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Abstract 
In this paper dynamic testing of some civil engineering structures is presented. The investigated objects 
are prestressed and non-prestressed industrially produced concrete slab elements under laboratory 
conditions, as well as an in situ prestressed concrete bridge. In order to achieve damage assessment, 
different analyses based on modal parameters changes are done. To this end, the structures are artificially 
damaged by cutting locally their passive or prestressed steel reinforcement. Moreover, to cause cracks, the 
structures are loaded with a varying experimental mass. For modal analysis all objects are excited 
sinusoidally by an electrodynamic shaker in the laboratory and by special exciters in the case of the 
bridge. In this article, a set of modal parameters, i.e. eigenfrequencies and modes shapes are determined 
and compared according the damage states. It results that the shift of the eigenfrequencies is a valuable 
damage indicator whereas the modeshapes variations are small and more difficult to interpret. Further, the 
modal parameters are used to calculate the flexibility, i.e. the inverse stiffness matrix and their changes 
revealing clear differences according to the damage at the correct locations. In addition, the mode shape 
slope and curvature, as well as the bending and strain fractional energy method for the bridge are 
presented, indicating the loss of stiffness and hence the damage. 

1 Introduction 

The overall goal of the investigated civil engineering structures is the usability of dynamic methods for 
damage assessment. First under laboratory conditions, tests are conducted in order to simulate bridges and 
to see the feasibility of such testing for condition control. Further, a 102m span bridge is under strong 
investigation to reveal the possible use on in situ objects identifying and even localising damage in civil 
structures. The advantage of dynamic methods is that they are easy manageable and not very time 
consuming in contrast to visual inspections, often used for condition control and inspections on bridges for 
example. The changes of the eigenfrequencies, as well as the changes in the flexibility matrices are known 
as trustful indicators for damage assessment, whereas the eigenfrequencies yield only information on 
damage detection ([1], [2]) in contrast to the flexibility matrices which reveal also indication on the 
localisation of a damage ([3], [4]). Moreover, the slope, the curvature and the bending and strain fractional 
energy methods show also their potential for damage assessment on beams and bridges ([5], [6], [7], [8]) 
and could therefore also be suitable for the presented structures under artificial damage states. Hence, in 
this paper these methods are presented and compared for each other for possible damage assessment. 



1.1 Objects and damage scenarios 

1.1.1 Reinforced and prestressed slabs 

The investigated panels are manufactured by ECHOLUX, subsidiary of ECHO placed in Luxembourg, 
and are of type VSF-15-120. They are made of concrete C50/60 with a measured average compressive 
strength of 58.3 N/mm2 (quality control of manufacturer). The quality of the reinforcement is St1470/1670 
and the corresponding elastic modulus 205000 N/mm2. In the upper section of the panel 4 wires are placed 
with a diameter of 5 mm and in the lower section 12 wires with a diameter of 7 mm. Figure 1 shows the 
cross section of the concrete slabs with the reinforcement in the upper and lower part. For our test 
purposes, two slabs are under investigation: a prestressed concrete slab (PC) and for the University of 
Luxembourg a special manufactured reinforced slab (RC) without any prestress. 

  
Figure 1: Cross-section of the panels with the reinforcement in the upper and lower part of the slab. At the 

bottom at half length the concrete was removed to have access to the steel wires for cutting. 

For the artificial damage, the tendons in the lower part of the panels are cut successively with a flame 
cutter. For this, holes in the middle on the slab, in section C on Figure 2 are drilled (sketch on Figure 1). 
The different damage states with the percentage of locally reduced pretension, respectively reinforcement 
are illustrated on Table 1. According to the different damage states, and after loading of 4 steel weights, 
with a force of 33.4kN, cracks occurred in the slabs represented schematically on Figure 3. 

 
Figure 2: View of the slab from the side with the dimensions and places of the weights (G1, G2, G3 and 
G4) as well as the axes of the bearings (A and B) and C the middle of the distance between the supports. 

no.  damage scenario location Percentage: cut cables additional loads 

#0 initial state: undamaged - - 4 and 0* weights 

#1 cutting of tendon no.: 6, 7 axis C 16.7 % 4 and 0* weights 

#2 cutting of tendon no.: 6, 7, 2, 11 axis C 33.3 % 4 and 0* weights 

#3 cutting of tendon no.: 6, 7, 2, 11, 4, 9 axis C 50.0 % 4 and 0* weights 

#4 cutting of tendon no.: 6, 7, 2, 11, 4, 9, 3, 10 axis C 66.7 % 4 and 0* weights 

Table 1: Damage scenarios and load cases for the prestressed slab (PC) and for the presented tests special 
manufactured reinforced slab (RC) (* represents the dynamic measurements after the slab was loaded with 

an additional load of 4 steel weights) 



One can clearly recognise that for the reinforced slab (RC), the crack formation is completed after loading 
with 4 steel weights in the intact state #0. For the higher damage states, when cutting further 
reinforcement, the cracks grow. For the prestressed slab (PC), a first small hairline crack occurs for 
damage state #2 after loading with 4 steel weights, and rises when cutting more tendons for damage state 
#3. For both slabs, collapse arrived at damage state #4 after loading with 4 steel weights. 

Figure 3: Progressive cracking of the RC slab (left) and the PC slab (right) between scenarios #0 and #4 (* 
represents the states after an additional load of 4 steel weights) 

1.1.2 Bridge Champangshiehl 

The in situ object, the bridge Champangshiehl (Figure 4), was built from 1965 to 1966 and connects the 
centre of Luxembourg with the district Kirchberg. It is a two span prestressed concrete bridge with 
different span length. The length of the bridge is 102 m, divided into two fields of 65 m and 37 m in 
length. The superstructure of the bridge is a prestressed box girder with 32 parabolic, 24 upper straight 
lined and 20 lower straight lined subsequently grouted tendons (Figure 5). The roadbed has a width of 
12.5 m and the box girder of 6.5 m with a height of 2.62 m, as illustrated on Figure 4. The bridge is made 
of concrete B450 and the tendons of Steel ASTM A.416 57T. The superstructure is supported by two 
abutments and one column made of reinforced concrete. At the west abutment (abutment of the large 
field) is a floating bearing made of a steel roll, whereas on the east abutment, the bearing is fixed. Between 
the superstructure and the substructure over the pylon an elastomeric support is placed. In 1987, 56 
external prestressed steel cables were added into the box girder of the large field due to additional safety 
considerations [9]. 
 

 
Figure 4: Picture of the bridge in winter 2010 (left); the cross section with all the tendons (right). 



 
Figure 5: Longitudinal section of the bridge showing the different types of tendons and the cutting 

sections. 

In order to validate the presented testing methods for damage assessment, tests are conducted, like for the 
slabs, also for different damage scenarios. Table 2 summarises the different damage states (intact #0 to the 
most damaged #4) by continuously cutting a defined number of tendons at two different sections of the 
bridge, as illustrated on Figure 5 and Table 2. As for both types of structures the damage states are crucial 
to evaluate the sensitivity of the tests according the severity of introduced damage and formation of 
cracks, also for the bridge cracks occurred at the different damage states when loaded with an additional 
experimental mass. This is achieved by 38 beam blanks from ArcelorMittal with a total mass of 245 t. The 
formation of cracks for the different damage state are summarised on Table 3 and schematically shown on 
Figure 6. 
 

Damage 
state 

Cutting tendons Percentage cutting (100% equals all tendons in 
the defined section) 

  x=29.25 m x=63.5 m
# 0 Undamaged state 0% 0%
# 1 20 straight lined tendons in the lower part of the 

bridge (x=29.25 m) 
33.7% 0%

# 2 8 straight lined tendons in the upper part of the 
bridge over the pylon (x=63.5 m)

33.7% 12.6%

# 3 56 external tendons 46.1% 24.2%
# 4 16 straight lined and 8 parabolic tendons in the 

upper part of the bridge (x=63.5 m)
46.1% 62.12%

Table 2: Description of the damage scenarios according to the cutting sections shown on Figure 5. 

Damage 
state 

Crack description

#1 Shear cracks due to the new anchorage points of the prestressed cables by cutting the 
lower 20 straight lined prestressed cables (black cracks, dashed line on Figure 6) 
 

#1-Loaded #1 + one crack in the girder at the north side up to 1.5m from the bottom line (dark 
grey cracks, solid line on Figure 6) and 1m on the south side at the cutting line of the 
lower 20 straight lined tendons 
 

#3 #1-Loaded + growing of the existing cracks and formation of new cracks at 0.45L 
(grey cracks, dashed line on Figure 6) + small crack between the holes on the upper 
side with loading (Figure 6) 
 

#4 #3 + crack above the pylon (grey cracks, solid line on Figure 6) 

Table 3: Description of the appearance of cracks according to the damage states and mass. 
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Figure 6: Schematic view of the crack appearance at the bottom plate around the cutting line at x=29.25m 

(left) and on the top plate around the cutting line x=63.5m (right) 

2 Testing procedures 
 
In this chapter, the experimental setups are presented. In contrast to the investigations already made on the 
presented structures in previous work [2], [4], the modeshapes are evaluated using a coarse grid of 
transducer position ending in a wider resolution. 

2.1 Experimental setup 

The dynamic parameters, for both structures are measured using a defined number of accelerometers. For 
the bridge Champangshiehl, 20 accelerometers (of type PCB 393B04 with a sensitivity of approx: 
1000mV/g) are set according Figure 7 capturing the responses of the bridge due to a well known 
excitation force. For the slabs, only 10 transducers were installed and set according Figure 8. For the 
structures one additional transducer is put near the exciters as a driving point for modal analysis. As 
already mentioned, in this paper only the results from the coarse grid for both type of structures are 
presented, with a force excitation of 2500N (unbalanced mass exciter) for the bridge Champangshiehl and 
100N (electromagnetic shaker of type TIRA 2.7kN) for the slabs. Other data with different forces and 
dense measurement grids can be read in further literature [2]. The data are processed by Mescope software 
using the global polynomial method to retrieve mass normalised mode shapes. The data is acquired with 
2000Hz for the slabs and 1000Hz for the bridge Champangshiehl. The sweep rate for the slabs is 0.1Hz/s 
and runs from 3Hz to 150Hz and for the bridge Champangshiehl of 0.02Hz/s from 1Hz to 20Hz. 

 
Figure 7: Measurement setup for the dynamic tests with the accelerometers positions (black) and exciter 

position (white) for the bridge Champangshiehl. 



 
Figure 8: Measurement setup for the dynamic tests with the accelerometers positions (black) and exciter 

position (white) for the concrete slabs. 

3 Results 

3.1 Eigenfrequencies and Modeshapes 

In the following, the changes in modal parameters, i.e. the eigenfrequencies and modeshapes are 
discussed. When the structure is changed by cracks for example the bending stiffness EI varies also 
resulting by a decrease of the eigenfrequencies. These changes mentioned by the relative decrease to the 
intact states and their corresponding modeshapes are presented on the following figures. For better 
visualisation on the modeshapes, both sides of the structures are plotted in one graph, the side of the 
structure with no excitation position on the left (transducer position 1 to 5 for the slabs and 1 to 10 for the 
bridge Champangshiehl) and the excitation side on the right (transducer position 6 to 10 for the slabs and 
11 to 20 for the bridge Champangshiehl). One has to add, that only some modes are presented which are 
predominant on the Frequency response functions, and, therefore, detectable for each damage states and 
comparable to the intact state. 

3.1.1 Reinforced and prestressed concrete slabs 

For the reinforced and prestressed concrete slabs, different behaviours are noticed for the changes in 
eigenfrequencies and modeshapes. Regarding first the reinforced slab, one can see on Figure 9 that the 
eigenfrequencies decreases according the different damage states, which is also expected. From the intact 
state #0 to damage state #0* obvious changes are noticed. This is due to the fact, that the crack pattern is 
already completed due to the loading of the 4 steel weights. These cracks change the bending stiffness 
resulting in a reduction of the eigenfrequencies. First a decrease of 22.9% is recognised for the first 
eigenfrequency B1 (B stands for bending mode and T for Torsional mode) for damage state #0* With 
increasing damage, i.e. cutting of reinforcement, the cracks grow explaining the continuous reduction of 
the eigenfrequencies for the other damage states, up to 36.2% for damage state #3*. For mode T1 and B2, 
the frequencies also decrease, but only with 22.9% and 22.4% respectively. Thus, regarding only the 
eigenfrequencies for the reinforced slab, the changes according the damage, i.e. the formation of cracks 
are obvious and, thus, represent a trustful indicator for a changed structure. Considering the modeshapes, 
also changes are noticed; however an overall pattern of these changes according the damage states is not 
detectable. 
On the other hand, considering the prestressed slab, first when unloaded on Figure 10, no crucial decrease 
of the eigenfrequencies according the damage like for the reinforced slab can be recognised. Only changes 
up to 3.4% for the first eigenfrequency B1 and up to 8.6% for the mode T2 are identified. As already 
denoted in [2], the cracks, once formed in the slab, are closed due to the pretension force and so no 
changes in the bending stiffness are noticed. Here the changes on the modeshapes are even minor for B1 



and T1 and for B2 and T2 neither a valuable pattern is recognised, making the variations on the 
modeshapes difficult to interpret. 

 

 

Figure 9: Eigenfrequencies and modeshapes of the reinforced slab (RC). 

To open the cracks of the prestressed slabs, these are loaded with an experimental mass of 3340kg. As for 
damage state #1-L (L stands for loaded) no cracks occurred, also no crucial changes can be recognised on 
the first eigenfrequency B1 on Figure 11. Regarding damage state #2-L and #3-L a continuous decrease is 
seen, concluding in changes of the structure. In fact, here for damage state #2-L a small hairline crack 
occurred and for damage state #3-L this hairline cracked opened widely yielding a decrease of 12.7 and 
27.6% respectively. 

 



 
Figure 10: Eigenfrequencies and modeshapes of the unloaded prestressed slab (PC). 

For Mode B2 no big changes are seen, resulting that this mode is not so affected as the first bending mode 
B1. Nevertheless, regarding this first mode B1 changes are obvious and correlate to the cracks in the 
structure, as variations of 12.7% and 27.6% are observed. Regarding the modeshapes, changes are noticed 
for B1 with increasing damage and for B2 not according the damage. 
 

 
Figure 11: Eigenfrequencies and modeshapes of the prestressed slab (PC) loaded with 4 weights. 

3.1.2 Bridge Champangshiehl 

For the Bridge Champangshiehl, regarding the first eigenfrequency on Figure 12, one recognises a drastic 
decrease according the damage states. Here for damage state #1 a diminishing of 3.7% is identified 
compared to the intact state #0. The reason is the appearance of a first crack in the bottom plate of the 
bridge yielding a loss in stiffness. Further, when cutting 8 of the above tendons, i.e. 12.6% of the tendons 
in the top plate for this damage state #2 no decrease is retrieved, as also no crucial additional cracks are 
observed. Afterwards, for damage state #3 and #4, when cutting the external and 40% of the above 
tendons existing crack expand and more cracks occurred, marked by a decrease of the eigenfrequency by 
9.9% and 15.7% for damage state #3 and #4 respectively. Further, for modes B4, T4 and T5 also big 
variations according the damage states are noticed, with a maximal reduction of 7.5%, 4% and 3.4% 
respectively. 



 
Figure 12: Eigenfrequencies and modeshapes of the Bridge Champangshiehl. 



However, regarding the other modes T2, B3 and T6 no crucial changes can be observed, yielding that for 
the Bridge Champangshiehl a similar behaviour as for the reinforced and the loaded prestressed slab is 
retrieved, namely that only for some eigenfrequencies, changes according the damage can be observed 
revealing the occurrence of cracks in the structure. Regarding the modeshapes, only B1 seems affected by 
the right order of damage. Thus, as for the other modeshapes and the modeshapes presented for the slabs, 
the variations of the modeshapes seem not to be a good indicator for damage assessment. 

3.2 Flexibility matrices 

In this chapter, out of the modeshapes and the eigenfrequencies presented in the previous chapter, the 
flexibility matrix, which is the inverse matrix of the stiffness matrix, can be calculated. This is achieved 
according the following formula: 
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where Φ are the mass normalised modeshapes and ω the angular eigenfrequencies. Figure 13 presents an 
example for the flexibility matrix of the bridge Champangshiehl. On the left a 3-D plot and on the right a 
contour plot is shown. 

 
Figure 13: Flexibility matrix of the Bridge Champangshiehl for the intact state #0 as an example. The 

black lines represent the position of the bearing over the pylon. 

Now, with these flexibility matrices for each damage state, comparisons can be made, first by plotting the 
diagonal elements of these matrices and second by a damage indicator proposed by Pandey et al. This one 
calculates the column wise maximum absolute difference of each flexibility matrix from each damage 
state (d) to the undamaged state (u) for comparisons [3]. First the difference of the flexibility matrices has 
to be calculated. Out of these ΔF matrices the maximal value δi for each column l is determined and 
plotted for each transducer position i. 

ud FFF −=Δ                                         lii fδδ max=  

3.2.1 Reinforced and prestressed concrete slabs 

As already observed for the eigenfrequency values for the reinforced slab the changes are obvious for the 
last damage states, i.e. from states #1* to #3*. For damage state #0* only the excitation side is affected. In 
contrast, regarding the prestressed slab, only the last damage state shows clear differences to the intact 
state. However, these changes are small compared to the reinforced slab and the prestressed slab when 
loaded. This is seen regarding on the right side of the figures on the magnitude of the difference values. 



For the reinforced and loaded prestressed slab, one has a magnitude of 10-7 and for the unloaded 
prestressed slab of 10-8. Therefore, when the prestressed slab is loaded, the changes gets obvious, due to 
the opening of the cracks as already seen for the eigenfrequency values in the previous chapter. 

 
Figure 14: Diagonal elements of the flexibility matrix (left) and absolute maximal differences of the 

columns of the flexibility matrices (right) for the reinforced slab (RC). 

 
Figure 15: Diagonal elements of the flexibility matrix (left) and absolute maximal differences of the 

columns of the flexibility matrices (right) for the unloaded prestressed slab (PC). 

 
Figure 16: Diagonal elements of the flexibility matrix (left) and absolute maximal differences of the 

columns of the flexibility matrices (right) for the prestressed slab (PC) loaded with 4 weights. 



3.2.2 Bridge Champangshiehl 

For the bridge Champangshiehl, regarding the diagonal elements of the flexibility matrices and the column 
wise absolute difference of the flexibility matrices on Figure 17 changes are obvious. Here the localisation 
of the damage around the middle of the big field is clear. As damage state #2 did not consist in further 
changes than damage state #1, also on both figures no variations can be noticed. 

 
Figure 17: Diagonal elements of the flexibility matrix (left) and absolute maximal differences of the 

columns of the flexibility matrices (right) for the Bridge Champangshiehl 

3.3 Modeshape slope and curvature methods 

Another focus is put on the Modeshape slope (MSS) and curvature (MSC) method proposed by Ewins [5] 
and Pandey [6]. First, the slope and curvature of each modeshape has to be calculated: 
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with Φ the mass normalised modeshapes, h the distance between neighbour transducers and i the index of 
the DOFs. Here only the excited side of the bridge is considered. For each mode, the difference of slopes 
and the curvature for each damage state (d) to the intact state (u) are determined and summed up over all 
the 7 modes:  
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On Figure 18 these MSS (left) and MSC (right) parameters are plotted. One can recognise changes to the 
intact states for both indicators, increased for each damage state. Regarding both graphs in contrast to the 
analysis on the flexibility matrices, the biggest changes appear for transducers 6 and 7, and at most for 
damage state #4, when also the biggest changes occur on that position for the damage scenarios (cutting of 
38% of the tendons and appearing of a straight lined crack in contrast to damage scenario #3). However, 
regarding the whole graphs, the changes are small and more difficult to interpret as for the changes in the 



flexibility matrices. For example for damage state #2 changes in the MSS parameter appear on the 
location of the second cut, which diminishes again for #3, which is physically not explainable. 

 
Figure 18: Sum of the differences of the slopes (MSS, left) and curvatures (MSC, right) for all the modes. 

3.4 Damage indicators 

In this chapter, two methods based on the slopes and curvatures are proposed. The first is by calculating 
the bending and the shear energy using modal parameters and the second by using the slopes and 
curvatures on the influence lines of the flexibility matrices for each damage state. 

3.4.1 Bending and shear energy 

In this paragraph, the damage indicator from Stubbs and Kim are proposed [10]. These damage indicators 
afterwards called by Link [8] MS and MC, present the fractional bending (curvature) and shear (slopes) 
energy and are determined according the following formulas: 
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With the variable y representing the slope Φ’ and the curvature Φ’’ and the index i=1-10 the number of 
DOFs. Also here, as for the MSS and MSC methods indications on the changes according damage can be 
made. For the MS parameter, changes are obvious (highest values) on transducer position 4 and 7, where 
also the most damage occurred. The same behaviour is recognised for the MC curves, the biggest 
variations are identified between transducer position 3 and 5 and for transducer position 6 and 7. However, 
as for the MSS and MSC parameters, one has to be cautious with the interpretation of the MS and MC 
values, as on the outer bearings for example also variations occur although nothing was changed.  



 
Figure 19: MS (left) and MC (right) parameters. 

3.4.2 Slope and curvature of the influence line 

Considering the diagonal elements Fii of the flexibility matrices, which represent the influence line, 
meaning that for each DOF a unit force at the same DOF is applied, one can calculate the slope and 
curvature of this line according the following formula: 

hFFF iiiii 2/)( 11
'

−+ −=  

2
1

'' /)2( hFFFF iiiiiiii +−= +  

Taken the square of F´ii and F´´ii, one can plot these values of one side of the bridge indicating the changes 
in the different flexibility matrices. Figure 20 presents these curves, and show clearly the position of the 
damage for each damage state. Regarding the curvature of the influence lines, the biggest changes occur 
namely at transducer position 4 in the middle of the big field and at transducer position 7 over the pylon 
for the last damage states. 

 
Figure 20: Slope (left) and curvature (right) of the influence line 

4 Conclusion 

In this paper, the dynamic testing of in situ and laboratory tests are shown. It seems that the most reliable 
parameters for damage identification are the changes in the eigenfrequencies and the flexibility matrices. 
Regarding the eigenfrequencies, damage identification is possible, as the formation of cracks, which has to 



be open, is clearly identifiable by the decrease of this modal parameter. Moreover, regarding the changes 
in the flexibility matrices proposed by the diagonal elements, or by the column wise absolute maximal 
value by Pandey [3] damage localisation seems possible for the presented structures under the given 
severe damage. Further, regarding the other proposed methods, like the slope and curvature methods, as 
well as the fractional bending and shear energy damage identification is also possible, but due to the small 
variations, localising changes in a structure seems difficult to interpret. However, regarding again the 
flexibility matrices with the slope and curvature of its influence line, damage localisation is clearly 
manageable, as the variations to the intact state are obvious. In addition, as for the analysis of the 
presented methods only using a coarse grid, it appears that a large resolution of the DOF is already 
sufficient for damage assessment in the case of the bridge Champangshiehl. However, an appropriate 
number of DOF is needed calculating the slopes and curves, which was here not the case for the reinforced 
and prestressed slab, and, therefore, no statement of these methods including the bending and shear energy 
made. 
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