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Abstract. We use multi-frame super-resolution, specifically, Shift &
Add, to increase the resolution of depth data. In order to be able to
deploy such a framework in practice, without requiring a very high num-
ber of observed low resolution frames, we improve the initial estimation
of the high resolution frame. To that end, we propose a new data model
that leads to a median estimation from densely upsampled low reso-
lution frames. We show that this new formulation solves the problem
of undefined pixels and further allows to improve the performance of
pyramidal motion estimation in the context of super-resolution without
additional computational cost. As a consequence, it increases the motion
diversity within a small number of observed frames, making the enhance-
ment of depth data more practical. Quantitative experiments run on the
Middlebury dataset show that our method outperforms state-of-the-art
techniques in terms of accuracy and robustness to the number of frames
and to the noise level.

Keywords: Time-of-flight depth data, Super-resolution, Dense
upsampling, Pyramidal optical flow, Motion diversity.

1 Introduction

The usage of depth data captured by time-of-flight (ToF) cameras is often limited
because of its low resolution (LR). Most of the work proposed to enhance the
resolution of this data has been based on fusion with high resolution (HR) images
acquired with a second camera, e.g., 2D camera [1,2], stereo camera [3], or both
2D and stereo cameras [4]. These multi-modality methods provide solutions with
undesired texture copying artifacts in addition to being highly dependent on
parameter tuning. Moreover, using an additional camera requires dealing with
data mapping and synchronization issues.

The super-resolution (SR) framework offers an alternative solution where an
HR image is to be recovered from a set of LR images captured with the same
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camera. The key idea is to explore the deviation between these LR images and
a reference frame. SR techniques have been largely explored in the 2D case. The
extension of these algorithms to depth data is not straightforward as presented
in [5] where a dedicated preprocessing has been proposed to achieve depth SR
from a single image, hence calling upon a heavy training. Earlier, the classi-
cal Shift & Add (S&A) was applied on depth data [6] in a multi-frame setup.
While this work showed that SR may be used successfully on depth data without
any training, it is still not a practical solution as it requires a large number of
frames to ensure sufficient depth discontinuities between frames. An extended
version has been proposed by the same authors in [7] by defining a new cost
function dedicated to depth data. Both approaches in [6] and [7] do not solve
the limitation on the number of frames inherent to classical S&A; thus, they
remain unpractical solutions. In what follows, we show that this limitation goes
back to the initialization step even before reaching to the iterative optimization
step. Indeed, estimating the initial HR frame relies on LR frames only. In the
case where the motion diversity within these frames is not sufficient, the initial
estimate ends up with undefined pixels that affect the result of any iterative
optimization. Therefore, we propose to estimate the initial HR frame from up-
sampled LR frames. By doing so, we ensure that no undefined pixels are present;
moreover, we prove that, in the SR context, a more accurate motion estimation
using pyramidal optical flow may be achieved resulting in an increased motion
diversity within a smaller number of frames. In contrast to [13], this work is
dedicated to depth data, where the upsampling has to be a dense one.

The remainder of the paper is organized as follows: Section 2 gives the clas-
sical SR formulation and a description of S&A. In Section 3, a new data model
is provided leading to our proposed algorithm. Experimental results on the
Middlebury dataset and on real ToF data are given in Section 4.

2 Motivation and Background

Let X be an HR depth image of size (m × n) and Yk, k = 0, ..., (N − 1), N
observed LR images, where each LR image is of size (ḿ × ń) pixels, such that
n = r · ń and m = r ·ḿ, where r is the SR factor. Every frame Yk may be viewed
as a LR noisy and deformed realization of X caused by the ToF imaging system
at the kth acquisition. Considering Yk’s and X’s respective lexicographic vector
forms yk and x, the SR data model may be defined as follows:

yk = DHWkx+ nk, k = 0, ..., (N − 1), (1)

where Wk is an (mn×mn) matrix corresponding to the geometric motion be-
tween x and yk. In this framework, this motion is assumed to be global trans-
lational; hence, Wk represents a global shifting operator by uk in x direction,
and by vk in y direction. The point spread function (PSF) of the ToF camera is
modelled by the (mn×mn) space and time invariant blurring matrix H. The
matrix D of dimension (ḿń×mn) represents the downsampling operator, and
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the vector nk is the additive noise at k. Using the same approach as in [8], we
consider that H and Wk are block circulant matrices. Therefore:

HWk = WkH. (2)

Estimating x may thus be decomposed into two main steps: estimation of a
blurred HR image z0 = Hx0, where x0 is an initial guess for x, followed by
a deblurring step by an iterative optimization. The classical S&A approach [8]
defines z0 by first setting its corresponding full HR image grid Z0 to zeros, i.e.,
Z0 = 0m×n. Then, all LR images Yk are used to update the pixel values in
Z0. To that end, given a reference LR image Y0 chosen as the closest one to
the target HR image X, the global translational motions wk = (uk, vk) between
each image Yk and Y0 are computed for k = 1, · · · , (N − 1). These motions
are used to register all LR images Yk with respect to the reference image Y0.
The resulting registered images Yk are simply defined at each pixel position
p = (x, y) as follows:

Yk(p) = Yk(p+wk). (3)

These images are then grouped into M sets based on their relative motions wk.
Note that to avoid aliasing problems, the range of this motion is forced to be
within the SR factor r by a simple modulo function, i.e., uk = ukmod(r) and
vk = vkmod(r). The frames in one set are fused by median filtering resulting in

one LR image Yi per motion wi, with 1 ≤ i ≤ M ≤ N . Each frame is then used
to update the pixels of Z0 as follows:

Z0 (r · p+wi) = Yi(p). (4)

This operation is known as zero filling in the S&A approach. We note that for a
successful filling, there should be enough motion diversity in the considered LR
frames. Indeed, in order to further update the zero pixels in Z0, an additional
(r × r) median filtering is applied. Given that the median filter’s breakdown
point is 1

2 , a meaningful filling that does not leave pixels undefined should be
achieved if the following condition is satisfied:

round

(
r2

2

)
≤ M. (5)

As a second step, the estimation of x follows a maximum likelihood approach
that, by assuming nk as a Laplacian white noise, leads to the following mini-
mization:

x̂ = argmin
x

(
‖Hx− z0‖1 + λΓ (x)

)
, (6)

where Γ (x) is a regularization term added to compensate undetermined cases by
enforcing prior information about x, and λ being the regularization parameter.

Starting with an accurate initial guess z0 has a strong impact on the final
solution of (6). We show the effect of undefined pixels in Z0 caused by classical
S&A in Fig. 1(b). A similar phenomenon is observed using interpolation-based
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(a) Original HR (b) S&A (c) VBSR

Fig. 1. Undefined pixels using state-of-the-art SR methods (Red colors are the closest
objects and green colors are the furthest ones.)

initialization such as variational Bayesian SR (VBSR) [9] as seen in Fig. 1(c),
suggesting that interpolation is not a sufficient solution to remove undefined
pixels. Moreover, it creates additional artifacts on depth data such as jagged
values on edges. It is common to face this serious problem of undefined pixels
in practice. It is dealt with by restricting the SR factor to low values, e.g.,
r = 2, and by taking a relatively large number of frames, e.g., N > 30, thus
indirectly attempting to satisfy inequality (5), which, in turn, limits the practical
usage of SR algorithms on depth data. In what follows, our aim is to increase
motion diversity M to give more freedom in the choice of r without having to
increase N . We propose to tackle the aforementioned problem by a new non-zero
initialization of Z0 as detailed in Section 3.

3 Proposed Algorithm

Estimating the motions wk with high sub-pixel accuracy is crucial in capturing
the full diversity in motion as contained in the observed LR depth frames; hence,
important in increasing M . Indeed, for two frames Yi and Yj with respective
relative motions wi and wj , such that ‖wi−wj‖2 = ε; if the motion estimation
approach has an accuracy that is smaller than ε, the two frames will be wrongly
fused and labeled under the same motion. Classical S&A uses pyramidal motion
estimation (PyrME ) [10,11]. This method represents state-of-art in motion esti-
mation increasing both accuracy and robustness by a gain G (L) = 2(L+1) − 1,
where L is the number of pyramidal levels [10]. In the case of SR, we note that
the target resolution at which we want to land is the HR (m × n). This gives
us a natural way to further improve the performance of PyrME. We thus pro-
pose to start by upsampling the LR depth frames up to the SR factor r prior
to any motion estimation such that yk ↑= U · yk, where U is a dense upsam-
pling matrix of size (mn × ḿń). By doing so, we increase the size of the basis
of the pyramid by a factor r. Changing the starting point in PyrME leads to
an increased pyramid height L ↑ by log2 (r) which results in a new increased
gain G (L ↑) = r · G (L) + (r − 1). This demonstrates that, in the SR context,
the performance of PyrME, in terms of accuracy and robustness, may further be
enhanced. Therefore, to estimate wk more accurately, we now work with Yk ↑,
k = 0, · · · , (N − 1), the N upsampled LR frames corresponding to the vectors
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yk ↑. Performing the registration process as in (3) on the upsampled images
Yk ↑ gives: Yk ↑ (p) = Yk ↑ (p+wk) ⇔ yk ↑= Wkyk ↑ .

It is easy to note that the new corresponding matrices Wk still verify (2).
Furthermore, we choose U to be the transpose of D, such that UD = A, where
A is a block circulant matrix that defines a new blurring B = AH. Therefore,
we redefine z0 as z0 = Bx0, and by left multiplying (1) by U we find:

yk ↑= WkBx+Unk, k = 0, ..., (N − 1). (7)

In addition, similarly to [12], for analytical convenience, we assume that all pixels
in yk ↑ originate from pixels in x in a one to one mapping. Therefore, each row
in Wk contains 1 for each position corresponding to the address of the source
pixel in x. This bijective property implies that the matrix Wk is an invertible
permutation. By left multiplying (7) by W−1

k , we define the following new data
model from upsampled registered observed LR frames:

yk ↑= Bx+ νk, k = 0, ..., (N − 1), (8)

where νk is an upsampled additive white Laplacian noise at k, leading to the
following estimation of the initial guess:

ẑ0 = argmin
z0

(N−1)∑
k=0

‖z0 − yk ↑ ‖1. (9)

The non-zero initialization in (9) releases the condition in (5), thus solving the
problem of undefined pixels. In order not to fall under the same artifacts as
those present with interpolation-based SR approaches, e.g., VBSR (Fig. 1(c)),
it is necessary to perform the filling operation from registered and clustered LR
images as in (4). Indeed, the values from LR frames remain more reliable sources
of information than the ones due to upsampling. They are further processed by
a (3 × 3) median filtering to smooth out noisy depth pixels. We point out that
the higher accuracy in the estimation of wk leads to a higher discrimination
between motions, resulting in a higher diversity M and a better update of the
pixel values in z0 as compared to the case of classical S&A. In our algorithm,
it is more accurate to refer to this operation as initialization update rather
than filling. After the new initialization and update step described above, a last
deblurring step is performed to recover x̂ from ẑ0 using (6).

4 Experimental Results

To evaluate the performance of the proposed algorithm, we tested its robust-
ness on synthetic and real depth images against two parameters: number of
considered LR images N , and image contamination with noise measured by sig-
nal to noise ratio (SNR). Each time we compare with two state-of-the-art SR
methods, namely, classical S&A [8], and VBSR [9]. First, we ran Monte-Carlo
simulations on synthetic sequences of a static scene subjected to a randomly
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(a) Different N values (b) Different input SNR levels

Fig. 2. Mean PSNR values for different SR methods applied to a (75×75) LR sequence
of a static depth scene with r = 4

generated global frame motion. These sequences were created by downsampling
the HR image “ART” from the Middlebury dataset [10] with a factor r = 4,
and PSF of σ = 0.4, and further degrading them by additive white Gaussian
noise (AWGN). For a fixed noise level corresponding to SNR = 45dB, and 100
different realizations, Fig. 2(a) shows the average PSNR for N progressively in-
creasing from 4 to 20 frames. It is clear that the proposed method outperforms
both S&A and VBSR across different numbers of LR frames. This difference is
even more noticeable for very low values of N , which illustrates the practicality
of the proposed method. Next, we ran another round of experiments to evaluate
the performance across different noise levels. In this experiment, a sequence of 12
(75×75) LR depth images was used. It was generated in the same way as in the
previous experiment, and further degraded by AWGN with SNR of 5, 15, 25, 35
and 45dB. Fig. 2(b) shows that the proposed method is consistently more robust
to noise. Furthermore, the textureless property of depth images combined with
dense upsampling boost the performance of the proposed initial HR frame esti-
mation, even for a very high noise level, e.g., SNR = 5dB, leading to comparable
results before and after optimization with (6) as shown, respectively, with the
dashed and continuous red lines in Fig. 2(a) and Fig. 2(b). This result suggests
that the non-zero initialization may be considered as a standalone approach in
the case of depth data as it does not deviate much from the assumptions related
to the data model in (8). We give, in Fig. 3, an example of an HR estimated
image of “ART” using 8 and 12 LR images in the first and second rows, respec-
tively. Due to the condition (5), it is not surprising to see the artifacts caused by
undefined pixels where the number of images is not sufficient to cover the motion
range. Moreover, as seen in Fig. 3(d),(h), it is clear that our method provides
the best visually enhanced HR depth images with sharper edges as compared
to the results of S&A and VBSR. Finally, we tested the proposed algorithm on
two real short depth sequences. The first sequence contains 8 LR depth images
acquired using an IEE MLI ToF camera of resolution (56× 61) pixels. The sec-
ond sequence contains 5 LR frames acquired using a PMD CamBoard nano of
resolution (120× 165) pixels. Considering an SR factor of 4, the final results are
given in Fig. 4, clearly showing that for these practical cases with a small N ,
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(a) Original (b) VBSR, N = 8 (c) S&A, N = 8 (d) Proposed, N = 8

(e) LR (f) VBSR, N = 12 (g) S&A, N = 12 (h) Proposed, N = 12

(i) (j) (k) (l)

Fig. 3. Results of different SR methods on a static ToF depth scene with different
frame numbers (N = 8, N = 12) and SR factor of r = 4.)

(a) LR (b) S&A (c) VBSR (d) Proposed method

(e) 2D Image (f) LR (g) S&A (h) Proposed method

Fig. 4. Results of different SR methods on real LR ToF short sequences

the proposed method nicely super-resolves the LR frames by preserving edges
and details while S&A and VBSR fail due to undefined pixels. Note that for
the sake of practical deployment, to avoid any additional computal cost in the
proposed method, the motion estimation from upsampled LR frames may be
approximated by upscaling the corresponding LR motion vectors.
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5 Conclusion

We proposed a practical SR solution for LR depth data acquired by ToF cameras.
Our algorithm is based on a new SR data model that uses the upsampled and
registered versions of the observed LR images. The benefits of this new formu-
lation are twofold: It leads to a non-zero initialization of the estimate of the HR
depth frame which solves the problem of undefined pixels inherent to classical
SR techniques. Furthermore, it increases the accuracy and robustness of pyra-
midal motion estimation, which contributes in increasing the motion diversity
within the observed frames. Both results help to reach good SR performances
even in the challenging case of a relatively small number of LR frames, hence
making the proposed algorithm usable in practice. While this method may be
applied to 2D data, it is specifically designed to improve depth data thanks to
a dense upsampling. Moreover, the textureless nature of depth data allows to
use the proposed initialization step as a standalone algorithm where additional
optimization is only required in the presence of high level non Laplacian noise.
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