)t−k k

t
IR(T )

=
∑

T⊇S

(−1)t

t

[ ∑

K:S⊆K⊆T

(−1)k k

k − s + 1

]
IR(T )

and
∑

K:S⊆K⊆T

(−1)k k

k − s + 1
=

t∑

k=s

(
t− s

k − s

)
(−1)k k

k − s + 1

= (−1)s
t−s∑

k=0

(
t− s

k

)
(−1)k [1 +

s− 1
k + 1

]

= (−1)s
[
(1− 1)t−s + (s− 1)

∫ 1

0

t−s∑

k=0

(
t− s

k

)
(−x)k dx

]

= (−1)s
[
(1− 1)t−s + (s− 1)

∫ 1

0
(1− x)t−s dx

]

= (−1)s
[
(1− 1)t−s +

s− 1
t− s + 1

]
.

Hence the result.
Using similar arguments, we can also prove that

IB(S) =
∑

T⊇S

(
−1

2

)t−s 2s− t

t
IR(T ), ∅ 6= S ⊆ N ;

indeed, we simply have

IB(S) =
∑

K⊇S

(1
2

)k−s
a(K)

=
∑

K⊇S

(1
2

)k−s ∑

T⊇K

(−1)t−k k

t
IR(T )

=
∑

T⊇S

(−1)t

t

[ ∑

K:S⊆K⊆T

(−1)k k

2k−s

]
IR(T )

and
∑

K:S⊆K⊆T

(−1)k k

2k−s
=

t∑

k=s

(
t− s

k − s

)
(−1)k k

2k−s

= (−1)s
t−s∑

k=0

(
t− s

k

)
(−1)k k + s

2k

= (−1)s 2s−t(2s− t).

5.4.3 Links with multilinear extensions and potentials

Let g be the multilinear extension of v (MLE). It has been proved in Section 5.3.2 that

Iv
Sh(S) =

∫ 1

0
(∆Sg)(x) dx, S ⊆ N,

Iv
B(S) = (∆Sg)(1/2), S ⊆ N.
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There is also a close link between ∆Sg and IR. We can easily prove that

Iv
R(S) =

∫ 1

0
s xs−1 (∆Sg)(x) dx, ∅ 6= S ⊆ N ; (5.68)

indeed, it has been proved in Section 5.3.4 that

(∆Sg)(x) =
∑

T⊇S

xt−s a(T ),

and hence we have

Iv
R(S) =

∑

T⊇S

s

t
a(T ) =

∫ 1

0

∑

T⊇S

s xt−1 a(T ) dx

=
∫ 1

0
s xs−1

∑

T⊇S

xt−s a(T ) dx

=
∫ 1

0
s xs−1 (∆Sg)(x) dx.

We also have

IR(S) =
∑

T⊇S

[∫ 1

0
s xs−1 (x− 1

2
)t−s dx

]
IB(T ), ∅ 6= S ⊆ N ;

indeed, it has been shown in Section 5.3.4 that

(∆Sg)(x) =
∑

T⊇S

(x− 1
2
)t−s IB(T ),

and hence we can conclude by (5.68).
It is worth noting that, by using the same argument, formula (5.66) can be retrieved by

means of equation (5.50).

The chaining interaction index Iv
R can be expressed easily in term of potential. If P v is a

functional that represents the potential for the Shapley value (see Hart and Mas-Colell [99, 100])
defined as P v(∅) = 0 and

∑
i∈N δiP

v(N) = v(N), then we have

P v(N) =
∑

T⊆N

1
t

a(T ),

and
δiP

v(N) = P v(N)− P v(N \ i) = φv
Sh(i), i ∈ N.

More generally, one can easily see that

s δSP v(N) = IR(S), ∅ 6= S ⊆ N.

Likewise, if Qv represents the potential for the Banzhaf value (see Dragan [39]) defined as
Qv(∅) = 0 and

∑
i∈N δiQ

v(N) =
∑

i∈N φv
B(i), then we have

Qv(N) =
∑

T⊆N

1
2t−1

a(T ),

and
δiQ

v(N) = φv
B(i), i ∈ N.

More generally, we can readily verify that

2s−1 δSQv(N) = IB(S), ∅ 6= S ⊆ N.
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Notes

1. The concept of interaction indices was essentially introduced and characterized by Grabisch
and Roubens, see [81, 91, 92, 93, 156].

2. In Section 5.3, we have shown that these interaction indices are equivalent representations
of the set function v. For this purpose, we have introduced several tools and we have proved
technical results based on pseudo-Boolean functions as well as their multilinear extensions
(MLE). We have also introduced the concept of fractal and cardinality transformations to
derive correspondence formulas between the different representations. In particular, we
have shown that all the transformations are linear.

3. We have introduced a new type of interaction index: the chaining interaction index. Cor-
respondence formulas have also been presented by means of the multilinear extensions.



Chapter 6

Applications to multicriteria decision
making

In this chapter we study the aggregation problem in the presence of interacting criteria. We
represent the process of aggregation by means of a fuzzy measure on the set of criteria. Thus,
all the aggregation operators we consider depend on a fuzzy measure.

When scores are given on the same cardinal scale, we suggest using the Choquet integral as
an aggregation tool, unless specific properties are required. This suggestion is actually based on
a characterization of the Choquet integral involving only natural properties.

The interaction indices presented in Chapter 5 are then used to express the dependence
between criteria. On this matter, it appears that the Shapley indices are much more suitable
than the Banzhaf indices. Other indices such as veto and favor indices or degree of orness are also
introduced to have a better understanding of the behavioral properties of the Choquet integral.
When the fuzzy measure is not completely known, such indices can help the decision maker to
assess it. This corresponds to the inverse problem of identifying the weights from parametric
specifications on criteria. Since the meaning of these weights is not very clear for subsets of at
least three criteria, it is suggested to use the concept of k-order fuzzy measure.

We also examine the case where scores are given on the same ordinal scale. When there is
commensurability between the scores and the fuzzy measure, the Sugeno integral is pointed out
through a natural characterization.

This chapter is organized as follows. In Section 6.1 we examine the case of cardinal scales.
Two aggregation operators are compared: the Shapley integral and the Choquet integral. We
give a justification for the use of the latter and we abandon the former. In Section 6.2 we
present several indices related to the Choquet integral or its underlying fuzzy measure, namely
degree of tolerance, veto and favor degrees, and dispersion measure. These indices as well
as the power and interaction indices form a kind of identity card of the fuzzy measure. In
Section 6.3, we introduce the concept of k-order fuzzy measure and show the usefulness of
confining oneself to 2-order measures. Section 6.4 is devoted to the inverse problem of determining
the fuzzy measure. We propose assessing a 2-order fuzzy measure from two types of information:
parametric specifications based on importance and interaction indices, and learning data based
on a predefined set of prototypes whose profiles are known. Some illustrative examples are also
presented. Finally, Section 6.5 deals with the Sugeno integral and the ordinal scales.

159
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6.1 Aggregation of scores defined on cardinal scales

We have presented in Section 1.3.1 the cardinal setting of the aggregation of multiple criteria.
In the present section, we analyze in more details some operators that can be suitable for the
aggregation phase, and we justify the use of the Choquet integral.

6.1.1 The commensurability assumption

In many practical applications, the decision criteria are defined on independent measurement
scales Ei ⊆ IR, as in Example 1.3.1. However, aggregating values defined on independent scales
has good chances to lead to a dictatorial aggregation. For instance, when the Ei are independent
interval scales, the only allowed aggregation operators are of the form

M(x) = a xj + b, for some j ∈ N ,

(see Theorem 3.4.8), and these operators are strongly equivalent to the dictator xj (see Theo-
rem 1.3.1). Therefore, it seems necessary to express all the criteria on a same measurement scale.
Actually, this is the role played by the utility functions ui introduced in multiattribute utility
theory.

Back to Example 1.3.1, it is clear that the consumer cannot compare directly consumption
and comfort since they are defined on different scales. Nevertheless, he/she can affect, to both
values, degrees of satisfaction which are comparable. According to the notation introduced in
Section 1.3.1, this means that, if the consumer gives a degree of satisfaction u2(x2

2) for the car
2 and u3(x1

3) for the car 1 and u2(x2
2) ≥ u3(x1

3), he/she can say that he/she would rather have
a car that consumes 9 `/100 km than a car with very good comfort (without prior knowledge of
the other values of criteria).

Therefore, we shall assume that any score on a criterion can be compared with any other score
on another criterion. This is the commensurability assumption. In particular, all the criteria are
expressed on the same scale E. A more formal approach of commensurability can be found in
[125].

6.1.2 The Shapley integral

Suppose that all the criteria are defined on a same ratio or interval scale E. Of course, we can
assume without loss of generality that this common scale is [0, 1].

The most common aggregation tool used in multicriteria decision making is the weighted
arithmetic mean

∑
i ωi xi where ωi represents the weight of importance of criterion i. However,

we know that such an operator cannot express any interaction between criteria. So, it is better
to consider fuzzy integrals fulfilling either (SSi) or (SPL), like the Choquet integral. But in order
to keep the aggregation step as simple and intuitive as possible, we propose a new type of fuzzy
integral: the Shapley integral.

Let us consider the additive fuzzy measure derived from the Shapley value, see (5.6):

p(S) =
∑

i∈S

φµ
Sh(i), S ⊆ N.

We can define a new fuzzy integral as a natural extension of p.
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Definition 6.1.1 Let µ be a fuzzy measure on N . The Shapley integral of a function x :
N → [0, 1] with respect to µ is defined by

Shµ(x) =
∑

i∈N

φµ
Sh(i) xi.

Thus defined, the Shapley integral is a weighted arithmetic mean operator WAMω whose
weights are the Shapley power indices: ωi = φµ

Sh(i) for all i ∈ N . Starting from any fuzzy mea-
sure, we can define the Shapley additive measure and aggregate by the corresponding weighted
arithmetic mean.

Note that, contrary to the Choquet and Sugeno integrals, the Shapley integral w.r.t. the
fuzzy measure µ is not an extension of µ (i.e. of the pseudo-Boolean function which defines µ);
indeed, for any S ⊆ N , we generally have

Shµ(eS) =
∑

i∈S

φµ
Sh(i) 6= µ(S).

In terms of the Möbius representation, the Shapley integral has an interesting form.

Proposition 6.1.1 Any Shapley integral Shµ : [0, 1]n → [0, 1] can be written as

Shµ(x) =
∑
T⊆N
T 6=∅

aT

(1
t

∑

i∈T

xi

)
, x ∈ [0, 1]n, (6.1)

where a is the Möbius representation of µ.

Proof. By (5.3), we simply have

Shµ(x) =
∑

i∈N

( ∑

T3i

1
t

aT

)
xi.

Permuting the sums leads immediately to the result.

Although the Shapley integral takes into account the dependence between criteria expressed in
the underlying fuzzy measure, it remains a uninteresting aggregation operator. Indeed, since the
Shapley integral is nothing less than a weighted arithmetic mean, it is not suitable to aggregate
criteria when mutual preferential independence is violated.

We show below that the Choquet integral is a rather natural aggregation operator, which can
be used in many applications.

6.1.3 The Choquet integral revisited

In Section 4.2.3 we have characterized the Choquet integral by means of either (In, SPL, CoAdd)
or (In, SPL, BOM) properties. However, both (CoAdd) and (BOM) seem to be unattractive
properties in multicriteria decision making.

We now propose a new characterization of the Choquet integral, which involves rather natural
properties. The first one is linearity with respect to the fuzzy measure.

Definition 6.1.2 (LM) An aggregation operator Mµ ∈ An(E, IR) depending on a fuzzy
measure µ on N is linear w.r.t. µ if the following holds:

For any k ∈ IN0, if µ1, . . . , µk and µ =
∑k

i=1 αi µ
i (αi ∈ IR) are fuzzy measures on N then

Mµ =
k∑

i=1

αi Mµi .
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Proposition 6.1.2 Mµ ∈ An(E, IR) fulfils (LM) if and only if there exist functions gT :
En → IR, T ⊆ N, such that, for any fuzzy measure µ with Möbius representation a, we have

Mµ(x) =
∑

T⊆N

aT gT (x), x ∈ En.

Proof. (Sufficiency) Follows from the linearity of the expression of µ in terms of a.
(Necessity) For every T ⊆ N , consider the fuzzy measure µ(T ) defined by µ

(T )
S = 1 if and only

if S ⊇ T , and 0 otherwise (unanimity game for T ). Let µ be a fuzzy measure on N . By (4.3),
we have

µ =
∑

T⊆N

aT µ(T ),

and by Definition 6.1.2, we have

Mµ(x) =
∑

T⊆N

aT Mµ(T )(x),

for all x ∈ En.

As the previous proposition shows, the (LM) property constitutes a natural step towards a
possible generalization of the weighted arithmetic mean. Indeed, it allows to take into account
in a very elementary way not only the weights of criteria, but also the interactions among them1.

We can immediately see that the Choquet integral (4.11), the Shapley integral (6.1), and the
MLE of a fuzzy measure (5.28) fulfil (LM). Moreover, the Choquet and Shapley integrals fulfil
(SPL) whereas the MLE does not. Also, the Choquet integral is an extension of the associated
fuzzy measure whereas the Shapley integral is not.

Definition 6.1.3 (Ext) Mµ ∈ An(E, IR) is an extension of µ if Mµ(eT ) = µT for all T ⊆ N .

Notice that (Ext) can be viewed as a proper definition of the importance of a subset of
criteria: for any subset T ⊆ N , the weight µT is the global score obtained by an alternative
having eT as profile.

We thus see that the Choquet integral, as an operator depending on a fuzzy measure, fulfils
(In, SPL, LM, Ext). The following result shows that these properties, which are natural enough,
characterize the Choquet integral.

Theorem 6.1.1 Assume that E ⊇ [0, 1]. An aggregation operator Mµ ∈ An(E, IR) depending
on a fuzzy measure µ fulfils (In, SPL, LM, Ext) if and only if Mµ = Cµ.

Proof. (Sufficiency) Trivial.
(Necessity) By Proposition 6.1.2, there exist functions gT : En → IR with T ⊆ N , such that,

for any fuzzy measure µ with Möbius representation a, we have

Mµ(x) =
∑

T⊆N

aT gT (x), x ∈ En.

1Due to the linear representation of a in terms of ISh, we can see that the (LM) property is equivalent to the
following assertion: there exist functions hT : En → IR (T ⊆ N) such that, for any fuzzy measure µ with Shapley
interaction representation ISh, we have

Mµ(x) =
∑
T⊆N

ISh(T ) hT (x), x ∈ En.
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Let µ(T ) be the unanimity game for T . As in Proposition 6.1.2, we have

Mµ(x) =
∑

T⊆N

aT Mµ(T )(x),

for all x ∈ En, i.e. gT = Mµ(T ) , and gT fulfils (In, SPL) for all T ⊆ N .

Fix T ⊆ N . By (Ext), we have gT (eS) = Mµ(T )(eS) = µ
(T )
S ∈ {0, 1}, and by Theorem 4.4.2,

there exists a set function c : 2N → {0, 1} such that gT = B∨∧c .
We then have, for all S ⊆ N ,

cS = gT (eS) = µ
(T )
S =

{
1, if T ⊆ S,
0, otherwise,

and hence
gT (x) =

∨

S⊇T

∧

i∈S

xi =
∧

i∈T

xi, x ∈ En,

which proves the theorem.

Note that the MLE fulfils (LM, In, Ext) but not (SPL), and the Shapley integral fulfils (LM,
In, SPL) but not (Ext).

Corollary 6.1.1 Assume that E ⊇ [0, 1]. An aggregation operator Mω ∈ An(E, IR) depend-
ing on an additive measure ω fulfils (In, SPL, LM, Ext) if and only if Mω = WAMω.

Corollary 6.1.2 Assume that E ⊇ [0, 1]. An aggregation operator Mµ ∈ An(E, IR) depend-
ing on a fuzzy measure µ fulfils (Sy, In, SPL, LM, Ext) if and only if there exists ω ∈ [0, 1]n such
that Mµ = OWAω.

Theorem 6.1.1 shows that the Choquet integral seems to be a suitable operator for aggregation
of interacting criteria. Of course, it would be interesting to have a characterization of the Choquet
integral as a utility function, that is defined up to an increasing bijection (see Section 1.3.3).
Note that an attempt along this line was done in [124, 125], using the formal parallelism between
multicriteria decision making and decision under uncertainty.

It is worth noting that, contrary to the Shapley integral, the Choquet integral is able to
perform aggregation of criteria, even when mutual preferential independence is violated. We will
see this in Example 6.4.1. Moreover, Murofushi and Sugeno [134] have proved a fundamental
result relating preferential independence and additivity of the fuzzy measure. To present this
result, we need a definition.

Definition 6.1.4 An attribute i ∈ N is called essential if there exist xi, yi ∈ Ei and xN\i ∈
EN\i such that

(xi, xN\i) Â (yi, xN\i).

Theorem 6.1.2 Consider a multicriteria decision making problem and assume that there
exists a fuzzy measure µ on N such that the utility function u is given by the Choquet integral:

u(x1, . . . , xn) = Cµ(u1(x1), . . . , un(xn))

where the ui’s are uni-dimensional utilities. If there are at least three essential attributes then
the following assertions are equivalent:

i) The attributes are mutually preferentially independent.
ii) µ is additive.
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6.2 Behavioral analysis of aggregation

Thus far we have focussed on mathematical properties of aggregation operators, and neglected
somewhat the behavioral properties of these operators. Such properties can reflect the behavior
of the decision maker in the aggregation phase. This is of course what (1.11) and (1.12) do, but
more specifically, this behavior can be expressed through different concepts, such as the degree
of tolerance, veto effects, importance of criteria, interaction between criteria, degree of use of the
data, etc.

It seems difficult to relate these behavioral properties which are not precisely defined, to
well cut mathematical properties. We know that order statistics OSk are more or less tolerant
depending on the value of k, we know that a weighted arithmetic mean WAM is able to represent
importance on criteria, but not interaction, but what about OWA, quasi-arithmetic means,
weighted minimum, etc.?

6.2.1 Importance and interaction among criteria

We recall that a fuzzy measure µ defines weights on individual criteria by means of the coefficients
µi, but also on any group S of criteria by means of µS . This makes possible the representation
of interaction between criteria.

The Shapley and Banzhaf power indices presented in Section 5.1 seem to be suitable for
modelling global importance of criteria. We know that the importance of a singleton i may be
low although for most S ⊆ N \ i, µS∪i could be high, showing that i is however an important
element in the decision. For a given criterion i, we will call µi the apparent weight of criterion i,
and φSh(i) or φB(i) the real weight of criterion i. Thus the apparent weights can be very different
from the real weights.

Likewise, the Shapley and Banzhaf interaction indices presented in Section 5.2 allow to model
the degree of interaction that exists between two criteria or even among a combination of criteria.
Recall that, for two criteria i, j ∈ N , the following cases can happen:

• I(ij) > 0 : i and j are complementary or have a positive synergy.

• I(ij) < 0 : i and j are substitutive or have a negative synergy (overlap effect).

• I(ij) = 0 : i and j are independent or have no interaction.

We have to mention that in case of negative interaction, there are actually two possible
interpretations quite different from each other:

1. criteria i and j are correlated. They provide the same information. This kind of phe-
nomenon can be detected by observing the profiles of several actions.

2. criteria i and j are interchangeable. The satisfaction of one of the two is sufficient. This is
simply an opinion on the importance of the criteria, which is independent of scores obtained
by actions on these two criteria.

Power and interaction indices can be computed for fuzzy measures corresponding to various
fuzzy integrals: WAM, OWA, etc. Table 6.1 summarizes the Shapley indices for some fuzzy
integrals.
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fuzzy integral φSh(i) ISh(ij)

WAMω ωi 0

OWAω 1/n
ω1 − ωn

n− 1

OSk 1/n 0 if k 6= 1, n

minS

{
1/s if i ∈ S
0 otherwise

{
1/(s− 1) if i, j ∈ S
0 otherwise

maxS

{
1/s if i ∈ S
0 otherwise

{−1/(s− 1) if i, j ∈ S
0 otherwise

Table 6.1: Shapley power and interaction indices for various fuzzy integrals

It seems that for OWA operators, the Shapley indices are very much simpler than the Banzhaf
indices; indeed, for such operators, we have (see also [86])

φB(i) =
1

2n−1

n−1∑

t=0

(
n− 1

t

)
ωn−t,

IB(ij) =
1

2n−2

n−2∑

t=0

(
n− 2

t

)
(ωn−t−1 − ωn−t).

We also note that ISh(ij) is the same for all pairs of elements, so that the interaction effect
between elements is constant on all pairs of elements. ISh(ij) is strictly positive if ω1 > ωn. In
this case OWA has a conjunctive behavior; indeed, if ω1 is high (or at least higher than ωn which
is the weight on the highest value) then clearly OWA behaves like a min. Conversely, ISh(ij) is
strictly negative if ω1 < ωn. In this case OWA has a disjunctive behavior.

An interesting fact is the following. It can happen that no pair of criteria interact while
having µi 6= φSh(i) for at least one i ∈ N . As shown in Table 6.1, it is the case for OSk for
k 6= 1, n.

6.2.2 Degree of disjunction

The Choquet integrals allows us, by appropriate choice of the fuzzy measure, to move continu-
ously from min to max. To classify these Choquet integrals in regard to their location on this
continuum a measure of disjunction can be introduced.

Let us define the average value of the Choquet integral as

m(Cµ) :=
∫

[0,1]n
Cµ(x) dx.

A degree of orness of Cµ corresponds to

orness(Cµ) :=
m(Cµ)−m(min)

m(max)−m(min)
.
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We note that orness(Cµ) is always in the unit interval. Moreover, we have orness(min) = 0 and
orness(max) = 1. Furthermore, it is noted that the closer orness(Cµ) is to 0, the nearer Cµ is to
min and has a conjunctive behavior, while the closer orness(Cµ) is to 1, the nearer Cµ is to max
and has a disjunctive behavior.

Thus, the degree of orness is a measure of the tolerance of the decision maker. Tolerant
decision makers can accept that only some criteria are satisfied; this corresponds to a disjunctive
behavior (orness(Cµ) > 0.5), whose extreme exemple is max. On the other hand, intolerant
decision makers demand that most criteria be equally satisfied; this corresponds to a conjunc-
tive behavior (orness(Cµ) < 0.5), whose extreme example is min. Of course orness(Cµ) = 0.5
corresponds to equitable decision makers.

The concept of orness is very useful to get information about the behavior of the decision
maker. In fact, two decision makers with same partial scores x1, . . . , xn, same weights on criteria,
could still have different behaviors in the sense that one of them can be tolerant and the other
intolerant.

Notice that the degree of orness defined here corresponds to decision making problems that
are modelled by the Choquet integral. Of course it can be defined for any compensative aggre-
gation operator. It should be noted that this concept has been introduced as early as 1974 by
Dujmovic [54, 55] in the particular case of root-power means, i.e. operators of the form (3.2).
Here, we have merely applied the definition to Choquet integrals.

Theorem 6.2.1 For any Choquet integral Cµ, we have

orness(Cµ) =
1

n− 1

∑

T⊆N

n− t

t + 1
aT (6.2)

where a is the Möbius representation of µ.

Proof. By (5.37), we immediately have m(min) = 1/(n+1) and m(max) = n/(n+1). Moreover,
by (4.11), we have

m(Cµ) =
∑

T⊆N

1
t + 1

aT .

We then can conclude since
∑

T⊆N aT = 1.

Using the fact that m(Cµ) = ISh(∅) (cf. (5.38)), we can easily see that (see Table 5.3):

orness(Cµ) =
1

n− 1

∑

T⊆/ N

(n− t)! t!
n!

µT =
1

n− 1

n−1∑

t=1

1(n
t

)
∑
T⊆N
|T |=t

µT . (6.3)

For the particular case of OWA functions, we recognize the degree of orness introduced intuitively
in 1988 by Yager [192]:

orness(OWAω) =
1

n− 1

n∑

i=1

(i− 1) ωi.

It was proved in [13] that this degree of orness is essentially the expected value of the number of
OR operators among the n− 1 operators connecting n fuzzy sets/predicates in a statement.

For weighted arithmetic means, we have

orness(WAMω) = orness(Shµ) =
1
2
.
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Proposition 6.2.1 min (resp. max) is the only Choquet integral Cµ such that orness(Cµ) = 0
(resp. 1).

Proof. Suppose orness(Cµ) = 0. Then, by (6.3), we have µT = 0 for all T 6= N and Cµ = min.
Now, suppose that orness(Cµ) = 1. Then the Choquet integral Cµ′(x) = 1−Cµ(1−x), defined

by ∑

T⊆N

a′T
∧

i∈T

xi =
∑

T⊆N

aT

∨

i∈T

xi,

is such that orness(Cµ′) = 0 and Cµ′ = min, which is sufficient.

Table 6.2 gives the degree of orness of some particular Choquet integrals.

Choquet integral Cµ degree of orness

WAMω
1
2

OWAω
1

n− 1

n∑

i=1

(i− 1) ωi

minS (S 6= ∅) n− s

(n− 1)(s + 1)

maxS (S 6= ∅) ns− 1
(n− 1)(s + 1)

OSk (k ∈ N)
k − 1
n− 1

median
1
2

Table 6.2: Degree of orness of some Choquet integrals

Note that a degree of intolerance (conjunction, andness) can also be defined. It simply
corresponds to

andness(Cµ) :=
m(max)−m(Cµ)
m(max)−m(min)

,

and we have andness(Cµ) = 1− orness(Cµ) for all fuzzy measures µ on N .

6.2.3 Veto and favor effects

An interesting behavioral phenomenon in aggregation is the veto effect, and its counterpart,
the favor effect. Suppose M is an aggregation operator being used for a multicriteria decision
making problem. A criterion k is said to be a veto or a blocker for M if its non satisfaction entails
necessarily a low global score. Formally, k is a veto for M if

M(x1, . . . , xn) ≤ xk, x ∈ En. (6.4)
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Similarly, the criterion k is a favor or a pusher for M if its satisfaction entails necessarily a high
global score:

M(x1, . . . , xn) ≥ xk, x ∈ En. (6.5)

The concepts of veto and favor have been already proposed by Dubois and Koning [42] in the
context of social choice functions, where “favor” was called “dictator”.

A consequence of the definition is that no aggregation operator can model simultaneously a
veto on a criterion and a favor on another one; indeed it is not possible to have

xi ≤ M(x1, . . . , xn) ≤ xj for all x ∈ En.

Note that if the decision maker considers that a given criterion must absolutely be satisfied
(veto criterion), then he/she is conjunctive oriented. Indeed, by (6.4) we have m(Cµ) ≤ 0.5,
which is sufficient. Similarly, if the decision maker considers that a given criterion is sufficient
to be satisfied (favor criteria) then he/she is disjunctive oriented: by (6.5) we have m(Cµ) ≥ 0.5.

Proposition 6.2.2 For the Choquet integral Cµ and the Sugeno integral Sµ, k is a veto if
and only if µT = 0 whenever k /∈ T . Similarly, k is a favor if and only if µT = 1 whenever
k ∈ T .

Proof. The case of the Choquet integral has been proved by Grabisch [83]. Let us consider the
case of the Sugeno integral.

(Necessity) Trivial, since µT = Sµ(eT ) for all T ⊆ N .
(Sufficiency) Let x ∈ [0, 1]n. If µT = 0 whenever k /∈ T then we have, by Theorem 4.3.2,

Sµ(x) =
∨

T⊆N\k
[µT∪k ∧ (

∧

i∈T

xi) ∧ xk] ≤ xk.

If µT = 1 whenever k ∈ T , we have, by Theorem 4.3.2,

Sµ(x) =
∧

T⊆N\k
[µN\(T∪k) ∨ (

∨

i∈T

xi) ∨ xk] ≥ xk.

Using monotonicity of the fuzzy measure, we immediately see that k is a veto for the Choquet
and Sugeno integrals if and only if µN\k = 0. Similarly, it is a favor if and only if µk = 1.

It seems reasonable to define indices that measure the degree of veto or favor of a given
criterion. If the Choquet integral is considered, a natural definition of a degree of veto (resp.
favor) consists in considering the probability

Pr[ Cµ(x) ≤ xk] (resp. Pr[ Cµ(x) ≥ xk]) (6.6)

where x ∈ [0, 1]n is a multi-dimensional random variable uniformly distributed2. Unfortunately,
such an index does not depend always continuously on µ, see (6.7) below.

2For convenience sake, we consider the uniform distribution. It is an approximation since, in practical applica-
tions, all the profiles do not occur with the same frequency.
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Proposition 6.2.3 Assume that x ∈ [0, 1]n is a multi-dimensional random variable uni-
formly distributed. Then we have

Pr[WAMω(x) ≤ xk] =
{

1, if ωk = 1,
1/2, otherwise. (6.7)

Pr[minS(x) ≤ xk] =
{

1, if k ∈ S,
s/(s + 1), otherwise. (6.8)

Pr[minS(x) ≥ xk] =
{

1/s, if k ∈ S,
1/(s + 1), otherwise.

(6.9)

Proof. Let us prove (6.7). The case ωk = 1 is trivial. If ωk < 1 then we have

Pr
[ n∑

i=1

ωi xi ≤ xk

]
= Pr

[ n∑
i=1
i6=k

ωi xi ≤ xk(1− ωk)
]

= Pr
[ 1
1− ωk

n∑
i=1
i 6=k

ωi xi ≤ xk

]

= 1− Pr
[ 1
1− ωk

n∑
i=1
i6=k

ωi xi > xk

]

= 1−
∫ 1

0
. . .

∫ 1

0

1
1− ωk

n∑
i=1
i6=k

ωi xi dx1 · · · dxk−1dxk+1 · · · dxn

= 1− 1
2(1− ωk)

n∑
i=1
i 6=k

ωi

= 1/2.

Let us prove (6.8). The case k ∈ S is trivial. If k /∈ S then we have by (5.37),

Pr[minS(x) ≤ xk] = 1− Pr[minS(x) > xk]

= 1−
∫

[0,1]n
minS(x) dx

=
s

s + 1
.

Now let us prove (6.9). Suppose that k ∈ S. We immediately have

Pr[minS(x) ≥ xk] = Pr[minS(x) = xk] =
1
s
.

When k /∈ S, we have

Pr[minS(x) ≥ xk] =
∫

[0,1]n
minS(x) dx =

1
s + 1

Thus the result is proved.

As for power and interaction indices, we search for veto and favor indices which are linear
with respect to the fuzzy measure. If veto′(Cµ; i) and favor′(Cµ; i) denote these indices, we have,
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as in Proposition 6.1.2:

veto′(Cµ; i) =
∑

T⊆N

aT veto′(Cµ(T ) ; i)

favor′(Cµ; i) =
∑

T⊆N

aT favor′(Cµ(T ) ; i)

where a is the Möbius representation of µ and µ(T ) is the unanimity game for T . For Cµ(T )

(= minT ), we might define

veto′(Cµ(T ) ; i) := Pr[minT (x) ≤ xi]

favor′(Cµ(T ) ; i) := Pr[minT (x) ≥ xi],

so that we have, by (6.8) and (6.9),

veto′(Cµ; i) = 1−
∑

T⊆N\i

1
t + 1

aT = 1−
∑

T⊆N\i

(n− t− 1)! t!
n!

µT , i ∈ N,

favor′(Cµ; i) =
∑

T⊆N\i

1
t + 1

(aT + aT∪i) =
∑

T⊆N\i

(n− t− 1)! t!
n!

µT∪i, i ∈ N.

Of course, for all i ∈ N , we have veto′(Cµ; i), favor′(Cµ; i) ∈ [0, 1]. Moreover, these indices are
closely related to the Shapley value, as the following immediate identity shows:

veto′(Cµ; i) + favor′(Cµ; i) = φSh(i) + 1.

Furthermore we can see that the closer veto′(Cµ; i) is to 1, the more i is a veto criterion (for Cµ).
Likewise, the closer favor′(Cµ; i) is to 1, the more i is a favor criterion. Note that a given criterion
i can be both a veto and a favor. In this case, i is a dictator: the Choquet integral reduces to
the projection Pi, and we have veto′(Pi; i) = favor′(Pi; i) = 1.

Now, consider the operator M = min. It is such that any criterion is a veto and we have
veto′(Cµ; i) = 1 and favor′(Cµ; i) = 1/n for all i ∈ N . On the other hand, M = max is such that
any criterion is a favor and, in this case, veto′(Cµ; i) = 1/n and favor′(Cµ; i) = 1 for all i ∈ N .
Thus, it seems better to replace the veto and favor indices by

n veto′(Cµ; i)− 1
n− 1

and
n favor′(Cµ; i)− 1

n− 1

respectively, so that they range in [0, 1]. We then present the following new definitions:

veto(Cµ; i) := 1− n

n− 1

∑

T⊆N\i

1
t + 1

aT , i ∈ N,

favor(Cµ; i) :=
n

n− 1

∑

T⊆N\i

1
t + 1

(aT∪i + aT )− 1
n− 1

, i ∈ N,

In terms of the fuzzy measure, these indices become:

veto(Cµ; i) = 1− 1
n− 1

∑

T⊆N\i

(n− t− 1)! t!
(n− 1)!

µT , i ∈ N,

favor(Cµ; i) =
1

n− 1

∑

T⊆N\i

(n− t− 1)! t!
(n− 1)!

µT∪i − 1
n− 1

, i ∈ N.
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and we have
veto(Cµ; i) + favor(Cµ; i) =

1
n− 1

(n φSh(i) + n− 2), i ∈ N.

Thus defined, we see that veto(Cµ; i) is more or less the degree to which the decision maker
demands that criterion i is satisfied. Notice that such a concept is different from the weights of
criteria: we might have a high degree of veto on a not very important criterion.

Likewise, favor(Cµ; i) is the degree to which the decision maker considers that a good score
along criterion i is sufficient to be satisfied. Table 6.3 gives the veto and favor indices for some
Choquet integrals.

Choquet integral Cµ veto(Cµ; i) favor(Cµ; i)

AM 1/2 1/2

WAMω
1
2

+
n(ωi − 1/n)

2(n− 1)
1
2

+
n(ωi − 1/n)

2(n− 1)

OWAω 1− 1
n− 1

n∑

j=1

(j − 1) ωj
1

n− 1

n∑

j=1

(j − 1)ωj

OSk
n− k

n− 1
k − 1
n− 1

median 1/2 1/2

minS





1 if i ∈ S

ns− s− 1
(n− 1)(s + 1)

otherwise





n− s

(n− 1)s
if i ∈ S

n− s− 1
(n− 1)(s + 1)

otherwise

maxS





n− s

(n− 1)s
if i ∈ S

n− s− 1
(n− 1)(s + 1)

otherwise





1 if i ∈ S

ns− s− 1
(n− 1)(s + 1)

otherwise

Table 6.3: Veto and favor indices for various Choquet integrals

To justify the use of the veto and favor indices introduced above, we now propose an axiomatic
characterization. Before presenting it, we need a lemma.

Lemma 6.2.1 Let ψ be a real-valued function defined on the set of fuzzy measures on N .
Assume that ψ is linear w.r.t. µ, that is, there exist real constants pT , T ⊆ N , such that

ψ(µ) =
∑

T⊆N

pT µT

for any fuzzy measure on N . Then, if µminS = µ(S) (resp. µmaxS) is the fuzzy measure on N
corresponding to minS (resp. maxS) then

ψ(µminS ) =
∑
T⊆S
T 6=∅

(−1)t+1 ψ(µmaxT ) (6.10)



172 CHAPTER 6. APPLICATIONS TO MULTICRITERIA DECISION MAKING

ψ(µmaxS ) =
∑
T⊆S
T 6=∅

(−1)t+1 ψ(µminT ) (6.11)

Proof. Let us prove (6.11). By the linearity of ψ, we have

ψ(µ) =
∑

T⊆N

aT ψ(µminT ), for all µ.

Moreover, the Möbius representation of µmaxS is given by (see Section 4.4.2):

∀T ⊆ N,T 6= ∅ : aT =
{

(−1)t+1, if T ⊆ S,
0, otherwise,

which is sufficient.
Now, let us prove (6.10). By (6.11), we have

∑
T⊆S
T 6=∅

(−1)t+1 ψ(µmaxT ) =
∑
T⊆S
T 6=∅

(−1)t+1
∑
K⊆T
K 6=∅

(−1)k+1 ψ(µminK )

=
∑
K⊆S
K 6=∅

ψ(µminK )
∑

T :K⊆T⊆S

(−1)t−k

= ψ(µminS ).

Theorem 6.2.2 A function ψ(Cµ; i) defined on N and the set of Choquet integrals w.r.t. a
fuzzy measure on N satisfies the following axioms:

• linearity axiom: there exist real constants pi
T , T ⊆ N , such that

ψ(Cµ; i) =
∑

T⊆N

pi
T µT , for all µ,

• symmetry axiom: for all π ∈ Πn, we have

ψ(Cµ; i) = ψ(Cπµ; π(i)), for all µ,

• boundary axiom: for all S ⊆ N and all i ∈ S,

ψ(minS ; i) = 1, (resp. ψ(maxS ; i) = 1)

• normalization axiom:

1
n

n∑

i=1

ψ(Cµ; i) = andness(Cµ), for all µ,

(resp.
1
n

n∑

i=1

ψ(Cµ; i) = orness(Cµ), for all µ),

if and only if ψ(Cµ; i) = veto(Cµ; i) (resp. favor(Cµ; i)).
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Proof. (Sufficiency) One can verify that veto and favor fulfil the corresponding axioms.
(Necessity) Consider first the case of veto. Let S ⊆ N and π ∈ Πn such that π(S) = S. Then

we can easily see that µminS = πµminS . Moreover, by the symmetry axiom, we have

ψ(minS ; i) = ψ(minS ; j), ∀i, j /∈ S.

By the normalization axiom, we have

1
n

∑

i∈S

ψ(minS ; i) +
1
n

∑

i/∈S

ψ(minS ; i) =
ns− 1

(n− 1)(s + 1)
.

By the boundary axiom, this identity becomes

s

n
+

n− s

n
ψ(minS ; i) =

ns− 1
(n− 1)(s + 1)

, ∀i /∈ S,

and we have
ψ(minS ; i) =

ns− s− 1
(n− 1)(s + 1)

, ∀i /∈ S.

By the linearity, we then have, for all fuzzy measures µ on N ,

ψ(Cµ; i) =
∑

T⊆N

aT ψ(minT ; i)

=
∑

T3i

aT +
∑

T 63i

nt− t− 1
(n− 1)(t + 1)

aT

= 1− n

n− 1

∑

T 63i

1
t + 1

aT , (since
∑

T⊆N

aT = 1).

Now consider the case of favor. As in the case of veto, we can show that

ψ(maxS ; i) =
ns− s− 1

(n− 1)(s + 1)
, ∀i /∈ S.

By Lemma 6.2.1, we have, for all i /∈ S,

ψ(minS ; i) =
∑
T⊆S
T 6=∅

(−1)t+1 ψ(maxT ; i)

=
∑
T⊆S
T 6=∅

(−1)t+1 nt− t− 1
(n− 1)(t + 1)

=
s∑

t=1

(
s

t

)
(−1)t+1 nt− t− 1

(n− 1)(t + 1)

=





0, if s = 0,

n− s− 1
(n− 1)(s + 1)

, otherwise.

When i ∈ S, we have, by Lemma 6.2.1,

ψ(minS ; i) =
∑
T⊆S
T 6=∅

(−1)t+1 ψ(maxT ; i)
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=
∑
T⊆S
T3i

(−1)t+1 +
∑

∅6=T⊆S
T 63i

(−1)t+1 nt− t− 1
(n− 1)(t + 1)

=
s∑

t=1

(
s− 1
t− 1

)
(−1)t+1

︸ ︷︷ ︸{
1, if s = 1
0, otherwise

+
s−1∑

t=1

(
s− 1

t

)
(−1)t+1 nt− t− 1

(n− 1)(t + 1)
︸ ︷︷ ︸{

0, if s = 1
n−s

s(n−1) , otherwise

=





1, if s = 1,

n− s

s(n− 1)
, otherwise

=
n− s

s(n− 1)

Now, by the linearity, we have, for all fuzzy measures µ on N ,

ψ(Cµ; i) =
∑

T⊆N

aT ψ(minT ; i)

=
∑

T3i

aT
n− t

t(n− 1)
+

∑

T 63i

aT
n− t− 1

(n− 1)(t + 1)

=
1

n− 1

∑

T 63i

(aT∪i + aT )
n− t− 1

t + 1

=
n

n− 1

∑

T 63i

1
t + 1

(aT∪i + aT )− 1
n− 1

and the proof is complete.

It is possible to generalize the concept of veto to several criteria [83]: a veto for criteria
K ⊆ N , which means M(x) ≤ ∧

k∈K xk, is obtained for the Choquet and Sugeno integrals by
any fuzzy measure µ such that µT = 0 whenever K 6⊆ T . Similarly, a favor for criteria K ⊆ N ,
which means M(x) ≥ ∨

k∈K xk, is obtained by any fuzzy measure µ such that µT = 1 whenever
K ∩ T 6= ∅.

We can also extend all these concepts to a variety of situations. As example, let us imagine
that at least one criterion must be satisfied among a subset K of criteria. In this case, we clearly
have

M(x1, . . . , xn) ≤
∨

k∈K

xk, x ∈ En.

6.2.4 Measure of dispersion

Consider the median and the arithmetic mean, both of which are OWA operators with weight
vectors of the form

(0, . . . , 1, . . . , 0) and (
1
n

, . . . ,
1
n

),

respectively. We note that these operators have the same degree of orness, 1/2, but we can see
that they are different in the sense that the first one focuses all the weight on only one argument.
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In order to capture this idea, Yager [192] proposed a measure of dispersion associated to the
weight vector ω of an OWA operator:

disp(ω) = −
n∑

i=1

ωi ln ωi, (6.12)

where ln is the Neperian natural logarithm, and 0 ln 0 := 0 by convention.
This dispersion is actually a measure of entropy, a well-known concept introduced as early as

1949 in the Shannon information theory [168]. It allows to measure how much of the information
in the arguments is used. In a certain sense the more disperse the ω the more the information
about the individual criteria is being used in the aggregation process.

The dispersion is maximum only when the weight vector corresponds to that of the arithmetic
mean [189]:

disp(ωAM) = lnn,

and minimum only when it corresponds to that of an order statistic:

disp(ωOSk
) = 0, k ∈ N.

Thus, we always have
0 ≤ disp(ω) ≤ ln n

and the dispersion can be normalized into

disp′(ω) = − 1
ln n

n∑

i=1

ωi ln ωi.

We now intend to generalize this concept to any fuzzy measure. On the one hand, comparing
the operators

OWAω(x) =
n∑

i=1

x(i) ωi and Cµ(x) =
n∑

i=1

x(i) [δ(i) µ{(i),...,(n)}]

suggests to propose as measure of dispersion a sum over i ∈ N of an average value of

[δi µT∪i] ln[δi µT∪i], T ⊆ N \ i.

On the other hand, thinking of the concept of cardinal-probabilistic value (see Section 5.1.2), we
can propose a measure of dispersion of the form

disp(µ) = −
n∑

i=1

∑

T⊆N\i
pt [δi µT∪i] ln[δi µT∪i], (6.13)

with
∑

T⊆N\i pt = 1 and pt ≥ 0.
In the particular case of OWA operators, we have δi µT∪i = ωn−t (cf. (4.14)) and the measure

of dispersion (6.13) becomes

disp(µOWAω) = −
n∑

i=1

∑

T⊆N\i
pt ωn−t ln ωn−t

= −
n∑

i=1

n−1∑

t=0

(
n− 1

t

)
pt ωn−t ln ωn−t

= −
n−1∑

t=0

n

(
n− 1

t

)
pt ωn−t lnωn−t
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Since this expression should coincide with (6.12), we must set

pt :=
1

n
(n−1

t

) =
(n− t− 1)! t!

n!
,

and the coefficients pt are those of the Shapley value.
We then propose the following definition.

Definition 6.2.1 The dispersion of a fuzzy measure µ on N is defined by

disp(µ) = −
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

[δi µT∪i] ln[δi µT∪i]. (6.14)

In a decision problem modelled by the Choquet integral, the dispersion (6.14) can be inter-
preted as the degree to which we use all the information contained in the arguments (x1, . . . , xn)
when calculating the aggregated value Cµ(x1, . . . , xn).

In the particular case of WAM operators, we have δi µT∪i = ωi, and hence

disp(µWAMω) = disp(µOWAω) = −
n∑

i=1

ωi lnωi,

which do not contradict the idea of a dispersion measure: the dispersion should not depend on
a reordering of the arguments.

The dispersion (6.14) is still to be characterized. However, we believe that many properties of
the classical entropy can be adapted to this new dispersion. For instance, we have the following.

Proposition 6.2.4 Let µ be a fuzzy measure on N . Then disp(µ) = 0 if and only if µ is a
0-1 fuzzy measure.

Proof. We simply have

disp(µ) = 0 ⇔ [δi µT∪i] ln[δi µT∪i] = 0, ∀i ∈ N, ∀T ⊆ N \ i,

⇔ δi µT∪i ∈ {0, 1}, ∀i ∈ N, ∀T ⊆ N \ i,

⇔ µT ∈ {0, 1}, ∀T ⊆ N.

Proposition 6.2.4 is in agreement with the idea of a dispersion measure. Indeed, by Theo-
rem 4.4.2, µ is a 0-1 fuzzy measure if and only if there exists c : 2N → {0, 1} such that Cµ = B∨∧c .
Since B∨∧c (x) ∈ {x1, . . . , xn}, only one piece of information is essentially used in the aggregation.

The dispersion can be computed for various aggregation operators. Table 6.4 summarizes the
dispersion for some operators.

We now show that 0 ≤ disp(µ) ≤ ln n, and that the dispersion is maximum only when
Cµ = AM. The proof is a straightforward adaptation of that used for the classical entropy.

Lemma 6.2.2 If the numbers {ci
T > 0, d i

T ≥ 0 | i ∈ N, T ⊆ N \ i} are such that

n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

ci
T ≤ 1 and

n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

d i
T = 1
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operator dispersion

WAMω −
n∑

i=1

ωi ln ωi

OWAω −
n∑

i=1

ωi ln ωi

owmaxω −
n∑

i=1

(ωi − ωi+1) ln(ωi − ωi+1), with ωn+1 = 0

amedα −α ln α− (1− α) ln(1− α)

AM lnn

B∨∧c 0

Table 6.4: Dispersion for some operators

then
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

d i
T ln(

ci
T

d i
T

) ≤ 0,

Moreover, the equality holds if and only if

d i
T 6= 0 ⇒ d i

T = ci
T , ∀i ∈ N,∀T ⊆ N \ i.

Proof. Since lnx ≤ x− 1 for all x > 0, we simply have

n∑

i=1

∑
T⊆N\i

d i
T
6=0

(n− t− 1)! t!
n!

d i
T ln(

ci
T

d i
T

) ≤
n∑

i=1

∑
T⊆N\i

d i
T
6=0

(n− t− 1)! t!
n!

d i
T (

ci
T

d i
T

− 1)

=
n∑

i=1

∑
T⊆N\i

d i
T
6=0

(n− t− 1)! t!
n!

ci
T − 1

≤ 1− 1 = 0.

The second part follows from the fact that lnx = x− 1 if and only if x = 1.

Theorem 6.2.3 For any fuzzy measure µ on N , we have 0 ≤ disp(µ) ≤ lnn. Moreover,
disp(µ) = lnn if and only if δi µT∪i = 1/n for all i ∈ N and all T ⊆ N \ i.

Proof. For all i ∈ N and all T ⊆ N \ i, we have δi µT∪i ∈ [0, 1] and hence − ln[δi µT∪i] ≥ 0 and
disp(µ) ≥ 0.
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For the second inequality, we have, since
∑n

i=1 φSh(i) = 1,

disp(µ)− ln n =
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

[δi µT∪i] ln
1

δi µT∪i
+

[ n∑

i=1

φSh(i)
]
ln

1
n

=
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

[δi µT∪i]
[
ln

1
δi µT∪i

+ ln
1
n

]

=
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

[δi µT∪i] ln
1

n δi µT∪i
.

Applying Lemma 6.2.2 with ci
T = 1/n and d i

T = δi µT∪i leads to disp(µ)− ln n ≤ 0. The equality
holds if and only if δi µT∪i = 1/n.

Thus defined, disp(µ) must be viewed as an absolute dispersion. Clearly, a relative dispersion
can be defined by

disp′(µ) =
1

lnn
disp(µ)

and by Theorem 6.2.3, we have 0 ≤ disp′(µ) ≤ 1.

6.2.5 An illustrative example

We give here an example, borrowed from Grabisch [79, 80]. Let us consider the problem of
evaluating students in high school with respect to three subjects: mathematics (M), physics (P)
and literature (L). Usually, this is done by a simple weighted arithmetic mean, whose weights
are the coefficients of importance of the differents subjects. Suppose that the school is more
scientifically than literary oriented, so that weights could be for example 3, 3 and 2 respectively.
Then the weighted arithmetic mean will give the following results for three students a, b and c
(marks are given on a scale from 0 to 20):

student M P L global evaluation
(weighted arithmetic mean)

a 18 16 10 15.25
b 10 12 18 12.75
c 14 15 15 14.625

If the school wants to favor well equilibrated students without weak points then student c
should be considered better than student a, who has a severe weakness in literature. Unfortu-
nately, no weight vector (ωM, ωP, ωL) satisfying ωM = ωP > ωL is able to favor student c; indeed,
we have:

c Â a ⇐⇒ ωL > ωM.

The reason of this problem is that too much importance is given to mathematics and physics,
which present some overlap effect since, usually, students good at mathematics are also good
at physics (and vice versa), so that the evaluation is overestimated (resp. underestimated) for
students good (resp. bad) at mathematics and/or physics. This problem can be solved by using
a suitable fuzzy measure µ and the Choquet integral.

• Since scientific subjects are more important than literature, the following weights can be
put on subjects taken individually (apparent weights): µM = µP = 0.45 and µL = 0.3.
Note that the initial ratio of weights (3, 3, 2) is kept unchanged.
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aS =
∑

T⊆S

(−1)s−tµT , S ⊆ N

φSh(i) =
∑

T3i

1
t

aT , i ∈ N

ISh(S) =
∑

T⊇S

1
t− s + 1

aT , S ⊆ N

Cµ(x) =
∑

T⊆N

aT

∧

i∈T

xi, x ∈ [0, 1]n

veto(Cµ; i) = 1− n

n− 1

∑

T 63i

1
t + 1

aT , i ∈ N

favor(Cµ; i) =
n

n− 1

∑

T 63i

1
t + 1

(aT∪i + aT )− 1
n− 1

=
1

n− 1
(nφSh(i) + n− 2)− veto(Cµ; i), i ∈ N

m(Cµ) =
∑

T⊆N

1
t + 1

aT = ISh(∅)

orness(Cµ) =
1

n− 1

[
(n + 1)m(Cµ)− 1

]
=

1
n

n∑

i=1

favor(Cµ; i)

disp(µ) = −
n∑

i=1

∑

T 63i

(n− t− 1)! t!
n!

[δiµT∪i] ln[δiµT∪i]

with δiµT∪i =
∑

K⊆T

aK∪i, i ∈ N, T 63 i

disp′(µ) =
1

ln n
disp(µ)

Table 6.5: Compilation of some useful formulas
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• Since mathematics and physics overlap, the weights attributed to the pair {M, P} should
be less than the sum of the weights of mathematics and physics: µMP = 0.5.

• Since students equally good at scientific subjects and literature must be favored, the weight
attributed to the pair {L, M} should be greater than the sum of individual weights (the
same for physics and literature): µML = µPL = 0.9.

• µ∅ = 0 and µMPL = 1 by definition.

The Möbius representation is then given by

a∅ = 0 aM = 0.45 aMP = −0.40 aMPL = −0.10
aP = 0.45 aML = 0.15
aL = 0.30 aPL = 0.15

Applying Choquet integral with the above fuzzy measure leads to the following new global
evaluation:

student M P L global evaluation
(Choquet integral)

a 18 16 10 13.9
b 10 12 18 13.6
c 14 15 15 14.6

The expected result is then obtained. Also remark that student b has still the lowest rank,
as requested by the scientific tendency of this high school.

Note that the Shapley integral provides the following global evaluations: 14.08333, 13.91666
and 14.70833.

Now, let us turn to a deeper analysis of the orientation of the school or its director. From the
fuzzy measure proposed, we obtain the following Shapley value and degrees of veto and favor:

M P L
veto(Cµ; i) 0.3625 0.3625 0.525
favor(Cµ; i) 0.575 0.575 0.6

φSh(i) 0.29166 0.29166 0.41666
n ∗ φSh(i) 0.875 0.875 1.25

As we can see, it is convenient to scale the Shapley value by a factor n, so that an importance
index greater than 1 indicates an attribute more important than the average. Moreover, looking
at the veto and favor degrees, we observe that the school seems to favor slightly the students
(disjunctive oriented). This is in accordance with the degree of orness

orness(Cµ) = 0.58333

Now, regarding the Shapley interaction indices ISh, we have:

P L
M -0.45 0.10
P 0.10
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These numerical values are also in accordance with the interpretation of the fuzzy measure.
Moreover, the absolute dispersion of the fuzzy measure is given by disp(µ) = 0.90084. This leads
to a rather satisfactory relative dispersion:

disp′(µ) = 0.81998

Remark that all these behavioral parameters have been obtained from a given fuzzy measure.
In practical situations, the fuzzy measure is not completely available. We might then fix its
values from information on behavioral parameters. Section 6.4 deals with this topic.

6.3 k-order fuzzy measures

6.3.1 Motivation

We know that a problem involving n criteria requires 2n coefficients in [0, 1] in order to define
the fuzzy measure µ on every coalition. Of course, a decision maker is not able to give such an
amount of information. Moreover, the meaning of the numbers µS and aS is not always clear for
the decision maker. In most cases, he/she will be able to guess the importance of singletons, of
pairs of elements, but not that of subsets of more elements. Reciprocally, if a fuzzy measure is
given, no expert can tell exactly what it means in terms of behavior in decision making. Thus,
although fuzzy measures constitute a flexible tool for modelling the importance of coalitions,
they are not easy to handle and interpret in a practical problem.

To overcome this problem, Grabisch [81] proposed to use the concept of k-order fuzzy measure.
Looking at the polynomial expression of a fuzzy measure (4.2), one can notice that additive
measures have a linear representation f(x) =

∑n
i=1 ai xi. By extension, we may think of a fuzzy

measure having a polynomial representation of degree 2, or 3, or any fixed integer k. Such a fuzzy
measure is naturally called k-order fuzzy measure since it represents a k-order approximation of
its polynomial expression in the neighborhood of the origin.

Definition 6.3.1 A fuzzy measure µ defined on N is said to be of order k if its corresponding
pseudo-Boolean function is a multilinear polynomial of degree k, i.e. aT = 0 for all T such that
t > k, and there exists at least one subset K of k elements such that aK 6= 0.

This concept allows to range freely between purely additive measures (k = 1), defined by n
coefficients, and general fuzzy measures (k = n), defined by 2n coefficients. Indeed, when varying
k from 1 to n, we recover all possible fuzzy measures. Looking at the passage formulas between
a and ISh, IB, IR, we see that considering k-order fuzzy measures merely amounts to assuming
that the interactions I(T ) for t > k are zero.

The following result is easy to prove (see e.g. [83]).

Proposition 6.3.1 Let µ be a k-order measure on N . Then
i) ISh(T ) = IB(T ) = IR(T ) = aT for every T such that |T | = k,
ii) ISh(T ) = IB(T ) = IR(T ) = aT = 0 for every T such that |T | > k.

Although the additive model is very simple to handle (only n coefficients are needed), it
is restrictive and leads to a very poor modelling tool for application in multicriteria decision
making. Grabisch [81] then suggested to consider the 2-order case, which seems to be the most
interesting in practical applications, since it permits to model interaction between criteria while
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remaining very simple. Indeed, only n+
(n
2

)
= n(n+1)

2 coefficients are required to define the fuzzy
measure, namely the coefficients

µi = ai, i ∈ N,

µij = ai + aj + aij , {i, j} ⊆ N.

The other coefficients are then given by:

µS =
∑

i∈S

ai +
∑

{i,j}⊆S

aij =
∑

{i,j}⊆S

µij − (s− 2)
∑

i∈S

µi, S ⊆ N, s ≥ 2.

In this case, the Choquet integral becomes

Cµ(x) =
∑

i∈N

ai xi +
∑

{i,j}⊆N

aij (xi ∧ xj), x ∈ IRn. (6.15)

Moreover, the power and interaction indices coincide (ISh = IB = IR = I) and we have immedi-
ately:

I(i) = ai +
1
2

∑

j∈N\i
aij , i ∈ N, (6.16)

I(ij) = aij , i, j ∈ N, (6.17)

and I(S) = 0 for all S ⊆ N , s > 2. We thus remark that the interaction index I(ij) coincides
with the second degree term of the Choquet integral.

In this context conditions (4.6) for the coefficients a∅, ai (i ∈ N), aij (i, j ∈ N) to define a
fuzzy measure become: 




a∅ = 0,

∑

i∈N

ai +
∑

{i,j}⊆N

aij = 1,

ai ≥ 0, ∀i ∈ N,

ai +
∑

j∈T

aij ≥ 0, ∀i ∈ N, ∀T ⊆ N \ i.

(6.18)

Notice that, for any fuzzy measure, we have I(i), ai ∈ [0, 1] for all i ∈ N and

∑

i∈N

I(i) = 1.

Moreover, Roubens [156] and Grabisch [81] proved that I(ij) ∈ [−1, 1] for all i, j ∈ N , which
can be viewed as a consequence of the recurrence formula (5.14). Hence, for any 2-order fuzzy
measure, we have aij ∈ [−1, 1] for all {i, j} ⊆ N . See general results on the bounds of aS and
I(S) by Miranda and Grabisch [123].

It is also interesting to note that, for 2-order fuzzy measures, the Shapley and Banzhaf indices
coincide, so that we do not have to justify the use of only one of the two. Moreover, for general
fuzzy measures, we know that the Banzhaf indices do not sum up to 1, nor to any fixed number.
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6.3.2 Alternative representations of the Choquet integral

As the interaction representations have an interesting meaning in the framework of multicriteria
decision making, it would be useful to express the Choquet integral with respect to such rep-
resentations. This would help to have a better understanding of the meaning of the Choquet
integral, or to have some more efficient computation of it. We restrict ourselves to the 2-order
case, which seems to be the most interesting in practical applications. A Choquet integral w.r.t.
a 2-order fuzzy measure will be called a 2-order Choquet integral.

Theorem 6.3.1 Let µ be a 2-order fuzzy measure on N . Then the best weighted arithmetic
mean WAMω that minimizes

∫

[0,1]n
[Cµ(x)−WAMω(x)]2 dx

is given by the Shapley integral Shµ. Moreover, we have, if E ⊇ [0, 1],

Cµ(x) = Shµ(x)− 1
2

∑

{i,j}⊆N

I(ij) [(xi ∨ xj)− (xi ∧ xj)], x ∈ En. (6.19)

Proof. The first part will be proved in Section 7.3.2 (see Theorem 7.3.1).
Now, by using the passage formula from ISh to a (cf. Table 5.4), we have, for all x ∈ En,

Cµ(x) =
∑
T⊆N
t≥1

aT

∧

i∈T

xi

=
∑
T⊆N
t≥1

[ ∑
K⊇T
k≥1

Bk−t ISh(K)
] ∧

i∈T

xi

=
∑

K⊆N
k≥1

[ ∑
T⊆K
t≥1

Bk−t

∧

i∈T

xi

]
ISh(K).

Since ISh(K) = 0 whenever k ≥ 3, we simply have

Cµ(x) = Shµ(x) +
∑

{i,j}⊆N

[−1
2
xi − 1

2
xj + xi ∧ xj ] I(ij),

as expected.

Equation (6.19) shows a decomposition of the Choquet integral Cµ into a linear part and a non-
linear part. The linear part, namely the Shapley integral, appears to be a 1-order approximation
of Cµ. The non-linear part brings some correction to the Shapley integral that we can interpret
as follows. Consider a pair of criteria {i, j} ⊆ N .

• A negative I(ij), that is I(ij) ∈ [−1, 0], implies a disjunctive behavior between i and j. In
multicriteria decision making, this means that the satisfaction of either i or j is sufficient
to have a significant effect on the global score. If such a unilateral satisfaction is observed,
we can increase the linear average by a positive amount that should be proportional to
the variation between the utilities xi and xj but also to the importance of the interaction
|I(ij)|.

• A positive I(ij), that is I(ij) ∈ [0, 1], implies a conjunctive behavior, which means that
both criteria have to be satisfied to lead to a high global score. In case of unilateral
satisfaction, the linear average should be decreased by the same quantity as explained in
the first case.
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An other interesting form of the 2-order Choquet integral is given by Grabisch [83]:

Theorem 6.3.2 Let µ be a 2-order fuzzy measure on N and assume E ⊇ [0, 1]. Then we
have

Cµ(x) =
∑

i∈N

(
I(i)− 1

2

∑

j∈N\i
|I(ij)|

)
xi +

∑
{i,j}⊆N
I(ij)<0

|I(ij)|(xi ∧ xj) +
∑

{i,j}⊆N
I(ij)>0

|I(ij)|(xi ∨ xj). (6.20)

for all x ∈ En. Moreover, we have I(i)− 1
2

∑
j∈N\i |I(ij)| ≥ 0 for all i ∈ N .

The interesting point in the decomposition (6.20) is that all terms are positive so that the
contribution of each of them in the Choquet integral can be interpreted: a 2-order measure
having strongly negative (resp. positive) I(ij) will enforce the Choquet integral to be strongly
disjunctive (resp. conjunctive), and a 2-order measure having low values for I(ij) will lead to an
almost linear Choquet integral.

As shown by Grabisch [82], decomposition of the Choquet integral in the interaction repre-
sentation becomes complicated as soon as the fuzzy measure is of order > 2. For such measures,
an interpretation similar to the previous one seems to be lost.

Regarding OWA operators, we also have the following.

Proposition 6.3.2 An OWAω operator is defined from a 2-order fuzzy measure if and only
if ωt is linear in t, that is ωt = a t + b for some a, b ∈ IR.

Proof. (Necessity) By (4.16), we simply have ωt = ai + (n− t) aij for all i, j, t ∈ N .
(Sufficiency) By (4.18), we have aT = [∆t−1

k a (n− k)+ b]k=0 for all T ⊆ N , T 6= ∅, and hence
aT = 0 whenever t > 2.

We have seen in Table 6.1 that the fuzzy measure associated to an OWAω operator is such
that (see also Grabisch [86]):

ISh(i) = 1/n, i ∈ N, (6.21)

ISh(ij) =
ω1 − ωn

n− 1
, i, j ∈ N. (6.22)

We now give the form of a 2-order OWA in terms of the indices ISh(i) and ISh(ij).

Theorem 6.3.3 Assume E ⊇ [0, 1]. Any OWAω ∈ An(E, E) of order 2 is of the form

OWAω(x) =
1
n

n∑

i=1

xi +
1
2

ω1 − ωn

n− 1

n∑

i=1

(n + 1− 2 i) x(i), x ∈ En.

Proof. By (6.16), (6.17), (6.21) and (6.22), we immediately have

ai =
1
n
− 1

2
(ω1 − ωn), i ∈ N,

aij =
ω1 − ωn

n− 1
, i, j ∈ N,

and by (4.16), we have

ωt = ai + (n− t) aij =
1
n

+
ω1 − ωn

2(n− 1)
(n + 1− 2 t), i, j, t ∈ N,

which is sufficient.
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6.3.3 Representation of boundary and monotonicity constraints

We address in this section what could be called an inverse problem. Suppose that a set function
µ on N is given under its Möbius or interaction representation, denoted a and I, respectively.
What are the conditions on the values aT (or I(T )) so that µ is a fuzzy measure, satisfying
boundary and monotonicity conditions? Concerning the Möbius representation, the answer has
been presented in Proposition 4.1.1. For the Shapley interaction representation, the result is due
to Grabisch [81, 83].

Proposition 6.3.3 A set of 2n coefficients ISh(T ), T ⊆ N , corresponds to the Shapley in-
teraction representation of a fuzzy measure if and only if

i)
∑

T⊆N

Bt ISh(T ) = 0,

ii)
∑

i∈N

ISh(i) = 1,

iii)
∑

T⊆N\i
β
|T |
|T∩S| ISh(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

where Bt is the t-th Bernoulli number (5.43) and βl
k is defined by (5.60).

For the Banzhaf interaction representation, we present a comparable result, see also [83, 90].

Proposition 6.3.4 A set of 2n coefficients IB(T ), T ⊆ N , corresponds to the Banzhaf in-
teraction representation of a fuzzy measure if and only if

i)
∑

T⊆N

(−1
2
)t IB(T ) = 0,

ii)
∑

T⊆N

(
1
2
)t IB(T ) = 1,

iii)
∑

T⊆N\i
(
1
2
)t(−1)|T\S| IB(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i.

Proof. Conditions i) and ii) immediately follow from the passage formula from IB to v, see
Table 5.4. For the condition iii), we have, for all i ∈ N and all S ⊆ N \ i,

0 ≤ µS∪i − µS (see (4.1))

=
∑
T⊆N
i∈T

(
1
2
)t [(−1)|T\(S∪i)| − (−1)|T\S|] IB(T ), (see passage from IB to v)

= 2
∑
T⊆N
i∈T

(
1
2
)t (−1)|T\S|−1 IB(T ),

which is sufficient.

Now the following question arises: if a set of power and pairwise interaction indices is given,
satisfying

∑
i I(i) = 1, what are the conditions on the I(ij) such that the underlying fuzzy

measure is a 2-order fuzzy measure?
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In case of 2-order fuzzy measures, the conditions of Propositions 6.3.3 and 6.3.4 become
respectively:





ISh(∅) +
1
6

∑

{i,j}⊆N

ISh(ij) =
1
2
,

∑

i∈N

ISh(i) = 1,

ISh(i)− 1
2

∑

j∈N\(S∪i)

ISh(ij) +
1
2

∑

j∈S

ISh(ij) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

and 



IB(∅) +
1
4

∑

{i,j}⊆N

IB(ij) =
1
2
,

∑

i∈N

IB(i) = 1,

IB(i)− 1
2

∑

j∈N\(S∪i)

IB(ij) +
1
2

∑

j∈S

IB(ij) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i.

Thus the coefficients I(ij) must fulfil only the monotonicity conditions.

6.3.4 Equivalence classes of fuzzy measures

In [81], Grabisch addressed the interesting problem of finding equivalence classes of fuzzy mea-
sures. Set k ∈ N and suppose that the decision maker is able to give the interaction indices
ISh(T ) for 1 ≤ t ≤ k. Then it is interesting to find all (general) fuzzy measures having the same
specified ISh(T ) values. Clearly, this defines an equivalence relation on the set of fuzzy measures
on N .

Starting from the passage formula from ISh to µ (see (5.59)), we have, for all S ⊆ N ,

µS =
∑

T⊆N

β
|T |
|T∩S| ISh(T )

= ISh(∅) +
∑
T⊆N
1≤t≤k

β
|T |
|T∩S| ISh(T ) +

∑
T⊆N
t>k

β
|T |
|T∩S| ISh(T ).

Of course, ISh(∅) has no clear meaning for the decision maker and we can eliminate it by using
the first condition of Proposition 6.3.3, that is:

ISh(∅) = −
∑
T⊆N
t≥1

Bt ISh(T ).

Taking the other conditions into account leads to the following result.

Theorem 6.3.4 All the fuzzy measures having the same ISh(T ) for 1 ≤ t ≤ k, with
∑

i∈N

ISh(i) = 1

are of the form:

µS =
∑
T⊆N
1≤t≤k

(
β
|T |
|T∩S| −Bt

)
ISh(T ) +

∑
T⊆N
t>k

(
β
|T |
|T∩S| −Bt

)
ISh(T ), S ⊂ N, S 6= ∅, N,
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where the coefficients ISh(T ) with t > k are free up to the monotonicity constraints:
∑
T3i
t>k

β
|T |−1
|T∩S| ISh(T ) ≥ −

∑
T3i

1≤t≤k

β
|T |−1
|T∩S| ISh(T ), i ∈ N, S ⊆ N \ i.

Of course a similar result can be obtained for Banzhaf interaction indices.

Theorem 6.3.5 All the fuzzy measures having the same IB(T ) for 1 ≤ t ≤ k are of the form:

µS =
∑
T⊆N
1≤t≤k

|T∩S| odd

(−1
2
)t−1 IB(T ) +

∑
T⊆N
t>k

|T∩S| odd

(−1
2
)t−1 IB(T ), S ⊂ N, S 6= ∅,

where the coefficients IB(T ) with t > k are free up to the following constraints:
∑
T⊆N
t>k

(
1
2
)tIB(T ) = 1−

∑
T⊆N
1≤t≤k

(
1
2
)tIB(T ),

∑
T3i
t>k

(−1
2
)t−1(−1)|T∩S| IB(T ) ≥ −

∑
T3i

1≤t≤k

(−1
2
)t−1(−1)|T∩S| IB(T ), i ∈ N, S ⊆ N \ i.

As an illustration, let us search for the 2-order fuzzy measures having the same Shapley (or
Banzhaf) indices I(i) such that

∑
i∈N I(i) = 1. According to the previous results, these 2-order

fuzzy measures are of the form:

µS =
∑

i∈S

I(i)− 1
2

∑

i∈S

∑

j∈N\S
I(ij), S ⊂ N, S 6= ∅, N,

where the I(ij) are such that
∑

j∈N\(S∪i)

I(ij)−
∑

j∈S

I(ij) ≤ 2 I(i), i ∈ N, S ⊆ N \ i. (6.23)

Grabisch [81, Sect. 7] observed that the n2n−1 inequality constraints (6.23) can be simply ex-
pressed by

−2 I(i) ≤ ± I(i1)± I(i2)± · · · ± I(in) ≤ 2 I(i), i ∈ N,

with all possible combinations of + and −. Since this inequality is double, reversing systemati-
cally + and − on all positions leads to the same constraint so that the total number of constraints
is divided by 2, thus is equal to 2n−2 for a given I(i), and n2n−2 for all the I(i).

6.4 Identification of weights of interactive criteria

Once a particular aggregation operator has been chosen for aggregation, relying on specific prop-
erties for a particular application, it remains to identify the parameters of the chosen operator,
if any. It will be the case in particular for any weighted operator, such as weighted means, OWA
and fuzzy integrals.

In this section we will present three approches related to the Choquet integral. The problem
thus consists in identifying the associated fuzzy measure3. The first approach is based only on a
predefinite degree of orness. The second and the third methods are based on experimental data,
i.e. examples given by a decision maker.

3Once obtained, this fuzzy measure may not be used in any aggregation procedure. Its nature depends on the
aggregation operator used to construct it. Thus, following the approaches presented here, it will be always used
in a Choquet integral.
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6.4.1 Identification by parametric specification

In [138, 139], O’Hagan suggested a procedure to generate the OWA weights that have a pre-
definite degree of orness α ∈ [0, 1] and maximize the entropy. O’Hagan called them MEOWA
operators. The approach suggested by O’Hagan is based on the solution of the following con-
strained optimization problem:

maximize −
n∑

i=1

ωi ln ωi

subject to





1
n− 1

n∑

i=1

(i− 1)ωi = α

n∑

i=1

ωi = 1

ωi ≥ 0, i ∈ N

We note that by just specifying one parameter, the desired level of orness α, we uniquely get the
weights. We can see that this approach is in the spirit of the maximum entropy techniques.

For a general Choquet integral associated to a fuzzy measure, an identification can be done
in the same way as for OWA operators: select from among the Choquet integrals that attain a
given level of orness the one whose fuzzy measure has the maximum dispersion (see (6.14), (6.3)
and (4.1) for the formulas):

maximize −
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!
n!

[δi µT∪i] ln[δi µT∪i]

subject to





1
n− 1

∑

T⊆/ N

(n− t)! t!
n!

µT = α

µ∅ = 0
µN = 1
µT∪i ≥ µT , ∀i ∈ N, ∀T ⊆ N \ i

6.4.2 Identification based on learning data

Another approach to obtain the fuzzy measure is to learn the weights from data consisting
of n-tuples of individual scores along with their aggregated value (see e.g. [180]). Suppose
that (zk, yk), k = 1, . . . , l are such learning data where zk = (zk1, . . . , zkn) is an input vector,
representing the profile of object k, and yk is the global score of object k. Then, one can try to
identify the best fuzzy measure µ which minimizes the total squared error of the model, i.e.

E2 =
l∑

k=1

[Cµ(zk)− yk]2.

under the boundary and monotonicity constraints of the fuzzy measure. It has been shown in
[89, Chap. 10] that this problem can be put under a quadratic program form, that is

minimize 1
2utDu + ctu

subject to Au + b ≥ 0
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where u is a (2n − 2)-dimensional vector containing all the coefficients of the fuzzy measure µ
(except µ∅ and µN which are fixed), D is a (2n − 2)-dimensional square matrix, c a (2n − 2)-
dimensional vector, A a n(2n−1 − 1)× (2n − 2) matrix, and b a n(2n−1 − 1)-dimensional vector.
See [89] for an extensive study of such a quadratic program.

When the Choquet integral is reduced to an OWA, the problem can be simplified by taking
advantage of the linearity with respect to the ordered arguments, see [61].

Notice that a major disadvantage of this model is that it requires a precise global score zk

for each given profile. In practical situation, such data are not always available. Moreover, no
semantical specification about criteria is taken into account in this model.

6.4.3 Combination of learning data with semantical considerations

In this section, we propose a model allowing to identify the fuzzy measure on the basis of learning
data consisting of a partial preorder over a reference set of alternatives (prototypes) whose profiles
are known4, and also from semantical considerations about criteria such as a partial preorder
over the set of apparent weights related to each criterion, a partial preorder over interactions
between pairs of criteria, and the knowledge of the sign of interactions between some pairs of
criteria. As usually, we assume that all the partial scores xa

i are given according to a same
interval scale E ⊆ IR (commensurability hypothesis) and that the Choquet integral is used for
the aggregation. Moreover, to keep the model as simple as possible, we assume that the fuzzy
measure is of order 2. We will see that the main advantage of our approach is that the fuzzy
measure can be obtained simply by solving a linear program.

Apart from the partial ranking over the reference set of prototypes, we consider some seman-
tical specifications about criteria:

• Importance of criteria. This can be properly done by giving a partial preorder on N ,
representing a ranking of the apparent weights µi, i ∈ N . One can also imagine that some
exact values can be given.

• Interaction between criteria. The interaction index I(ij) = aij is suitable for this. One can
give a partial preorder on the set of pairs of criteria. The sign of each interaction aij can
also be given, or even exact values.

• Symmetric criteria. Two criteria i and j are symmetric if they can be exchanged without
changing the aggregation mode. Then µT∪i = µT∪j for all T ⊆ N \ ij. This reduces the
number of coefficients.

• Degree of orness. We have seen in (6.2) that orness(Cµ) is a linear expression and thus
might be integrated in our model. For a 2-order fuzzy measure, it becomes

orness(Cµ) =
1
2

∑

i∈N

ai +
1
3

n− 2
n− 1

∑

{i,j}⊆N

aij .

A predefinite degree of orness could be demanded. More freely, one can only ask that the
degree of orness lies in a given interval. For instance: orness(Cµ) > 1/2.

• Veto and favor effects. As for the degree of orness, the degrees of favor and veto are linear
expressions and can be used.

4Contrary to the previous method, the global scores are not needed in this approach.



190 CHAPTER 6. APPLICATIONS TO MULTICRITERIA DECISION MAKING

• Dispersion. The measure of dispersion could also be taken into account. Unfortunately, its
expression contains non-linear factors making the model itself non-linear.

We thus suppose that we have at our disposal an expert or decision maker who is able to
tell the relative importance of criteria, and the kind of interaction between them, if any. In fact,
in practical applications the decision maker is able to give information on the apparent weights
and interaction indices much more easily than to assess directly the values of the fuzzy measure.
It is thus important to ask the decision maker the good questions that will allow to identify the
fuzzy measure (elicitation from the decision maker).

Formally, the input data of the problem can be summarized as follows:

- The set A of alternatives and the set N of criteria,
- A table of individual scores (utilities) xa

i given on a same interval scale E ⊆ IR,
- A partial preorder ºA on A (ranking of alternatives),
- A partial preorder ºN on N (ranking of criteria),
- A partial preorder ºP on the set of pairs of criteria (ranking of interaction indices),
- The sign of interactions between some pairs of criteria aij : > 0,= 0, < 0.

In addition to these data, any other information such that the degree of orness, veto and favor
degrees, etc. can be integrated, provided that it can be given by a linear expression.

All these data can be formulated in terms of linear equalities or inequalities linking the
unknown “weights” µ. The model then consists in finding a feasible 2-order fuzzy measure.
Thus we are faced with a linear constraints satisfaction problem. Note that strict inequalities
can be converted into vague inequalities by introducing a positive slack variable as the following
immediate proposition shows.

Proposition 6.4.1 x ∈ IRn is a solution of the linear system




n∑

j=1

aij xj ≤ bi, i = 1, . . . , p,

n∑

j=1

cij xj < di, i = 1, . . . , q,

if and only if there exists ε > 0 such that




n∑

j=1

aij xj ≤ bi, i = 1, . . . , p,

n∑

j=1

cij xj ≤ di − ε, i = 1, . . . , q.

In particular, a solution exists if and only if the following linear program

maximize z = ε

subject to





n∑

j=1

aij xj ≤ bi, i = 1, . . . , p,

n∑

j=1

cij xj ≤ di − ε, i = 1, . . . , q,
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has an optimal solution x∗ ∈ IRn with an optimal value ε∗ > 0. In this case, x∗ is a solution of
the first system.

Thus, the problem of finding a 2-order fuzzy measure can be formalized with the help of a
linear program. It is obvious that the poorer the input information, the bigger the solution set.
Hence, it is desirable that the information is as complete as possible. However, if this information
contains incoherences then the solution set could be empty5.

Written in terms of the Möbius representation, a model for identifying weights could be given
as follows:

maximize z = ε

subject to

C(a)− C(b) ≥ δ + ε if a ÂA b
−δ ≤ C(a)− C(b) ≤ δ if a ∼A b

}
partial semiorder with threshold δ

ai − aj ≥ ε if i ÂN j
ai = aj if i ∼N j

}
ranking of criteria (apparent weights)

aij − akl ≥ ε if ij ÂP kl
aij = akl if ij ∼P kl

}
ranking of pairs of criteria (interactions)

aij ≥ ε (resp. ≤ −ε) if aij > 0 (resp. < 0)
aij = 0 if aij = 0

}
sign of some interactions

∑
i∈N ai +

∑
{i,j}⊆N aij = 1

ai ≥ 0 ∀i ∈ N
ai +

∑
j∈T aij ≥ 0 ∀i ∈ N, ∀T ⊆ N \ i





boundary and monotonicity
conditions (6.18)

C(a) =
∑

i∈N ai x
a
i +

∑
{i,j}⊆N aij [xa

i ∧ xa
j ] ∀a ∈ A

}
definition of Cµ

It seems natural to assume that the ranking over A is translated into a partial semiorder
over the set of the global evaluations given by the Choquet integral. This partial semiorder has
a fixed preference threshold δ, which can be tuned as wished. Such a threshold level should be
reached by the difference between global scores to consider that one object should be significantly
preferred to another object.

Let us comment on the scale used to define the utilities. Since the Choquet integral is stable
under the same admissible transformations of interval scales, using utilities on a [0, 100] scale or
on [−2, 3] scale has no influence on the ranking of alternatives. Now suppose that the utilities xa

i

are defined in E = [0, 1]. Changing this scale into [p, q], with p < q, and translating the utilities
in the appropriate way amounts to replacing only the first set of constraints by

C(a)− C(b) ≥ δ +
ε

q − p
if a ÂA b. (6.24)

It is clear that if ε is missing in the other constraints then the optimal solution of the linear
program depends on no scale transformation. Otherwise, if ε is present both in constraints (6.24)
and the other constraints then the optimal solution can be sensitive to any scale transformation,

5An empty solution set could be due to an incompatibility between the given information and the assumption
that the fuzzy measure is of order 2. In this case, it can be useful to consider a 3-order fuzzy measure or, if
necessary, a fuzzy measure of higher order.
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although the feasibility of the system remains unaltered. In this case, since ai ∈ [0, 1] and
aij ∈ [−1, 1] for all i, j ∈ N , we necessarily have ε ∈ [0, 2]. We then can make the following
theoretical observations:

• If q− p is large (for example q− p = 100) then ε/(q−p) is small and the global evaluations
C(a) have good chances to be not very contrasted in the optimal solution.

• If q − p is small (for example q − p = 0.01) then, multiplying inequation (6.24) by q − p,
we see that the optimal value ε∗ will be small too; this implies that the weights ai or the
interactions aij will be not very contrasted.

Taking these facts into account, it seems that a reasonable compromise would be to take q−p = 1
and hence to define the utilities on the unit interval [0, 1].

The value of the threshold δ must also be chosen carefully. Indeed, the more δ is large the
more ε∗ will be small. A too large δ can even make the program infeasible. We will not suggest
any rule to fix δ. It is better to compare the solutions obtained with different values of δ.

Let us make a last observation. It might happen that some equalities are very constraining
and make the program infeasible. In this case, these equalities can be relaxed into some strict
inequalities in a coherent way. For example, the equality in the conditions a1 = a2 > a3 could
be relaxed into the following strict inequalities:

a1

a2

}
> a3 and |a1 − a2| <

{ |a1 − a3|
|a2 − a3|

that is 



a1 > a3

a2 > a3

2 a1 − a2 − a3 > 0
−a1 + 2 a2 − a3 > 0

In order to illustrate the model, we now present three small examples. The first two are
constructed in such a way that no weighted arithmetic mean can be used as utility function.

Example 6.4.1 Consider the problem of ranking cooks on the basis of their capacity for
preparing three dishes: frogs’legs (FL), steak tartare (ST), and stuffed clams (SC). Four cooks
a, b, c, d acting as prototypes are evaluated as follows6 (marks are multiplied by 20):

cook FL ST SC
a 18 15 19
b 15 18 19
c 15 18 11
d 18 15 11

The decision maker is asked to express its advice by giving a ranking over A = {a, b, c, d}.
Of course, he/she immediately suggests a ÂA d and b ÂA c. However, these preferences do not
contribute to anything since they naturally follow from the monotonicity of the Choquet integral.
The decision maker realizes that the other comparisons are not so obvious since the associated
profiles interlace. He/she then proposes the following reasoning: when a cook is renowned for his
stuffed clams, it is preferable that he/she is also better in cooking frogs’legs than steak tartare,

6This example is similar to Exemple 1.3.1. But here commensurable partial utilities are available.
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so a ÂA b. However, when a cook badly prepares stuffed clams, it is more important that he/she
is better in preparing steak tartare than frogs’legs, and so c ÂA d.

Now, the question arises: does there exist an additive model leading to this partial ranking?
Let ω1, ω2, ω3 represent the weights of criteria FL, ST, SC respectively. By using the weighted
arithmetic mean as utility function, we obtain:

a ÂA b ⇔ ω1 > ω2,

c ÂA d ⇔ ω1 < ω2.

We immediately observe that no weighted arithmetic mean can yield the proposed ranking. This
is not surprising since clearly the criteria are not mutually preferentially independent. Thus, it
is necessary to take into account the interactions between criteria. Notice that, even in this case,
the Shapley integral cannot be used, since it is also a weighted arithmetic mean.

By extending the weighted arithmetic mean to the 2-order Choquet integral (6.15), we are
led to the following conditions:

a ÂA b ⇔ 0.15 a1 − 0.15 a2 + 0.15 a13 − 0.15 a23 > 0,

b ÂA c ⇔ 0.4 a3 + 0.2 a13 + 0.35 a23 > 0,

c ÂA d ⇔ −0.15 a1 + 0.15 a2 > 0.

Of course, these three conditions imply a ÂA d.
It is clear that the problem has now at least one solution, which can be given by an optimal

solution of the following linear program (N = {1, 2, 3}):
maximize z = ε

subject to




0.15 a1 − 0.15 a2 + 0.15 a13 − 0.15 a23 ≥ δ + ε
0.4 a3 + 0.2 a13 + 0.35 a23 ≥ δ + ε
−0.15 a1 + 0.15 a2 ≥ δ + ε
a1 + a2 + a3 + a12 + a13 + a23 = 1
ai ≥ 0 i ∈ N
ai + aij ≥ 0 i, j ∈ N
ai + aij + aik ≥ 0 i, j, k ∈ N.

Using an appropriate software, the following solution was obtained (for δ = 0.05 fixed):

• Objective function: ε = 0.025 (note that ε = 0 if δ = 0.075)

• Apparent weights ai (= µi) and real weights I(i):

FL ST SC
ai 0 0.5 0.5

I(i) 0.25 0.25 0.5

• Interaction indices aij :

ST SC
FL 0 0.5
ST -0.5
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• The global evaluations C = Cµ:

a b c d

C(·) 0.925 0.85 0.725 0.65
20C(·) 18.5 17 14.5 13

Of course, we must be very cautious when one wants to get general conclusions only from
the obtained solution. Indeed, it is not clear at all that there is no solution such that a23 > 0.
All that the model does is to find a 2-order fuzzy measure that is coherent with the available
information. Thus, the interpretation of such a solution could be irrelevant.

Regarding the degree of orness of the solution, we immediately see that orness(Cµ) = 0.5.
Thus we are in presence of an equitable decision maker. This is due to the visible symmetry of
the problem.

Example 6.4.2 Consider the problem of the evaluation of students in an institute of Math-
ematics with respect to three subjects: linear algebra (Al), calculus (Ca), and statistics (St).
Suppose that the institute is oriented towards statistics. More precisely, suppose that the deci-
sion maker suggests the following partial ranking of the criteria:

St ÂN

{
Al
Ca

For instance, the weights of subjects could be proportional to 2, 2 and 3, respectively.
Three students a, b, c have been evaluated as follows (marks are multiplied by 20):

student Al Ca St global evaluation
(weighted arithmetic mean)

a 12 12 19 15
b 16 16 15 15.57143
c 19 19 12 16

The decision maker then reasons as follows: if a student is excellent at statistics (mark of at
least 18) then he/she is excellent, whatever the marks obtained elsewhere. However, if he/she
is not excellent at statistics then it is necessary to take into account the mark obtained in the
other courses.

Consequently, on the basis of the available profiles, the decision maker proposes the following
ranking:

a ÂA c ÂA b.

Let us show that the additive model is not appropriate for this example. Let ω1, ω2, ω3

represent the weights of criteria Al, Ca, St respectively. By using the weighted arithmetic mean
as utility function, we get:

a ÂA c ⇔ ω1 + ω2 − ω3 < 0,

c ÂA b ⇔ ω1 + ω2 − ω3 > 0.

Now, let us turn to the 2-order model, which takes into account the interactions between pairs
of criteria. On this matter, the decision maker has observed that there is some overlap between
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statistics and calculus courses. Hence, we may assume that there exists a negative interaction
between them:

a{St,Ca} < 0.

Putting all these data into a linear program as explained above, and then solving it with the
help of a software, the following solution was obtained (for δ = 0.025 fixed):

• Objective function: ε = 0.055769

• Apparent weights ai and real weights I(i):

Al Ca St
ai 0.7135 0.05577 1

I(i) 0.3567 0.02788 0.6154

• Veto and favor degrees:

Al Ca St
veto(i) 0.23606 0.07162 0.42305
favor(i) 0.79907 0.47020 1

• Interaction indices aij :

Ca St
Al 0 -0.7135
Ca -0.05577

• The global evaluations C = Cµ:

a b c

C(·) 0.95 0.7885 0.8692
20 C(·) 19 15.77 17.384

For this solution, we observe an absolute dispersion of 0.38242 (cf. (6.14)), that is a relative
dispersion of 0.38242/ ln 3 = 0.34810. This small value shows that few marks are really taken
into account in the aggregation phase. Such a phenomenon is compatible with the fact that
criterion St is a favor (a3 = 1 and favor(3) = 1).

Moreover, we have orness(Cµ) = 0.75642 and the aggregation is of disjunctive type. This is
not surprising since the rules given in the problem globally favor the students, although criterion
St was not a priori considered as a favor in the sense of (6.5).

Suppose that to avoid such a favor effect, the decision maker proposes a degree of orness less
than 0.6. Introducing the additional constraint7

1
2

∑

i∈N

ai +
1
6

∑

{i,j}⊆N

aij ≤ 0.6

in the linear program yields the following solution (for δ = 0.025 fixed):
7Of course, this value 0.6 has no precise signification. Our purpose is simply to observe the behavior of the

solution when lowering the degree of tolerance.
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• Objective function: ε = 0.025909

• Apparent weights ai and real weights I(i):

Al Ca St
ai 0.4589 0.02591 0.8152

I(i) 0.3219 0.1054 0.5727

• Veto and favor degrees:

Al Ca St
veto(i) 0.38212 0.27387 0.54399
favor(i) 0.60065 0.38416 0.8152

• Interaction indices aij :

Ca St
Al 0.1848 -0.4589
Ca -0.02591

• The global evaluations C = Cµ:

a b c

C(·) 0.8853 0.7835 0.8344
20C(·) 17.706 15.67 16.688

For this new solution, the orness is 0.6 and the score of student a went down from 19 to 17.7.
Also, criterion St is no more a favor (favor(3) = 0.8152) and the absolute dispersion increased
up to 0.73056 (relative dispersion = 0.66499).

Example 6.4.3 (a real application) Consider the problem of the evaluation of 5 trainees
learning to drive military tanks8. Trainees are evaluated by instructors according to 4 criteria:
precision firing (1), swiftness of target detection (2), path choice (3), and communication (4).
The available ratings (defined in [0, 1]) are given in the following table:

name crit. 1 crit. 2 crit. 3 crit. 4
Arthur (A) 1 1 0.75 0.25

Lancelot (L) 0.75 0.75 0.75 0.75
Yvain (Y) 1 0.625 0.50 1

Perceval (P) 0.25 0.50 0.75 0.75
Erec (E) 0.375 1 0.50 0.75

The following rankings are then proposed by the expert (instructor):

L ÂA Y ÂA E ÂA P ÂA A

4 ÂN

{
1
2

}
ÂN 3

14
24

}
ÂP 0 ÂP 12.

For δ = 0.05, we obtain the following solution:
8This example was proposed by Grabisch (Thomson-CSF, Central Research Laboratory, Orsay, France). It is

given in more details in a forthcoming paper [94].



6.5. AGGREGATION OF SCORES DEFINED ON ORDINAL SCALES 197

• Objective function: ε = 0.03890 (note that ε = 0 if δ = 0.1)

• Apparent weights ai and real weights I(i):

crit. 1 crit. 2 crit. 3 crit. 4
ai 0.0389 0.0389 0 0.0778

I(i) 0.1984 0.1755 0.22185 0.40425

• Veto and favor degrees:

crit. 1 crit. 2 crit. 3 crit. 4
veto(i) 0.68869 0.66833 0.71818 0.86302
favor(i) 0.24251 0.23233 0.24429 0.34264

• Interaction indices aij :

crit. 2 crit. 3 crit. 4
crit. 1 -0.0389 0.2304 0.1275
crit. 2 0 0.3121
crit. 3 0.2133

• The global evaluations C = Cµ:

A L Y P E
C(·) 0.3944 0.75 0.6611 0.4833 0.5722

For this solution we observe a degree of orness of 0.26544 and the instructor is conjunctive
oriented. This is consistent with the rather high degrees of veto obtained above. Such a behavior
can be a good thing: in high technology, it is often necessary to demand that most of criteria
are satisfied.

Moreover, we observe an absolute dispersion of 0.99323, that is a relative dispersion of
0.99323/ ln 4 = 0.71646.

We also observe that the global evaluation of Lancelot (0.75) could be predicted: it follows
from the compensativeness (Comp) of the Choquet integral.

Another approach to identifying the 2-order fuzzy measure consists in considering ε as a
variable parameter and maximizing the entropy over the same constraints, giving rise to a para-
metric convex programming problem. Since the entropy is a strictly convex function, the optimal
solution obtained for each admissible value of ε is unique. Then, it suffices to choose, after op-
timization, an appropriate value of ε in such a way that the entropy is not too low and at the
same time that the contrast wished in the solution be attained. Note that such an approach has
yet to be studied.

6.5 Aggregation of scores defined on ordinal scales

Thus far, we have investigated aggregation of cardinal data. But what about aggregation of
profiles defined on ordinal scales? The Choquet integral is no longer suitable since in general
it does not fulfil (CM). In this section, we attempt to bring some solutions to this aggregation
problem.
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6.5.1 The commensurability assumption

As for cardinal scales, we can easily see that aggregating values defined on independent ordinal
scales often leads to a dictatorial aggregation. For instance, Kim [106, Corollary 1.2] showed
that the non-constant operators M ∈ An(IR, IR) satisfying (Co, CMIS) are strongly equivalent
to a dictator xk (see Theorem 3.4.17).

Instead of considering independent ordinal scales, described by admissible transformations
φi ∈ Φ(E) on each criterion i, we shall assume that all the partial scores xa

i are defined according
to a same ordinal scale, meaning that all the scales are commensurable. In particular, this means
that the equivalence

xa
i ≤ xb

j ⇐⇒ φi(xa
i ) ≤ φj(xb

j)

holds for any pair of alternatives a, b ∈ A and any pair of criteria i, j ∈ N . In this case, we can
immediately see that φ1 = · · · = φn = φ and the aggregation operators must fulfil (CM).

6.5.2 Continuous or non-continuous operators?

We have seen in Section 3.4.2 that non-constant operators M ∈ An([a, b], IR) fulfilling (Co, CM)
are strongly equivalent to a Boolean max-min function B∨∧c (see Theorem 3.4.15). Moreover,
those operators M ∈ An(E, IR) that fulfil (Co, Id, CM) are exactly the Boolean max-min func-
tions (see Theorem 3.4.12). (Id) merely ensures that the scale of the global scores is the same
that the one of partial scores.

Thus, when continuity is assumed, the functions B∨∧c seem to be the only suitable operators
for aggregation of ordinal values. We have seen in Section 4.4.1 that B∨∧c is both a Choquet
and Sugeno integral with respect to a 0-1 fuzzy measure. Unfortunately, it seems impossible to
express the weights of criteria from such a 0-1 fuzzy measure.

Perhaps the continuity property is responsible for this deadlock. In fact, non-continuous
operators M fulfilling (CM) are still to be characterized. However, we already know that some of
them are pathological in the sense that they are Boolean max-min functions almost everywhere
in the definition set (see Section 3.4.2). Note also that the class of Boolean max-min functions
on [a, b]n have been characterized as the operators fulfilling (In, Id, CM’), see Theorem 3.4.20.

The problem of aggregating ordinal values seems to be a difficult one and has still to be
investigated in details. We propose here a solution for the case of independent criteria. Assume
that the weights ω1, . . . , ωn are rational numbers given according to a ratio scale. Then there
exist pi, q ∈ IN, q 6= 0,

∑
i pi = q such that

pi = q ωi.

Then, starting with the median operator, which is a particular B∨∧c (see Section 4.4.3), we can
weight this operator in the following way9:

medianω(x) = median(p1 ¯ x1, . . . , pn ¯ xn), x ∈ En.

Note that this process has already been presented for quasi-arithmetic means, see Section 3.2.1.

When a cardinal fuzzy measure is given on the criteria, it seems preferable to use the relational
approach presented in Section 1.3.2.

9Of course, when an even number of arguments is considered, the result can be a pair or an interval.
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6.5.3 Commensurability between the partial scores and the fuzzy measure

Consider the very particular case where the fuzzy measure given on criteria is ordinal in nature
and whose values can be compared with the partial scores. In this case, the xa

i ’s and the µT ’s
belong to a same ordinal scale. This means that µT can no longer be interpreted as the weight
of coalition T , but rather as a threshold or an aspiration degree. For instance, in the Sugeno
integral

Sµ(x) =
∨

T⊆N

[
µT ∧ (

∧

i∈T

xi)
]
,

if the score
∧

i∈T xi is less than the threshold µT then
∧

i∈T xi is considered in the aggregation.
Otherwise, if

∧
i∈T xi is greater than µT then the threshold is attained and µT can be considered

in the aggregation.
Such a situation also occurs in decision under uncertainty when only qualitative (ordinal)

information is available, see e.g. [41, 51, 52].

Definition 6.5.1 (CMCFM) Mµ ∈ An([0, 1], IR) is comparison meaningful for ordinal val-
ues with commensurable fuzzy measure scale if, for all φ ∈ Φ([0, 1]), all x, x ∈ [0, 1]n and all fuzzy
measures µ, µ′ on N , we have

Mµ(x) ≤ Mµ′(x′) ⇐⇒ Mφ(µ)(φ(x)) ≤ Mφ(µ′)(φ(x′)).

We now show that, under continuity, the Sugeno integrals are the only suitable aggregation
operators in this context.

Theorem 6.5.1 Mµ ∈ An([0, 1], IR) depends continuously on a fuzzy measure µ on N and
fulfils (Co, Id, CMCFM) if and only if Mµ = Sµ.

Proof. (Sufficiency) Trivial.
(Necessity) It is clear that Mµ can be considered as a function of the xi’s and the µT ’s

(T 6= ∅, N), that is a function with n + 2n − 2 arguments:

Mµ(x) = M ′(x1, . . . , xn; µ1, . . . , µN\1), x ∈ [0, 1]n.

This function fulfils (Co, Id, CM) on [0, 1]n+2n−2. By Theorem 3.4.12, there exists a set function
c′ : 2{1,...,n+2n−2} → {0, 1} such that

M ′(x;µ) = B∨∧c′ (x; µ), ∀x ∀µ,

that is
M ′(x;µ) =

∨

T1⊆N

∨

T2⊆2N

T2 6=∅,N

c′T1,T2

[( ∧

k∈T1

xk

)
∧

( ∧

K⊆T2

µK

)]
, ∀x ∀µ.

Since Mµ fulfils (Id), we have M ′(0;µ) = 0 for all µ, that is

∨

T2⊆2N

T2 6=∅,N

c′∅,T2

( ∧

K⊆T2

µK

)
= 0, ∀µ,

and there is no ‘term’ independent of variables xi in M ′(x; µ). Now, we can easily see that Mµ

fulfils (In, SMin, SMax), and we then can conclude by Theorem 4.3.3.
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Notes

1. The Shapley integral seems to be a previously unknown aggregation operator. Although its
use is not suitable when interacting criteria are considered, it deserves to be characterized.
Such a characterization has yet to be done.

2. The concept of degree of disjunction is due to Dujmovic [54, 55]. In fact, he only applied
his definition to the particular case of root-power means. On the other hand, Yager [192]
introduced independently the degree of orness of an OWA in an intuitive way. In this chap-
ter, we have adapted the definition of Dujmovic to the Choquet integral and then observed
that the degree of orness of an OWA is actually its degree of disjunction. This enabled
us to establish a connection between totally independent papers. We then interpreted this
concept as a degree of tolerance.

3. The definitions of veto and favor criteria have been proposed by Dubois and Koning [42]
and in a revisited way by Grabisch [83]. Since such criteria occur rarely in applications,
we have proposed to extend these concepts to degrees of veto and favor for any criterion.
A first attempt was done using probabilities, and another by axiomatic characterization.

4. The concept of entropy defined on a probability measure is well known and its use in
MCDM was proposed by Yager [192] for the OWA operators. In this chapter we have
properly generalized this concept to a general fuzzy measure. This generalization has yet
to be characterized.



Chapter 7

Approximations of set functions

When a function describing some complicated relationship is given, one often seeks to replace
it by a simpler functional form, usually linear, which approximates the given one. In this final
chapter, we intend to study this sort of operation for general set functions, fuzzy measures and
Choquet integrals.

Following common practice in regression analysis, we shall use the least squares criterion to
choose a best approximation. In a multicriteria decision problem modelled by a Choquet integral
Cµ, it could be interesting to find the best k-order fuzzy measure µ(k) that minimizes

∫

[0,1]n
[Cµ(x)− Cµ(k)(x)]2 dx. (7.1)

Note however that the distance used here could be discussed; indeed, another way for ap-
proximating a given fuzzy measure consists in minimizing

∑

T⊆N

[µT − µ
(k)
T ]2. (7.2)

Thus, the choice of the distance should be dictated by the nature of the decision problem taken
in consideration. For instance, it is assumed in (7.1) that all the profiles in [0, 1]n have the same
importance and are uniformly distributed.

Note also that other methods of approximation can be used, as for example the so-called upper
and lower approximations, see e.g. Dubois and Prade [48, 50] and Grabisch [85]. Although they
are very interesting, we will not approach these problems here.

In Section 7.1 we present the problem of approximations of pseudo-Boolean functions which
have been introduced and partially solved by Hammer and Holzman [95]. In Section 7.2, we
investigate the approximations of Lovász extensions. Finally, in Section 7.3, we apply the results
obtained to the problems (7.1) and (7.2). The links between the linear approximations (k = 1)
and the Shapley power indices are also studied.

7.1 Approximations of pseudo-Boolean functions

Hammer and Holzman [95] investigated the approximation of a pseudo-Boolean function by a
multilinear polynomial of (at most) a specified degree. According to them, fixing k ∈ IN with
k ≤ n, the best k-th approximation of f is the multilinear polynomial f (k) : {0, 1}n → IR of

201
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degree ≤ k defined by
f (k)(x) =

∑
T⊆N
t≤k

a
(k)
T

∏

i∈T

xi

which minimizes ∑

x∈{0,1}n

[f(x)− f (k)(x)]2

among all multilinear polynomials of degree ≤ k. They proved that the best k-th approximation
f (k) is given by the unique solution {a(k)

T |T ⊆ N, t ≤ k} of the triangular linear system:

1
2n

∑

x∈{0,1}n

∆Sf (k)(x) =
1
2n

∑

x∈{0,1}n

∆Sf(x), ∀S ⊆ N, s ≤ k. (7.3)

They also solved this system for k = 1 and k = 2. In this section, we intend to solve the system
for any k ≤ n.

Let I
(k)
B be the Banzhaf interaction index related to f (k). By (5.25), the system (7.3) can be

written as
I

(k)
B (S) = IB(S), ∀S ⊆ N, s ≤ k, (7.4)

and by (5.12), it becomes

∑
T⊇S
t≤k

(
1
2
)t−sa

(k)
T = IB(S), ∀S ⊆ N, s ≤ k.

In particular, we have a
(k)
S = IB(S) for all S ⊆ N such that s = k. Hammer and Holzman [95,

Sect. 3] obtained this result for k = 1: a
(1)
i = φB(i) for all i ∈ N .

By (5.12), we observe immediately that I
(k)
B (S) = 0 for all S ⊆ N such that s > k. Hence,

by using the passage formula from IB to a, we have

a
(k)
S =

∑
J⊇S
j≤k

(−1
2
)j−sI

(k)
B (J), ∀S ⊆ N, s ≤ k.

The system (7.4) then becomes

a
(k)
S =

∑
J⊇S
j≤k

(−1
2
)j−sIB(J), ∀S ⊆ N, s ≤ k,

and by (5.12), we have, for all S ⊆ N with s ≤ k,

a
(k)
S =

∑
J⊇S
j≤k

(−1
2
)j−s

∑

T⊇J

(
1
2
)t−jaT

=
∑

T⊇S

(
1
2
)t−saT

∑
J:S⊆J⊆T

j≤k

(−1)j−s

=
∑

T⊇S

(
1
2
)t−saT

min(k,t)∑

j=s

(
t− s

j − s

)
(−1)j−s.
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However, we have

min(k,t)∑

j=s

(
t− s

j − s

)
(−1)j−s =

{
(1− 1)t−s, if t ≤ k,
(−1)k−s

(t−s−1
k−s

)
, if t > k (use induction over k ≥ s).

Therefore, we obtain an explicit formula for a
(k)
S :

a
(k)
S = aS + (−1)k−s

∑
T⊇S
t>k

(
t− s− 1

k − s

)
(
1
2
)t−s aT , ∀S ⊆ N, s ≤ k. (7.5)

Some particular cases are shown in Table 7.1. We thus retrieve the solutions obtained by Hammer
and Holzman for k = 1 and k = 2.

a
(0)
∅ =

∑

T⊆N

1
2t

aT

a
(1)
∅ =

∑

T⊆N

−(t− 1)
2t

aT

a
(1)
i =

∑

T3i

1
2t−1

aT , i ∈ N

a
(2)
∅ =

∑

T⊆N

(t− 1)(t− 2)
2t+1

aT

a
(2)
i =

∑

T3i

−(t− 2)
2t−1

aT , i ∈ N

a
(2)
ij =

∑

T3i,j

1
2t−2

aT , {i, j} ⊆ N

a
(n−1)
S = aS − (−1

2
)n−s aN , S ⊆ N, s ≤ n− 1

Table 7.1: Coefficients of the best k-th approximation for some values of k

7.2 Approximations of Lovász extensions

7.2.1 Definition and computation

Adopting an approach similar to the one of Hammer and Holzman [95], we define the problem
of approximations of Lovász extensions as follows.

Definition 7.2.1 Let f̂ be the Lovász extension of a pseudo-Boolean function f , and let k be
an integer, 0 ≤ k ≤ n. The best k-th approximation of f̂ is the min-polynomial f̂ (k) : [0, 1]n → IR
of degree ≤ k defined by

f̂ (k)(x) =
∑
T⊆N
t≤k

a
(k)
T

∧

i∈T

xi (7.6)
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which minimizes ∫

[0,1]n
[f̂(x)− f̂ (k)(x)]2 dx

among all min-polynomials of degree ≤ k. We write f̂ (k) = A(k)(f̂).

When k = 0, the definition gives the best constant approximation; when k = 1, it gives the
best linear approximation; when k = 2, it gives the best min-quadratic approximation; finally,
every f̂ is its own best n-th approximation.

In this section we intend to compute A(k)(f̂) for any k ≤ n. The result will be presented in
Theorem 7.2.1 below.

Observe first that the set V (n) of all min-polynomials f̂ of the form

f̂(x) =
∑

T⊆N

aT

∧

i∈T

xi, x ∈ [0, 1]n,

is a linear (or vector) space isomorphic to IR2n
: indeed, any function f̂ ∈ V (n) can be identified

with the vector listing its 2n coefficients aT in IR2n
(assuming a fixed ordering of the elements of

2N ). In the sequel, we shall often make this identification.
Moreover, it is clear that the binary operation 〈· , ·〉 : V (n) × V (n) → IR defined by

〈f̂1, f̂2〉 :=
∫

[0,1]n
f̂1(x) f̂2(x) dx

is a scalar product in V (n). This scalar product allows to define a norm ‖f̂‖ := 〈f̂ , f̂〉1/2 and
then a distance d(f̂1, f̂2) := ‖f̂1 − f̂2‖ in V (n).

Now, for any k ∈ IN with k ≤ n, define V (k) as the subset of all min-polynomials f̂ (k) of
degree ≤ k, i.e. of the form (7.6). Thus, V (k) is a linear subspace in V (n) and one of its bases
can be given by

B(k) =
{ ∧

j∈S

xj

∣∣∣ S ⊆ N, s ≤ k
}
.

In particular, we have

dim(V (k)) =
k∑

s=0

(
n

s

)
.

Existence and uniqueness of the best k-th approximation follow from the fact that A(k) is the
orthogonal projection onto V (k). Moreover, since the subspaces V (k) are nested, the operators
A(k) commute in the following sense:

k ≤ k′ ⇒ A(k)(A(k′)(f̂)) = A(k)(f̂), f̂ ∈ V (n). (7.7)

We thus observe that A(k)(f̂) can be attained from f̂ by carrying out successively the projec-
tions A(n−1), A(n−2), . . . , A(k). We now search for the relation that links any two consecutive
projections. This relation will allow us to compute gradually A(k)(f̂) from f̂ .

Fix k ∈ IN with k ≤ n− 1, and assume that f̂ (k+1) = A(k+1)(f̂) is given. By (7.7), A(k)(f̂) is
the orthogonal projection onto V (k) of A(k+1)(f̂) and is thus characterized by the fact that

A(k)(f̂)−A(k+1)(f̂)
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is orthogonal to V (k) or equivalently to all functions of a basis of V (k). Consequently, A(k)(f̂) is
given by the unique solution f̂ (k) of the following system:

∫

[0,1]n
[f̂ (k)(x)− f̂ (k+1)(x)] (

∧

j∈S

xj) dx = 0, S ⊆ N, s ≤ k. (7.8)

More precisely, given the coefficients a
(k+1)
T of A(k+1)(f̂), the coefficients a

(k)
T of A(k)(f̂) are given

by the unique solution of the linear system:
∑
T⊆N
t≤k

IS,T a
(k)
T =

∑
T⊆N

t≤k+1

IS,T a
(k+1)
T , S ⊆ N, s ≤ k, (7.9)

where
IS,T :=

∫

[0,1]n
(
∧

i∈T

xi) (
∧

j∈S

xj) dx. (7.10)

To solve this system, we need to calculate the explicit value of the integral (7.10). It is the
purpose of the following lemma.

Lemma 7.2.1 For all T, S ⊆ N , there holds
∫

[0,1]n
(
∧

i∈T

xi) (
∧

j∈S

xj) dx =
t + s + 2

(|T ∪ S|+ 2)(t + 1)(s + 1)
. (7.11)

Proof. Observe first that we can assume that T and S are such that |T ∪ S| = n, so that
|T ∩ S| = t + s− n. Moreover, suppose that T and S are non-empty. Define

Aπ := {x ∈ [0, 1]n |xπ(1) < · · · < xπ(n)}, π ∈ Πn,

Iπ :=
∫

Aπ

(
∧

i∈T

xi) (
∧

j∈S

xj) dx, π ∈ Πn,

Π(p)
n (R) := {π ∈ Πn |π(1), . . . , π(p) ∈ R}, R ⊆ N, p ∈ N, p ≤ |R|.

On the one hand, we have |Π(1)
n (T ∩S)| = |T ∩S| (n−1)!, where |T ∩S| corresponds to all the

possible choices of π(1) in T ∩ S, and (n− 1)! to all the permutations of the remaining elements
in N . Moreover, for all π ∈ Π(1)

n (T ∩ S), we have

Iπ =
∫ 1

0

∫ xπ(n)

0
· · ·

∫ xπ(2)

0
x2

π(1) dxπ(1) · · · dxπ(n) =
2

(n + 2)!

and ∑

π∈Π
(1)
n (T∩S)

Iπ =
2 |T ∩ S| (n− 1)!

(n + 2)!
=

2 (t + s− n)
n(n + 1)(n + 2)

. (7.12)

On the other hand, we have

|Π(p)
n (S \ T )| =

(
n− t

p

)
p! t (n− p− 1)!

where
(n−t

p

)
corresponds to all the choices of π(1), . . . , π(p) in S \ T , p! to all the permutations

of these elements, t to all the choices of π(p + 1) in T , and (n− p− 1)! to all the permutations
of the remaining elements in N . Moreover, for all π ∈ Π(p)

n (S \ T ), we have

Iπ =
∫ 1

0

∫ xπ(n)

0
· · ·

∫ xπ(p+2)

0
xπ(p+1)

∫ xπ(p+1)

0
· · ·

∫ xπ(2)

0
xπ(1) dxπ(1) · · · dxπ(n) =

p + 2
(n + 2)!

,
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and
n−t∑

p=1

∑

π∈Π
(p)
n (S\T )

Iπ =
t

(n + 2)!

n−t∑

p=1

(
n− t

p

)
p! (n− p− 1)! (p + 2)

=
t! (n− t)!
(n + 2)!

n−t∑

p=1

(
n− p− 1

t− 1

)
(p + 2)

=
t! (n− t)!
(n + 2)!

[
(n + 2)

n−t∑

p=1

(
n− p− 1

t− 1

)
− t

n−t∑

p=1

(
n− p

t

)]

=
t! (n− t)!
(n + 2)!

[
(n + 2)

(
n− 1

t

)
− t

(
n

t + 1

)]
,

that is
n−t∑

p=1

∑

π∈Π
(p)
n (S\T )

Iπ =
(n− t)(n + 2t + 2)

n(n + 1)(n + 2)(t + 1)
. (7.13)

Similarly, we can write

n−s∑

p=1

∑

π∈Π
(p)
n (T\S)

Iπ =
(n− s)(n + 2s + 2)

n(n + 1)(n + 2)(s + 1)
. (7.14)

Finally, it is clear that we have

Πn =
[
Π(1)

n (T ∩ S)
]
∪

[ n−t⋃

p=1

Π(p)
n (S \ T )

]
∪

[ n−s⋃

p=1

Π(p)
n (T \ S)

]

and by (7.12)–(7.14), we have

∫

[0,1]n
(
∧

i∈T

xi) (
∧

j∈S

xj) dx =
∑

π∈Π
(1)
n (T∩S)

Iπ +
n−t∑

p=1

∑

π∈Π
(p)
n (S\T )

Iπ +
n−s∑

p=1

∑

π∈Π
(p)
n (T\S)

Iπ

=
t + s + 2

(n + 2)(t + 1)(s + 1)
,

as desired. We can easily see that the result still holds if T = ∅ or S = ∅.
Now, we present the solution of the system (7.9). This solution provides a recursive formula

linking A(k)(f̂) to A(k+1)(f̂).

Lemma 7.2.2 Let k ∈ IN with k ≤ n − 1. Given the coefficients a
(k+1)
T of A(k+1)(f̂), the

coefficients a
(k)
T of A(k)(f̂) are given by

a
(k)
S = a

(k+1)
S + (−1)k+s

(k+s+1
k+1

)
(2k+2

k+1

)
∑
T⊇S

t=k+1

a
(k+1)
T , S ⊆ N, s ≤ k. (7.15)

Proof. We only have to prove that the coefficients a
(k)
S given by (7.15) satisfy the system (7.9).

For this purpose, let us show that, for all S, T ⊆ N with s ≤ k and t = k + 1, we have

∑

J⊆T

IS,J (−1)k+j

(
k + j + 1

k + 1

)
= 0. (7.16)
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Partitioning J ⊆ T into P ⊆ T \ S and Q ⊆ T ∩ S, we have

∑

J⊆T

IS,J (−1)k+j

(
k + j + 1

k + 1

)
=

∑

P⊆T\S

∑

Q⊆T∩S

IS,P∪Q (−1)k+p+q

(
k + p + q + 1

k + 1

)
.

Next, setting R := T ∩ S (r ≤ s ≤ k) and using (7.10) and (7.11), this latter expression can be
rewritten as

k−r+1∑

p=0

(
k − r + 1

p

)
r∑

q=0

(
r

q

)
p + q + s + 2

(p + s + 2)(p + q + 1)(s + 1)
(−1)k+p+q

(
k + p + q + 1

k + 1

)
.

or equivalently

−
k−r+1∑

p=0

(
k − r + 1

p

)
(−1)k−r+1−p 1

p + s + 2

r∑

q=0

(
r

q

)
(−1)r−q g(p + q), (7.17)

where g : IN → IR is defined by

g(z) =
z + s + 2

(z + 1)(s + 1)

(
z + k + 1

k + 1

)

=
( 1
z + 1

+
1

s + 1

)(
z + k + 1

k + 1

)

=
1

k + 1

(
z + k + 1

k

)
+

1
s + 1

(
z + k + 1

k + 1

)
,

for all z ∈ IN.
Regard the difference operator

∆n f(n) := f(n + 1)− f(n)

for functions on IN. It is well known that we have (cf. Berge [19, Chap. 1, Sect. 8])

∆k
n f(n) =

k∑

j=0

(
k

j

)
(−1)k−j f(n + j), k ∈ IN. (7.18)

Applying this to g, we obtain

r∑

q=0

(
r

q

)
(−1)r−q g(p + q) = ∆r

p g(p) =
1

k + 1

(
p + k + 1

k − r

)
+

1
s + 1

(
p + k + 1
k − r + 1

)
,

and (7.17) becomes

−
k−r+1∑

p=0

(
k − r + 1

p

)
(−1)k−r+1−p 1

p + s + 2

( 1
k + 1

(
p + k + 1

k − r

)
+

1
s + 1

(
p + k + 1
k − r + 1

))
.

Applying (7.18) again, we see that this latter espression can be written as

−
[
∆k−r+1

z

1
z + s + 2

( 1
k + 1

(
z + k + 1

k − r

)
+

1
s + 1

(
z + k + 1
k − r + 1

))]
z=0

.

We now show that the expression in brackets is identically zero. This will finally prove (7.16).
Let us consider two exclusive cases:
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• If s = k then

1
z + s + 2

( 1
k + 1

(
z + k + 1

k − r

)
+

1
s + 1

(
z + k + 1
k − r + 1

))

=
1

(k + 1)(z + k + 2)

(
z + k + 2
k − r + 1

)

=
1

(k + 1)(k − r + 1)

(
z + k + 1

k − r

)

is a polynomial Pk−r(z) of degree k − r, and ∆k−r+1
z Pk−r(z) = 0.

• If r ≤ s ≤ k − 1 then

1
z + s + 2

( 1
k + 1

(
z + k + 1

k − r

)
+

1
s + 1

(
z + k + 1
k − r + 1

))

=
1

z + s + 2

( 1
(k + 1)(k − r)!

k+1∏

i=r+2

(z + i) +
1

(s + 1)(k − r + 1)!

k+1∏

i=r+1

(z + i)
)

is a polynomial P ′
k−r(z) of degree k − r, and ∆k−r+1

z P ′
k−r(z) = 0.

Now, from (7.16), we have, for all S, T ⊆ N with s ≤ k and t = k + 1,

∑
J⊆T
j≤k

IS,J(−1)k+j

(
k + j + 1

k + 1

)
= IS,T

(
2k + 2
k + 1

)
.

Multiplying this identity by a
(k+1)
T and then summing over T , we obtain

∑
T⊆N

t=k+1

∑
J⊆T
j≤k

IS,J (−1)k+j

(k+j+1
k+1

)
(2k+2

k+1

) a
(k+1)
T =

∑
T⊆N

t=k+1

IS,T a
(k+1)
T

⇔
∑
J⊆N
j≤k

IS,J (−1)k+j

(k+j+1
k+1

)
(2k+2

k+1

)
∑
T⊇J

t=k+1

a
(k+1)
T =

∑
T⊆N

t=k+1

IS,T a
(k+1)
T

⇔
∑
J⊆N
j≤k

IS,J (a(k)
J − a

(k+1)
J ) =

∑
T⊆N

t=k+1

IS,T a
(k+1)
T (by (7.15))

⇔
∑
J⊆N
j≤k

IS,J a
(k)
J =

∑
T⊆N

t≤k+1

IS,T a
(k+1)
T .

This shows that the coefficients a
(k)
T given in the statement satisfy the system (7.9).

Now, let us turn to the explicit formula giving the coefficients of A(k)(f̂) in terms of the
coefficients of f̂ . It is worth comparing this formula with the solution (7.5) of the Hammer-
Holzman approximation problem.

Theorem 7.2.1 The coefficients of A(k)(f̂) are given from those of f̂ by

a
(k)
S = aS + (−1)k+s

∑
T⊇S
t>k

(k+s+1
s

)(t−s−1
k−s

)
(t+k+1

k+1

) aT , S ⊆ N, s ≤ k. (7.19)
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Proof. Due to the uniqueness of A(k)(f̂), we only have to prove that the coefficients a
(k)
S given

by (7.19) fulfil the equation (7.15).
Let k ∈ IN, k ≤ n− 1, and set S ⊆ N , s ≤ k. By substituting (7.19) into (7.15), we obtain,

after removing the common term aS ,

(−1)k+s
∑
R⊇S
r>k

(k+s+1
k+1

)(r−s−1
k−s

)
(r+k+1

k+1

) aR

= (−1)k+s+1
∑
R⊇S

r>k+1

(k+s+2
k+2

)(r−s−1
k−s+1

)
(r+k+2

k+2

) aR + (−1)k+s

(k+s+1
k+1

)
(2k+2

k+1

)
∑
T⊇S

t=k+1

[
aT +

∑
R⊇T

r>k+1

(2k+3
k+2

)
(r+k+2

k+2

) aR

]
.

Let us show that this equality holds. Dividing by (−1)k+s and then removing the terms corre-
sponding to aR with r = k + 1, the equality becomes

∑
R⊇S

r>k+1

(k+s+1
k+1

)(r−s−1
k−s

)
(r+k+1

k+1

) aR = −
∑
R⊇S

r>k+1

(k+s+2
k+2

)(r−s−1
k−s+1

)
(r+k+2

k+2

) aR +
∑
R⊇S

r>k+1

(k+s+1
k+1

)(2k+3
k+2

)
(2k+2

k+1

)(r+k+2
k+2

)
∑

T :S⊆T⊆R
t=k+1

aR.

Fix R ⊇ S with r > k + 1 and consider the coefficients of aR in the previous equality. By
identification, we have

(k+s+1
k+1

)(r−s−1
k−s

)
(r+k+1

k+1

) = −
(k+s+2

k+2

)(r−s−1
k−s+1

)
(r+k+2

k+2

) +

(k+s+1
k+1

)(2k+3
k+2

)( r−s
k−s+1

)
(2k+2

k+1

)(r+k+2
k+2

) ,

and this equality can be easily verified.

Theorem 7.2.1 gives the general solution of the approximation problem proposed in Defini-
tion 7.2.1. Some particular cases are shown in Table 7.2.

We also observe that setting S = ∅ in (7.8) provides

orness(A(k)(f̂)) = orness(f̂), f̂ ∈ V (n).

Example 7.2.1 Let f̂ : [0, 1]4 → IR be given by

f̂(x) =
3
10

[
x1 + x2 + x3 + (x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

−21
25

(x1 ∧ x2 ∧ x3) +
1
25

(x1 ∧ x2 ∧ x3 ∧ x4).

The best constant approximation is given by

A(0)(f̂) =
137
250

,

the best linear approximation by

(A(1)f̂)(x) =
1

100
+

89
250

(x1 + x2 + x3) +
1

125
x4

and the best min-quadratic approximation by

(A(2)f̂)(x) = − 27
700

+
803
1750

(x1 + x2 + x3)− 8
875

x4

− 19
175

[
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

+
2

175

[
(x1 ∧ x4) + (x2 ∧ x4) + (x3 ∧ x4)

]
.
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a
(0)
∅ =

∑

T⊆N

1
t + 1

aT

a
(1)
∅ =

∑

T⊆N

−2(t− 1)
(t + 1)(t + 2)

aT

a
(1)
i =

∑

T3i

6
(t + 1)(t + 2)

aT , i ∈ N

a
(2)
∅ =

∑

T⊆N

3(t− 1)(t− 2)
(t + 1)(t + 2)(t + 3)

aT

a
(2)
i =

∑

T3i

−24(t− 2)
(t + 1)(t + 2)(t + 3)

aT , i ∈ N

a
(2)
ij =

∑

T3i,j

60
(t + 1)(t + 2)(t + 3)

aT , {i, j} ⊆ N

a
(n−1)
S = aS + (−1)n+s−1 (n + s)!n!

s! (2n)!
aN , S ⊆ N, s ≤ n− 1

Table 7.2: Coefficients of A(k)(f̂) for some values of k

Remark: Let S = {i1, . . . , is} and suppose that f̂ does not depend on xi1 ∧ · · · ∧ xis , that is
aT = 0 for all T ⊇ S. Then, by (7.19), a

(k)
T = 0 whenever T ⊇ S and A(k)(f̂) does not depend

on xi1 ∧ · · · ∧ xis .
In other terms, for all S ⊆ N ,

∆S f̂(x) = 0 ∀x ∈ [0, 1]n ⇒ ∆S (A(k)f̂)(x) = 0 ∀x ∈ [0, 1]n.

7.2.2 Approximations having one fixed value

In certain applications of the theory developed here, one may be interested only in approximations
that have fixed values at x = 0 and x = 1 (where 0 and 1 are shorthand for (0, . . . , 0) and (1, . . . , 1)
respectively). In the present section, we investigate the case where the approximations have a
fixed value at x = 0.

For any α ∈ IR, let us introduce V (k,α) for the set of all min-polynomials f̂ (k,α) of degree ≤ k
which fulfil f̂ (k,α)(0) = α. All these functions are of the form:

f̂ (k,α)(x) = α +
∑
T⊆N
1≤t≤k

a
(k,α)
T

∧

i∈T

xi, x ∈ [0, 1]n. (7.20)

Given any Lovász extension f̂ , we are searching for a min-polynomial f̂ (k,α) which minimizes
∫

[0,1]n
[f̂(x)− f̂ (k,α)(x)]2 dx

among all min-polynomials of the form (7.20), and we write f̂ (k,α) = A(k,α)(f̂). Of course, this
problem is relevant only if α 6= (A(k)f̂)(0).
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First, it is clear that V (k,α) is an affine subspace in V (k) and one of its bases can be given by

B(k,α) =
{∧

i∈S

xi

∣∣∣ S ⊆ N, 1 ≤ s ≤ k
}
.

In particular, we have
dim(V (k,α)) = dim(V (k))− 1.

Next, as in Definition 7.2.1, existence and uniqueness follow from the observation that A(k,α)(f̂)
is the orthogonal projection of f̂ onto V (k,α). This projection may be realized by first projecting f̂
onto V (k) and then projecting the obtained function onto V (k,α). Thus, one can obtain A(k,α)(f̂)
from the best k-th approximation f̂ (k) = A(k)(f̂) given in Theorem 7.2.1. The following result
shows how the coefficients of A(k,α)(f̂) can be calculated.

Theorem 7.2.2 The coefficients of A(k,α)(f̂) are given from those of A(k)(f̂) by

a
(k,α)
T = a

(k)
T + c

(k,α)
T , T ⊆ N, 1 ≤ t ≤ k,

where the values c
(k,α)
T correspond to the unique solution of the linear system:

∑
T⊆N
1≤t≤k

IS,T c
(k,α)
T = − 1

s + 1
σ(k,α), S ⊆ N, 1 ≤ s ≤ k, (7.21)

with σ(k,α) = α− (A(k)f̂)(0).

Proof. Since the function A(k,α)(f̂) is the orthogonal projection onto V (k,α) of f̂ (k) = A(k)(f̂),
it is characterized by the fact that

A(k,α)(f̂)−A(k)(f̂)

is orthogonal to V (k,α) or equivalently to all functions of B(k,α). Therefore, A(k,α)(f̂) is given by
the unique solution f̂ (k,α) of the following system:

∫

[0,1]n
[f̂ (k,α)(x)− f̂ (k)(x)] (

∧

i∈S

xi) dx = 0, S ⊆ N, 1 ≤ s ≤ k.

Setting c
(k,α)
T := a

(k,α)
T − a

(k)
T , we can see from (7.20) that this system is equivalent to (7.21).

Consider first the case of k = 1. Setting S = {p}, p ∈ N , the system (7.21) is written

1
4

∑

i∈N\p
c
(1,α)
i +

1
3

c(1,α)
p = − 1

2
σ(1,α), p ∈ N,

and the solution is
c
(1,α)
i = − 6

3n + 1
σ(1,α), i ∈ N.

Therefore, by Theorem 7.2.2, the coefficients of A(1,α)(f̂) are given by




a
(1,α)
∅ = α

a
(1,α)
i = a

(1)
i − 6

3n+1 (α− a
(1)
∅ ), i ∈ N .
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For k ≥ 2, the system (7.21) seems to be difficult to solve. However, we conjecture that its
solution is such that

|T1| = |T2| ⇒ c
(k,α)
T1

= c
(k,α)
T2

. (7.22)

We already know that this is true for k = 1. In case of k = 2, assuming that (7.22) holds, one
can show that the solution of (7.21) is given by

c
(2,α)
i =

−36n + 12
8n2 + 5n + 3

σ(2,α), i ∈ N,

c
(2,α)
ij =

60
8n2 + 5n + 3

σ(2,α), i, j ∈ N,

and the conjecture remains true for k = 2. Theorem 7.2.2 then allows to deduce the coefficients
of A(2,α)(f̂).

Because of the complexity of the system (7.21), we restrict ourselves to the cases of k = 1
and k = 2. Table 7.3 gives the corresponding coefficients.

a
(1,α)
∅ = α

a
(1,α)
i = a

(1)
i − 6

3n + 1
(α− a

(1)
∅ ), i ∈ N

a
(2,α)
∅ = α

a
(2,α)
i = a

(2)
i +

−36n + 12
8n2 + 5n + 3

(α− a
(2)
∅ ), i ∈ N

a
(2,α)
ij = a

(2)
ij +

60
8n2 + 5n + 3

(α− a
(2)
∅ ), {i, j} ⊆ N

Table 7.3: Coefficients of A(k,α)(f̂) for k = 1 and k = 2

Example 7.1 (continued) Consider again the function f̂ : [0, 1]4 → IR defined by

f̂(x) =
3
10

[
x1 + x2 + x3 + (x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

−21
25

(x1 ∧ x2 ∧ x3) +
1
25

(x1 ∧ x2 ∧ x3 ∧ x4).

Then we have
(A(1,0)f̂)(x) =

586
1625

(x1 + x2 + x3) +
41

3250
x4

and

(A(2,0)f̂)(x) =
16049
37750

(x1 + x2 + x3)− 809
18875

x4

− 352
3775

[
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

+
101
3775

[
(x1 ∧ x4) + (x2 ∧ x4) + (x3 ∧ x4)

]
.
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7.2.3 Approximations having two fixed values

We now investigate the case where the approximations have fixed values at x = 0 and x = 1.
For any α, β ∈ IR, we define V (k,α,β) as the set of all min-polynomials f̂ (k,α,β) of degree ≤ k

which fulfil f̂ (k,α,β)(0) = α and f̂ (k,α,β)(1) = β. All these functions are of the form

f̂ (k,α,β)(x) =
∑
T⊆N
t≤k

a
(k,α,β)
T

∧

i∈T

xi, x ∈ [0, 1]n,

with 



a
(k,α,β)
∅ = α

∑
T⊆N
t≤k

a
(k,α,β)
T = β.

For a fixed j ∈ N , these functions can also be written as

f̂ (k,α,β)(x) = α + (β − α) xj +
∑

T⊆N,T 6=j
1≤t≤k

a
(k,α,β)
T (

∧

i∈T

xi − xj), x ∈ [0, 1]n. (7.23)

Given any Lovász extension f̂ , we are searching for a min-polynomial f̂ (k,α,β) which minimizes
∫

[0,1]n
[f̂(x)− f̂ (k,α,β)(x)]2 dx

among all min-polynomials of the form (7.23), and we write f̂ (k,α,β) = A(k,α,β)(f̂). This problem
is relevant only if α 6= (A(k)f̂)(0) or β 6= (A(k)f̂)(1).

The situation is similar to the previous one. V (k,α,β) is an affine subspace in V (k) and one of
its bases can be given by

B
(k,α,β)
j =

{∧

i∈S

xi − xj

∣∣∣ S ⊆ N, S 6= j, 1 ≤ s ≤ k
}

where j ∈ N . In particular, we have

dim(V (k,α,β)) = dim(V (k))− 2.

Moreover, A(k,α,β)(f̂) is the orthogonal projection of f̂ onto V (k,α,β). This projection may be
performed from A(k)(f̂) and we have the following.

Theorem 7.2.3 The coefficients of A(k,α,β)(f̂) are given from those of A(k)(f̂) by

a
(k,α,β)
T = a

(k)
T + c

(k,α,β)
T , T ⊆ N, 1 ≤ t ≤ k,

where the values c
(k,α,β)
T correspond to the unique solution of the linear system (j ∈ N being

fixed):

∑
T⊆N,T 6=j

1≤t≤k

(IS,T − Ij,T − IS,j +
1
3
) c

(k,α,β)
T

= (
1
2
− 1

s + 1
) σ(k,α) + (

1
3
− IS,j)σ(k,α,β), S ⊆ N, S 6= j, 1 ≤ s ≤ k, (7.24)

with σ(k,α) = α− (A(k)f̂)(0) and σ(k,α,β) = β − α− (A(k)f̂)(1) + (A(k)f̂)(0).
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Proof. The proof is similar to that of Theorem 7.2.2. A(k,α,β)(f̂) is given by the unique solution
f̂ (k,α,β) of the following system:

∫

[0,1]n
[f̂ (k,α,β)(x)− f̂ (k)(x)] (

∧

i∈S

xi − xj) dx = 0, S ⊆ N, S 6= j, 1 ≤ s ≤ k. (7.25)

From (7.23), we have, setting c
(k,α,β)
T := a

(k,α,β)
T − a

(k)
T ,

f̂ (k,α,β)(x)− f̂ (k)(x) = σ(k,α) + σ(k,α,β) xj +
∑

T⊆N,T 6=j
1≤t≤k

c
(k,α,β)
T (

∧

i∈T

xi − xj).

It follows that the system (7.25) is equivalent to (7.24).

Consider the case k = 1. Setting S = {p}, p ∈ N \ j, the system (7.24) is written
1
12

∑

i∈N\jp
c
(1,α,β)
i +

2
12

c(1,α,β)
p =

1
12

σ(1,α,β), p ∈ N \ j,

and the solution is
c
(1,α,β)
i =

1
n

σ(1,α,β), i ∈ N.

Using the same conjecture as in the previous section, one can show that, for k = 2, the
solution of (7.24) is given by

c
(2,α,β)
i =

−30n + 30
5n2 − 4n + 3

σ(2,α) +
−10n2 + 11n + 3
n(5n2 − 4n + 3)

σ(2,α,β), i ∈ N,

c
(2,α,β)
ij =

60
5n2 − 4n + 3

σ(2,α) +
30

5n2 − 4n + 3
σ(2,α,β), i, j ∈ N,

Theorem 7.2.3 provides the coefficients of A(1,α,β)(f̂) and A(2,α,β)(f̂). These coefficients are
presented in Table 7.4.

a
(1,α,β)

∅ = α

a
(1,α,β)
i = a

(1)
i +

1

n
(β − α−

∑
p∈N

a(1)
p ), i ∈ N

a
(2,α,β)

∅ = α

a
(2,α,β)
i = a

(2)
i +

−30n + 30

5n2 − 4n + 3
(α− a

(2)

∅ ) +
−10n2 + 11n + 3

n(5n2 − 4n + 3)
(β − α−

∑
p∈N

a(2)
p −

∑
{p,q}⊆N

a(2)
pq ), i ∈ N

a
(2,α,β)
ij = a

(2)
ij +

60

5n2 − 4n + 3
(α− a

(2)

∅ ) +
30

5n2 − 4n + 3
(β − α−

∑
p∈N

a(2)
p −

∑
{p,q}⊆N

a(2)
pq ), {i, j} ⊆ N

Table 7.4: Coefficients of A(k,α,β)(f̂) for k = 1 and k = 2

Example 7.1 (continued) For the function f̂ : [0, 1]4 → IR defined by

f̂(x) =
3
10

[
x1 + x2 + x3 + (x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

−21
25

(x1 ∧ x2 ∧ x3) +
1
25

(x1 ∧ x2 ∧ x3 ∧ x4),
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we have
(A(1,0,1)f̂)(x) =

337
1000

(x1 + x2 + x3)− 11
1000

x4

and

(A(2,0,1)f̂)(x) =
29419
67000

(x1 + x2 + x3)− 1937
67000

x4

− 181
1675

[
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

+
4

335

[
(x1 ∧ x4) + (x2 ∧ x4) + (x3 ∧ x4)

]
.

7.2.4 Increasing approximations having two fixed values

It is clear that any Lovász extension f̂ is increasing if and only if its restriction f to {0, 1}n

is also increasing. Moreover, the increasing monotonicity conditions are given by the following
linear inequalities, see (4.6):

∑

T :i∈T⊆S

aT ≥ 0, ∀S ⊆ N, ∀i ∈ S.

Now, for any α, β ∈ IR, we define V [k,α,β] as the set of all increasing min-polynomials f̂ [k,α,β]

of degree ≤ k which fulfil f̂ [k,α,β](0) = α and f̂ [k,α,β](1) = β. All these functions are of the form

f̂ [k,α,β](x) =
∑
T⊆N
t≤k

a
[k,α,β]
T

∧

i∈T

xi, x ∈ [0, 1]n,

with 



a
[k,α,β]
∅ = α

∑
T⊆N
t≤k

a
[k,α,β]
T = β

∑
T :i∈T⊆S

t≤k

a
[k,α,β]
T ≥ 0, S ⊆ N, i ∈ S.

Given any Lovász extension f̂ , we are searching for a min-polynomial f̂ [k,α,β] which minimizes
∫

[0,1]n
[f̂(x)− f̂ [k,α,β](x)]2 dx

among all min-polynomials belonging to V [k,α,β], and we write f̂ [k,α,β] = A[k,α,β](f̂). Of course
this problem is relevant only if A(k,α,β)(f̂) is not increasing.

In fact, for fixed f̂ ∈ V (n), we consider the following problem:

inf
{
‖f̂ − f̂ [k,α,β]‖2 : f̂ [k,α,β] ∈ V [k,α,β]

}
(7.26)

i.e. we are interested in those points (if any) of V [k,α,β] that are closest to f̂ for the distance d.
Due to the presence of the linear inequalities, the set V [k,α,β] is clearly a non-empty closed

convex polyhedron in V (k,α,β). Hence, the existence of a closest point in V [k,α,β] to f̂ is ensured
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and the inf in (7.26) is a min. Moreover, the convexity of V [k,α,β] implies uniqueness [101, Chap.
3, Sect. 3.1]. The point A[k,α,β](f̂) is called the projection of f̂ onto the polyhedron V [k,α,β].

Now, observe that, for all f̂ ∈ V (n) and all ĝ ∈ V [k,α,β], we have

‖f̂ − ĝ‖2 = ‖f̂ −A(k,α,β)(f̂)‖2 + ‖A(k,α,β)(f̂)− ĝ‖2.

Hence, A[k,α,β](f̂) can be obtained by projecting A(k,α,β)(f̂) onto V [k,α,β]. This projection is thus
given by the unique solution f̂ [k,α,β] of the following problem:

minimize ‖A(k,α,β)(f̂)− f̂ [k,α,β]‖2

=
∫

[0,1]n

[ ∑
T⊆N
t≤k

(a(k,α,β)
T − a

[k,α,β]
T )

∧

i∈T

xi

]2
dx

=
∑
T⊆N
t≤k

IT,T (a(k,α,β)
T − a

[k,α,β]
T ) + 2

∑

{S,T}⊆2N

s,t≤k

IS,T (a(k,α,β)
S − a

[k,α,β]
S )(a(k,α,β)

T − a
[k,α,β]
T )

subject to 



a
[k,α,β]
∅ = α

∑
T⊆N
t≤k

a
[k,α,β]
T = β

∑
T :i∈T⊆S

t≤k

a
[k,α,β]
T ≥ 0, S ⊆ N, i ∈ S.

This problem can be easily rewritten under the form of a quadratic program (QP). Indeed,
considering the vector1

y = (a(k,α,β)
T − a

[k,α,β]
T )T⊆N

t≤k

and the square matrix
Q =

(
IS,T

)
S,T⊆N
s,t≤k

the problem becomes:
minimize z = ytQy

subject to 



y∅ = 0

∑
T⊆N
t≤k

yT = 0

∑
T :i∈T⊆S

t≤k

yT ≤
∑

T :i∈T⊆S
t≤k

a
(k,α,β)
T , S ⊆ N, i ∈ S.

This is a quadratic program involving
∑k

s=0

(n
s

)
variables, 2 equality constraints and n2n−1 in-

equality constraints (only n inequalities when k = 1), see (4.7).
Several procedures for solving quadratic programming problems have been proposed in liter-

ature (see e.g. [16, 20]). We will not present them here.
Although it seems impossible to obtain a closed form for the general solution of this problem,

we will see in the next section that the projection A[k,α,β](f̂) can be obtained very efficiently
when k = 1, α = 0 and β = 1.

1If we fix a linear order on 2N we can identify 2N with {1, 2, . . . , 2n}.
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7.2.5 Closest weighted arithmetic mean to a Lovász extension

In this section, we intend to determine the particular approximation A[1,0,1](f̂) of a given Lovász
extension f̂ . Thus, we search for the closest weighted arithmetic mean

∑n
i=1 a

[1,0,1]
i xi to f̂ . Of

course, we assume that A(1,0,1)(f̂) is not increasing.
Using the notations introduced in the previous section, the problem is written

minimize
∫

[0,1]n

[ n∑

i=1

(a(1,0,1)
i − a

[1,0,1]
i ) xi

]2
dx

subject to 



n∑

i=1

a
[1,0,1]
i = 1

a
[1,0,1]
i ≥ 0, i ∈ N .

The corresponding quadratic program is of the form:

minimize
1
3

n∑

i=1

y2
i +

1
4

n∑
i,j=1
i 6=j

yi yj

subject to 



n∑

i=1

yi = 0

yi ≤ a
(1,0,1)
i , i ∈ N ,

where yi := a
(1,0,1)
i − a

[1,0,1]
i .

We will propose an algorithm allowing to determine efficiently the approximation A[1,0,1](f̂)
from A(1,0,1)(f̂). This algorithm consists in performing successive projections onto at most n− 1
affine subspaces.

Recall first that

V (1,0,1) =
{ n∑

i=1

ωi xi

∣∣∣
n∑

i=1

ωi = 1
}

V [1,0,1] =
{ n∑

i=1

ωi xi

∣∣∣
n∑

i=1

ωi = 1 and ωi ≥ 0 for all i ∈ N
}
.

We can readily see that V [1,0,1] is a polytope in V (1,0,1) whose vertices are x1, . . . , xn. The distance
between any two vertices is constant

‖xi − xj‖ =
[∫

[0,1]n
(xi − xj)2 dx

]1/2
=

1√
6
, i, j ∈ N, i 6= j,

and V [1,0,1] is a regular simplex. In the sequel, we will denote this simplex by P . We thus have
dim(P ) = dim(V (1,0,1)) = n− 1 (see Figure 7.1).

We have f̂ (1,0,1) = A(1,0,1)(f̂) ∈ V (1,0,1) \ P if and only if there exists i ∈ N such that
a

(1,0,1)
i < 0. In this case, A[1,0,1](f̂) can be obtained by projecting A(1,0,1)(f̂) onto P .



218 CHAPTER 7. APPROXIMATIONS OF SET FUNCTIONS

Figure 7.1: Regular simplex P

It is clear that the affine hull of n− 1 vertices of P is an affine subspace of dimension n− 2.
Hence, a facet2 F of P is the convex hull of n− 1 of its vertices:

F = conv(x1, . . . , xj−1, xj+1, . . . , xn) for a fixed j ∈ N.

It is a regular simplex of dimension n− 2. Obviously, the simplex P has n facets.

If ĝ ∈ V (1,0,1) \ P then there exists a facet Fĝ of P such that the affine hull aff(Fĝ) of its
vertices contains ĝ or separates ĝ from P . We now show that the projection of ĝ onto P is in Fĝ.

Lemma 7.2.3 Let ĥ ∈ P and let F be a facet of P . Then the projection of ĥ onto aff(F ) is
in F .

Proof. We can assume without loss of generality that F is the convex hull of x1, . . . , xn−1.
To prove the result, it suffices to show that the projection of xn onto aff(F ) is in F . This is
immediate since this projection is simply given by 1

n−1

∑n−1
i=1 xi. Indeed, it suffices to observe

that

〈xn − 1
n− 1

n−1∑

i=1

xi, xj − xk〉 = 0, j, k ∈ {1, . . . , n− 1}

as required.

Theorem 7.2.4 Let ĝ ∈ V (1,0,1) \ P . Then the projection of ĝ onto P is in Fĝ.

Proof. Let ĥ be the projection of ĝ onto P and assume that ĥ /∈ Fĝ. Let ĥ′ be the projection of
ĥ onto aff(Fĝ). By Lemma 7.2.3, we have ĥ′ ∈ Fĝ.

Next, since
aff(Fĝ) = {ŵ ∈ V (1,0,1) | 〈ĥ− ĥ′, ŵ − ĥ′〉 = 0},

2According to the usual definition, a face F of P is a facet of P if dim(F ) = dim(P )− 1.
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we have 〈ĥ− ĥ′, ĝ − ĥ′〉 ≤ 0 and

‖ĥ− ĝ‖2 = ‖ĥ− ĥ′‖2 + ‖ĥ′ − ĝ‖2 − 2〈ĥ− ĥ′, ĝ − ĥ′〉
> ‖ĥ′ − ĝ‖2

with ĥ, ĥ′ ∈ P . This is absurd.

By Theorem 7.2.4, the projection of ĝ onto P can be obtained by first projecting ĝ onto
aff(Fĝ) and then projecting, if necessary, the obtained function onto Fĝ. Note that if more
than one affine hull contain ĝ or separate it from P then the projection onto P is clearly in the
intersection of the corresponding facets.

Therefore, if A(1,0,1)(f̂) ∈ V (1,0,1) \ P , one can obtain A[1,0,1](f̂) by means of the following
algorithm:

Prestep. P := V [1,0,1], ĝ := A(1,0,1)(f̂).

Step 1. F∩
ĝ := intersection of all the facets of P whose affine hull

contains ĝ or separates it from P .

Step 2. ĥ := projection of ĝ onto aff(F∩
ĝ ).

Step 3. If ĥ ∈ F∩
ĝ then ĥ is the projection of A(1,0,1)(f̂) onto P , −→ stop,

else P ← F∩
ĝ , ĝ ← ĥ, return to Step 1.

It is clear that this algorithm terminates with the desired projection. Furthermore, since
the dimension of the problem decreases of at least one at each iteration, the projection will be
attained with at most n− 1 iterations, see Figure 7.2.

Figure 7.2: Successive projections onto affine hulls



220 CHAPTER 7. APPROXIMATIONS OF SET FUNCTIONS

Now, let us turn to the effective computation of the projection. The following lemma will be
useful: it characterizes the affine hull of the facets of P .

Lemma 7.2.4 Let F be a facet of P . Then, for any j ∈ N ,

F = conv{x1, . . . , xj−1, xj+1, . . . , xn}

if and only if

aff(F ) =
{
ŵ ∈ V (1,0,1)

∣∣∣ ŵ(x) =
n∑

i=1

ci xi and cj = 0
}
.

Proof. By definition of the affine hull, we immediately have

aff(F ) =
{
ŵ ∈ V (1,0,1)

∣∣∣ ŵ(x) =
∑

i∈N\j
ci xi and

∑

i∈N\j
ci = 1

}

which is sufficient.

Let ĝ ∈ V (1,0,1) \ P with

ĝ(x) =
n∑

i=1

a∗i xi, x ∈ [0, 1]n.

Set R := {i ∈ N | a∗i ≤ 0} and r := |R|. According to Lemma 7.2.4, there are r facets that
contain ĝ or separate it from P . If F∩

ĝ denotes the intersection of these facets then we have

aff(F∩
ĝ ) =

{
ŵ ∈ V (1,0,1)

∣∣∣ ŵ(x) =
∑

i∈N\R
ci xi

}
.

Now, let us fix j ∈ N \R. A basis of aff(F∩
ĝ ) is given by

{xi − xj | i ∈ N \ (R ∪ j)},

and hence, the projection of ĝ onto aff(F∩
ĝ ) is given by the unique solution ĥ ∈ aff(F∩

ĝ ) of the
linear system:

〈ĝ − ĥ, xi − xj〉 = 0, i ∈ N \ (R ∪ j). (7.27)

However, for i ∈ N \ (R ∪ j), we have

〈ĝ − ĥ, xi − xj〉 =
∫

[0,1]n

[ ∑

ν∈N

a∗ν xν −
∑

ν∈N\R
cν xν

]
(xi − xj) dx

=
∫

[0,1]n

[∑

ν∈R

a∗ν xν +
∑

ν∈N\R
(a∗ν − cν) xν

]
(xi − xj) dx

=
1
3
(a∗i − ci) +

1
4

∑

ν∈N\(R∪i)

(a∗ν − cν)− 1
3
(a∗j − cj)− 1

4

∑

ν∈N\(R∪j)

(a∗ν − cν)

=
1
12

(a∗i − ci)− 1
12

(a∗j − cj) (since
∑

ν∈N

a∗ν =
∑

ν∈N\R
cν = 1)

and the system (7.27) writes

ci = a∗i + cj − a∗j , i ∈ N \R.
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Summing over i ∈ N \R provides

1 =
∑

i∈N\R
ci =

∑

i∈N\R
a∗i + (n− r)(cj − a∗j )

= 1−
∑

i∈R

a∗i + (n− r)(cj − a∗j )

Hence, the solution of (7.27) is
ĥ(x) =

∑

j∈N\R
cj xj

with
cj = a∗j +

1
n− r

∑

i∈R

a∗i , j ∈ N \R.

Consequently, the resolution of the problem can be done as follows:

Let a
(1,0,1)
1 , . . . , a

(1,0,1)
n be the coefficients of A(1,0,1)(f̂), at least one of them being strictly

negative. The projection A[1,0,1](f̂) is obtained by means of the following algorithm, which has
running time in O(n2):

Prestep. a∗i := a
(1,0,1)
i (i ∈ N).

Step 1. R := {i ∈ N | a∗i ≤ 0}, r := |R|.

Step 2. cj := a∗j +
1

n− r

∑

i∈R

a∗i (j ∈ N \R).

Step 3. If cj ≥ 0 for all j ∈ N \R

then ĥ(x) =
∑

j∈N\R
cj xj is the desired projection, −→ stop,

else a∗i ←
{

0, if i ∈ R,
ci, if i ∈ N \R,

return to Step 1.

This algorithm can be slightly simplified in its writing. Moreover, including it in the complete
procedure of resolution leads to a flow chart which can be implemented very easily, see Figure 7.3.

Example 7.1 (continued) For the function f̂ : [0, 1]4 → IR defined by

f̂(x) =
3
10

[
x1 + x2 + x3 + (x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

]

−21
25

(x1 ∧ x2 ∧ x3) +
1
25

(x1 ∧ x2 ∧ x3 ∧ x4),

the closest weighted arithmetic mean to f̂ is given by

(A[1,0,1]f̂)(x) =
1
3

(x1 + x2 + x3).

We can observe in Example 7.1 that f̂ and all its approximations are symmetric functions
in x1, x2, x3. This is actually a general principle which is only due to the uniqueness of the best
approximations, see [95, Proposition 2.5]:
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R := {i ∈ N | a∗i ≤ 0}, r := |R|,

a∗i ←





0 if i ∈ R,

a∗i +
1

n− r

∑

j∈R

a∗j if i /∈ R.

Output:
(A[1,0,1]f̂)(x) =

∑

i∈N

a∗i xi.

a∗i ≥ 0 ∀i ∈ N
?

a
(1)
i :=

∑

T3i

6
(t + 1)(t + 2)

aT , i ∈ N ,

a∗i := a
(1)
i +

1
n

(1−
∑

j∈N

a
(1)
j ), i ∈ N .

Input:
f̂(x) =

∑

T⊆N

aT

∧

i∈T

xi

yesno

m

©©©©©©

HHHHHH

HHHHHH

©©©©©©

-

? ?

?

?

?

Figure 7.3: Closest weighted arithmetic mean to a Lovász extension (flow chart)

Proposition 7.2.1 If π ∈ Πn is a symmetry of f̂ , that is f̂(x) = f̂([x]π) for all x ∈ [0, 1]n,
then π is also a symmetry of A(k)(f̂), A(k,α)(f̂), A(k,α,β)(f̂) and A[k,α,β](f̂).

Before closing this section, we present an easy test allowing to verify the rightness of the ob-
tained projection A[1,0,1](f̂). For this purpose, we need a result that characterizes the projection
onto a convex set as solving a so-called variational inequality. The statement is the following,
see Hiriart-Urruty and Lemaréchal [101, Chap. 3, Theorem 3.1.1].

Theorem 7.2.5 Let C be any closed convex set in IRn. A point yx ∈ C is the projection of
x ∈ IRn \ C if and only if

〈x− yx, y − yx〉 ≤ 0 for all y ∈ C. (7.28)

The condition (7.28) simply expresses that the angle between y− yx and x− yx is obtuse, for
any y ∈ C. When C is a polytope, it is clear that the inequality must be checked only over the
vertices of the polytope.

Translating this to our projection problem leads to the following result: only n quadratic
inequalities must be checked.
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Theorem 7.2.6 Let f̂ be any Lovász extension and let f̂ (1,0,1) = A(1,0,1)(f̂). Then the func-
tion

ĥ(x) =
n∑

i=1

ci xi, with
n∑

i=1

ci = 1 and ci ≥ 0 ∀i,

corresponds to the approximation A[1,0,1](f̂) if and only if

a
(1,0,1)
j − cj ≤

n∑

i=1

(a(1,0,1)
i − ci) ci, j = 1, . . . , n.

Proof. Since the vertices of P are the xj ’s, the inequality in (7.28) becomes
∫

[0,1]n
[f̂ (1,0,1)(x)− ĥ(x)][xj − ĥ(x)] dx ≤ 0, j = 1, . . . , n.

However, we have, for all j = 1, . . . , n,
∫

[0,1]n
[f̂ (1,0,1)(x)− ĥ(x)][xj − ĥ(x)] dx

=
∫

[0,1]n

[ n∑

i=1

(a(1,0,1)
i − ci) xi xj −

n∑

i,l=1

(a(1,0,1)
i − ci) cl xi xl

]
dx

=
1
3
(a(1,0,1)

j − cj) +
1
4

n∑
i=1
i 6=j

(a(1,0,1)
i − ci)− 1

4

n∑

i=1

(a(1,0,1)
i − ci)

n∑
l=1
l6=i

cl − 1
3

n∑

i=1

(a(1,0,1)
i − ci) ci

Since
∑n

i=1 a
(1,0,1)
i =

∑n
i=1 ci = 1, the latter expression becomes

1
12

(a(1,0,1)
j − cj)− 1

12

n∑

i=1

(a(1,0,1)
i − ci) ci,

which leads to the result.

7.3 Applications to Multicriteria Decision Making

Suppose that we want to approximate a given Choquet integral by a k-order Choquet integral
for a fixed integer k ≤ n. In a multicriteria decision problem modelled by a Choquet integral,
the actually meaningful question is the following: what is the best k-order fuzzy measure µ(k)

such that ∫

[0,1]n
[Cµ(x)− Cµ(k)(x)]2 dx

is minimized?
This corresponds to the least squares approximation problem of a particular Lovász extension

under the boundary and monotonicity constraints.
When k = 1, this problem becomes very simple: the approximation under boundary con-

traints yields (see Tables 7.2 and 7.4):

a
(1,0,1)
i = a

(1)
i +

1
n

(1−
n∑

j=1

a
(1)
j ), i ∈ N, (7.29)
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with
a

(1)
i =

∑

T3i

6
(t + 1)(t + 2)

aT , i ∈ N.

If necessary, the increasing approximation is then obtained by using the algorithm proposed in
Section 7.2.5 (see Figure 7.3).

The following result gives sufficient conditions for obtaining a
(1,0,1)
i ≥ 0 for all i.

Proposition 7.3.1 If f̂ is such that aT ≥ 0 for all T ⊆ N then a
(1,0,1)
i ≥ 0 for all i ∈ N .

Proof. Consider the partial minimum minS associated to a non-empty subset S ⊆ N . For such
a function we have

i ∈ S : a
(1,0,1)
i =

(s− 1)(s− 2) + 6n

n(s + 1)(s + 2)
≥ 0,

i /∈ S : a
(1,0,1)
i =

(s− 1)(s− 2)
n(s + 1)(s + 2)

≥ 0.

As A(1,0,1) is a projection, it is a linear operator. Hence, for f̂ , we have

a
(1,0,1)
i =

1
n

∑

T3i

(t− 1)(t− 2) + 6n

(t + 1)(t + 2)
aT +

1
n

∑

T 63i

(t− 1)(t− 2)
(t + 1)(t + 2)

aT , (7.30)

which is positive.

The problem (7.2) can be solved in a very similar way as that of (7.1). Note that, in this
discrete context, formula (7.29) is identically the same, see [95, Theorem 2.10].

7.3.1 An example

Let us go back to the example given in Section 6.2.5. This example involves 3 criteria, and the
Möbius representation of the fuzzy measure is given by

a∅ = 0 aM = 0.45 aMP = −0.40 aMPL = −0.10
aP = 0.45 aML = 0.15
aL = 0.30 aPL = 0.15

Computing the 2-order approximation A[2,0,1](Cµ) (note that A[2,0,1](Cµ) = A(2,0,1)(Cµ)) leads
to the following coefficients a′ = a[2,0,1]:

a′M = 0.46666 a′MP = −0.45
a′P = 0.46666 a′ML = 0.10
a′L = 0.31666 a′PL = 0.10

Starting from this 2-order approximation, we can compute the new global evaluation (with
a 2-order Choquet integral):

student M P L global evaluation
a 18 16 10 13.83333
b 10 12 18 13.66666
c 14 15 15 14.88333

Surprisingly enough, we can see that the value of each of indices

φSh(i), ISh(ij), veto(Cµ; i), favor(Cµ; i), orness(Cµ),

is unchanged. However, the dispersion has been slightly modified: we now have

disp(µ′) = 0.89094 and disp′(µ′) = 0.81097.
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7.3.2 Links with the Shapley value

We have seen in Section 5.1.2 that the Shapley value corresponding to a given fuzzy measure
can be viewed as a linear approximation of the fuzzy measure. Regarding the approximation of
a Choquet integral, it can happen that the coefficients of the closest weighted arithmetic mean
correspond to the Shapley value. The following theorem gives a useful example.

Theorem 7.3.1 Let µ be a 2-order fuzzy measure on N . The closest weighted arithmetic
mean to Cµ is the Shapley integral Shµ.

Proof. This is immediate: we simply have

a
(1)
i = ai +

1
2

∑

j∈N\i
aij = φSh(i), i ∈ N,

and a
(1,0,1)
i = a

(1)
i for all i ∈ N .

More generally, we have the following.

Proposition 7.3.2 If n ≤ 3 or if aT = 0 for all T ⊆ N such that 3 ≤ t ≤ n− 1, then

a
(1,0,1)
i = φSh(i), i ∈ N.

Proof. Since φSh(i) =
∑

T3i
1
t aT , we have, using (7.30),

a
(1,0,1)
i − φSh(i) =

1
n

∑

T3i

(t− 1)(t− 2)(t− n)
t(t + 1)(t + 2)

aT +
1
n

∑

T 63i

(t− 1)(t− 2)
(t + 1)(t + 2)

aT .

This expression is 0 whenever aT = 0 for all T ⊆ N such that 3 ≤ t ≤ n− 1.

It should be noted that the Shapley value is not obtained in the general case. Example 7.1
concerns the approximation of a Choquet integral, and the Shapley value of the associated fuzzy
measure is given by

φSh(1) = φSh(2) = φSh(3) =
33
100

and φSh(4) =
1

100
whereas the closest weighted arithmetic mean to the Choquet integral has the coefficients

a
[1,0,1]
1 = a

[1,0,1]
2 = a

[1,0,1]
3 =

1
3

and a
[1,0,1]
4 = 0.

The following example shows that the Shapley value can be not obtained even when the approx-
imation under boundary conditions is increasing.

Example 7.3.1 Consider the Choquet integral Cµ : [0, 1]4 → [0, 1] defined by

Cµ(x) =
1
10

(x1 ∧ x2 ∧ x3) +
2
10

(x1 ∧ x2 ∧ x4) +
3
10

(x1 ∧ x3 ∧ x4) +
4
10

(x2 ∧ x3 ∧ x4).

We then have

(A(1)Cµ)(x) = −1
5

+
9
50

x1 +
21
100

x2 +
6
25

x3 +
27
100

x4,

(A(1,0,1)Cµ)(x) =
57
650

x1 +
153
1300

x2 +
48
325

x3 +
231
1300

x4,

and
φSh(1) =

1
5
, φSh(2) =

7
30

, φSh(3) =
4
15

, φSh(4) =
3
10

.
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As already observed in Theorem 5.1.3, the Shapley value can be obtained in the discrete
case by weighting the distance. Grabisch [86] observed that the distance used in (7.2) does not
take into account the fact that there are elements inside each subset, and that a single element
is involved several times in different subsets, especially with subsets of around n/2 elements,
which are the most numerous. This means that a weighted distance taking into account this
combinatorial aspect (as the one for the Shapley value (5.2)) should be used to avoid this effect.
Thus, in the discrete case, we can have two attitudes:

• if in a given problem, we reason on elements, and set functions are involved, which should
be approximated, then use a weighted distance as for the Shapley value (approximation on
N).

• if in a given problem where set functions are involved, elements are unimportant or not
relevant, then use a non weighted distance (approximation on 2N ).

In the continuous case, no weighted distance has been found yet for obtaining the Shapley
integral as linear approximation. Although this is still an open problem, a suitable distance (if
any) should have a reasonable interpretation.

7.3.3 Approximations of OWA operators

Let us consider an OWAω operator, that is a symmetric Choquet integral (see Theorem 4.2.16).
By symmetry, we immediately see that (see Proposition 7.2.1)

(A(1,0,1)OWAω)(x) = (A[1,0,1]OWAω)(x) =
1
n

n∑

i=1

xi, x ∈ [0, 1]n.

Obviously, this is a rather crude approximation, so we turn to the second order approximation.
Using Table 7.4, one can show that

(A(2,0,1)OWAω)(x) = C
∑

i∈N

xi + D
∑

{i,j}⊆N

(xi ∧ xj), x ∈ [0, 1]n, (7.31)

with

C =
n∑

j=1

−10n4 + 30jn3 − 19n3 + 16n2 + 90j2n− 120jn + 31n− 60j3 + 90j2 − 30j + 6
n(n + 1)(n + 2)(5n2 − 4n + 3)

ωj

D =
n∑

j=1

30(n− 2j + 1)(n3 + n2 + 2jn− 2n− 2j2 + 2j)
(n− 1)n(n + 1)(n + 2)(5n2 − 4n + 3)

ωj .

We observe that such an approximation is heavy to compute. Moreover, by (4.6), the approxi-
mation (7.31) is increasing if and only if

C + t D ≥ 0, t = 0, . . . , n− 1,

that is, if and only if
C ≥ 0 and C + (n− 1)D ≥ 0.

Example 7.3.2 The OWAω operator defined on [0, 1]4 by the weight vector

ω = (
1
15

,
2
15

,
4
15

,
8
15

)
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is such that

(A(2,0,1)OWAω)(x) = (A[2,0,1]OWAω)(x) =
643
1340

4∑

i=1

xi − 154
1005

∑

{i,j}⊆{1,2,3,4}
(xi ∧ xj).

Notice that Grabisch [86] proposed the following 2-nd order approximation:

OWAω(x) ≈ 1
n

∑

i∈N

xi +
ω1 − ωn

n− 1

∑

{i,j}⊆N

(xi ∧ xj).

However, such an approximation fails to agree with OWAω at x = 1 and fails to be increasing.
On the basis of Theorem 6.3.3, we propose the following form:

OWAω(x) ≈ 1
n

n∑

i=1

xi +
1
2

ω1 − ωn

n− 1

n∑

i=1

(n + 1− 2 i) x(i)

= (
1
n
− ω1 − ωn

2
)

∑

i∈N

xi +
ω1 − ωn

n− 1

∑

{i,j}⊆N

(xi ∧ xj).

Of course, this approximation corresponds to a 2-order OWA, but fails to be the closest to OWAω.
Moreover, it only involves the weights ω1 and ωn.

According to Proposition 6.3.2, we note that this approximation consists in replacing the
weight function ωi by a linear weight function ω′i = a i + b with slope

a =
ωn − ω1

n− 1
.

For the operator proposed in Example 7.3.2, this approximation is given by

29
60

4∑

i=1

xi − 7
45

∑

{i,j}⊆{1,2,3,4}
(xi ∧ xj).

It is a 2-order OWA operator with weight vector ω′ = ( 1
60 , 31

180 , 59
180 , 29

60), see Figure 7.4.

Figure 7.4: Linear approximation of the weights ωi
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Notation and symbols

Miscellaneous symbols

The symbol := means that the left-hand side of the equation is defined by the right-hand side.
The set of non-negative integers is denoted by IN, that of strictly positive integers by IN0,

that of real numbers by IR. We then set IR+ := {x ∈ IR |x ≥ 0} and IR+
0 := {x ∈ IR |x > 0}.

For any n ∈ IN0, Nn := {1, . . . , n}.
Πn denotes the set of permutations of Nn. For any π ∈ Πn and any S ⊆ Nn, we set

π(S) := {π(i) | i ∈ S}.
For all S, T ⊆ Nn, set difference of S and T is denoted by S \ T . 2N indicates the power set

of N , i.e. the set of all subsets in N . Cardinality of sets S, T, . . . is denoted whenever possible
by corresponding lower cases s, t, . . ., otherwise by the standard notation |S|, |T |, . . ..

The notation S ⊆/ T means S ⊂ T and S 6= T .
∧,∨ denote respectively the minimum and maximum operations.

Aggregation operators

E,F denote real intervals, finite or infinite. E represents the definition set of values to be
aggregated.

E◦ denotes the interior of E, that is the corresponding open set.
For all S ⊆ Nn and all real intervals Ei (i ∈ Nn), we set ES := ×i∈SEi.
M (n) represents an aggregation operator, that is a function M (n) : En → F . A sequence

M = (M (n))n∈IN0 of aggregation operators M (n) : En → F is called an extended aggregation
operator.

An(E, F ) denotes the set of all aggregation operators from En to F . A(E, F ) denotes the set
of all extended aggregation operators whose the n-th element is in An(E, F ).

For all k ∈ IN0, we set k ¯ x := x, . . . , x (k times). For instance,

M(3¯ x, 2¯ y) = M(x, x, x, y, y).

The vector (x, . . . , x) in IRn is simply denoted by x.
For all S ⊆ Nn, the characteristic vector (or incidence vector) of S in {0, 1}n is defined by

e
(n)
S := (x1, . . . , xn) ∈ {0, 1}n with xi = 1 ⇔ i ∈ S.

Geometrically, the characteristic vectors are the 2n vertices of the hypercube [0, 1]n. The com-
plementary characteristic vector of S ⊆ Nn is defined by

e
(n)
S := e

(n)
Nn\S .

229
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Moreover, we set θ
(n)
S := M (n)(e(n)

S ) and θ
(n)
S := M (n)(e(n)

S ) for all S ⊆ Nn.

For any π ∈ Πn, we define

Oπ := {x ∈ IRn |xπ(1) ≤ · · · ≤ xπ(n)}.

The simplex of [0, 1]n associated to π is then defined by

Bπ := Bπ ∩ [0, 1]n,

that is the convex hull of
{e(n)
{π(i),...,π(n)}}n+1

i=1 .

Given a vector (x1, . . . , xn) and a permutation π ∈ Πn, the notation [x1, . . . , xn]π means
xπ(1), . . . , xπ(n), that is, the permutation π of the indices.

Given a vector (x1, . . . , xn), let (·) denote the permutation of Nn which arranges all the
elements x1, . . . , xn by increasing values: that is, x(1) ≤ . . . ≤ x(n).

The so-called median of an odd number of values x1, . . . , x2k−1 is simply defined by

median(x1, . . . , x2k−1) := x(k).

For any real interval E, Φ(E) denotes the automorphism group of E, that is the group of all
strictly increasing bijections φ : E → E. Φ′(E) denotes the set of all strictly increasing functions
φ : E → E.

Binary relations

A binary relation on a finite set is
- a total preorder (weak order, linear quasi-order) if it is strongly complete and transitive,
- a partial preorder (quasi-order) if it is reflexive and transitive.

Simplifications

When there is no fear of ambiguity, the superscript (n) is omitted in M (n), e
(n)
S , etc. It is used

only to stress the dependency on the number of terms in the aggregation. Moreover, N often
stands for Nn and x for the vector (x1, . . . , xn).

For any x ∈ En, the notation φ(x) means (φ(x1), . . . , φ(xn)).
If no confusion can arise, we often use subscripts for arguments of set functions, e.g. writing

µS , aS instead of µ(S), a(S). However, we do not apply this rule for games, since vT represents
the unanimity game for T .

We often omit braces for singletons, e.g. writing S ∪ i instead of S ∪ {i}, and µi instead
of µ{i}. Also, for pairs, triples, we often write ij, ijk instead of {i, j}, {i, j, k}, as for example
S ∪ ijk.



Glossary of aggregation properties

(A) Associativity, p. 24
(AD) Autodistributivity, p. 28
(Add) Additivity, p. 22
(B) Bisymmetry, p. 28
(BOM) Bisymmetry for orderable matrices, p. 30
(CM, CM’) Comparison meaningfulness for ordinal values, p. 20
(CMIS) Comparison meaningfulness for ordinal values with independent scales, p. 20
(Co) Continuity, p. 12
(CoAdd) Comonotonic additivity, p. 23
(CoMax) Comonotonic maxitivity, p. 23
(CoMin) Comonotonic minitivity, p. 23
(Comp) Compensativeness, p. 13
(Conj) Conjunctiveness, p. 13
(D) Decomposability, p. 25
(Disj) Disjunctiveness, p. 13
(Ext) Extension, p. 162
(GB) General bisymmetry, p. 28
(GBOM) General bisymmetry for orderable matrices, p. 30
(Id) Idempotence, p. 13
(III) Independent interval scales for the independent variables and interval scale for

the dependent variable, p. 18
(In) Increasingness, p. 12
(IRR) Independent ratio scales for the independent variables and ratio scale for the

dependent variable, p. 17
(ISUII) Independent interval scales with same unit for the independent variables and

interval scale for the dependent variable, p. 17
(ISZII) Independent interval scales with same zero for the independent variables and

interval scale for the dependent variable, p. 17
(LM) Linearity w.r.t. the fuzzy measure, p. 161
(Max) Maxitivity, p. 22
(Min) Minitivity, p. 22
(OS, OS’) Ordinal stability, p. 19
(Rec) Reciprocal property, p. 18
(SD) Strong decomposability, p. 26
(Sep) Separability, p. 31
(SId) Self-identity, p. 30
(SII) Same interval scales for the independent variables and interval scale for the

dependent variable, p. 17
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(SIn) Strict increasingness, p. 12
(SMax) Stability for maximum with a constant vector, p. 20
(SMaxB) Stability for maximum between Boolean and constant vectors, p. 21
(SMin) Stability for minimum with a constant vector, p. 20
(SMinB) Stability for minimum between Boolean and constant vectors, p. 21
(SPL) Stability for the admissible positive linear transformations, p. 16
(SRR) Same ratio scales for the independent variables and ratio scale for the

dependent variable, p. 17
(SSi) Stability for the admissible similarity transformations, p. 16
(SSN) Stability for the standard negation, p. 18
(STr) Stability for the admissible translations, p. 16
(Sy) Symmetry, p. 11
(UIn) Unanimous increasingness, p. 12
(WId) Weak idempotence, p. 13
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[101] J.B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization-algorithms I,
(Springer-Verlag, Berlin-Heidelberg-New York, 1991).
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TRE), Revue Française d’Informatique et de Recherche Opérationnelle 8 (1968) 57–75.

[158] B. Roy, How outranking relations helps multiple criteria decision making, in: J.L. Cochrane
and M. Zeleny (Eds.), Multiple Criteria Decision Making (University of South California
Press, Columbia, 1973) 179–201.

[159] T. Saaty, Exploring the interface between hierarchies, multiple objectives and fuzzy sets,
Fuzzy Sets and Systems 1 (1978) 25–30.



242 BIBLIOGRAPHY

[160] D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97
(1986) 255–261.

[161] D. Schmeidler, Subjective probability and expected utility without additivity, Economet-
rica 57 (1989) 571–587.

[162] B. Schweizer and A. Sklar, Associative functions and statistical triangle inequalities, Publ.
Math. Debrecen 8 (1961) 169–186.

[163] B. Schweizer and A. Sklar, Associative functions and abstract semigroups, Publ. Math.
Debrecen 10 (1963) 69–81.

[164] B. Schweizer and A. Sklar, Probabilistic metric spaces, (North-Holland, Amsterdam, 1983).

[165] D. Scott and P. Suppes, Foundational aspects of theories of measurement, J. Symbolic
Logic 23 (1958) 113–128.

[166] U. Segal, Order indifference and rank-dependent probabilities, Journal of Math. Economics
22 (1993) 373–397.

[167] G. Shafer, A mathematical theory of evidence. (Princeton University Press, 1976).

[168] C.E. Shannon and W. Weaver, A mathematical theory of communication, (University of
Illinois Press, Urbana, 1949).

[169] L.S. Shapley, A value for n-person games. In: H.W. Kuhn and A.W. Tucker (eds.), Con-
tributions to the Theory of Games, Vol. II, Annals of Mathematics Studies, 28, (Princeton
University Press, Princeton, NJ, 1953), 307–317.

[170] L.S. Shapley, Core of convex games, Int. J. Game Theory 1 (1971) 11–26.

[171] L.S. Shapley and M. Shubik, A method for evaluating the distribution of power in a com-
mittee system, The American Political Science Review 48 (1954) 787–793.

[172] W. Silvert, Symmetric summation: a class of operations on fuzzy sets, IEEE Trans. on
Systems, Man and Cybernetics 9 (1979) 657–659.

[173] I. Singer, Extensions of functions of 0-1 variables and applications to combinatorial opti-
mization, Numerical Functional Analysis and Optimization 7(1) (1984-85) 23–62.

[174] H.J. Skala, Concerning ordered weighted averaging aggregation operators, Statistical Pa-
pers 32 (1991) 35–44.

[175] S.S. Stevens, Mathematics, measurement, and psychophysics, in: S.S. Stevens (ed.); Hand-
book of Experimental Psychology, (Wiley, New York, 1951) pp. 1–49.

[176] S.S. Stevens, Measurement, psychophysics, and utility, in: C.W. Churchman and P. Ra-
toosh (eds.), Measurement: Definitions and Theories, (Wiley, New York, 1959) pp. 18–63.

[177] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute
of Technology, Tokyo, 1974.

[178] M. Sugeno, Fuzzy measures and fuzzy integrals: a survey, in: M.M. Gupta, G.N. Saridis and
B.R. Gaines (Eds.), Fuzzy Automata and Decision Processes, (North-Holland, Amsterdam,
1977): 89–102.



BIBLIOGRAPHY 243

[179] P. Suppes, D.H. Krantz, R.D. Luce and A. Tversky, Foundations of measurement, volume
II, (Academic Press, San Diego, 1989).

[180] K. Tanaka and M. Sugeno, A study on subjective evaluations of color printing images, Int.
J. of Approximate Reasoning 5 (1991) 213–222.

[181] E. Trillas, Sobre funciones de negación en la teoŕıa de conjuntos difusos, Stochastica 3
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