
Towards a Simple City Driving Simulator Based on Speed
Dreams and OSM

Tigran Avanesov†, Nicolas Louveton†, Roderick McCall†, Vincent Koenig‡, Martin Kracheel†,
†SnT, Université du Luxembourg ‡ SnT and EMACS, Université du Luxembourg

6, rue Richard Coudenhove-Kalergi Route deDiekirch
L-1359 Luxembourg, Luxembourg L-7220 Walferdange, Luxembourg

<firstname>.<lastname>@uni.lu

ABSTRACT
This paper presents an architecture and partially built sim-
ulation platform which is designed to offer a flexible open
ended approach for conducting laboratory experiments. The
emphasis is on supporting multiple drivers and the ability to
swap in and out different software components and devices.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Sociology, Psy-
chology; D.2.2 [Software Engineering]: Design Tools and
Techniques—User interfaces

Keywords
City driving simulator, OSM, Speed Dreams, Usability

1. INTRODUCTION
The City of Luxembourg is the 10th most congested city in

Europe [9]. In order to overcome this problem, the I-GEAR
project was created and it specifically explores how we can
encourage commuters to subtly change their mobility be-
haviour through the use of game-like mobile applications.
The project has two key testing stages that explore these
issues which need a specific simulation environment.

A key requirement is that the simulator must be highly
modular and customisable, for example, supporting new graph-
ical engines as they become available, large city-like environ-
ments with complex layouts, having more than one driver at
any given time and finally also allowing us to change/modify
and remove hardware components such as tablet PCs at
short notice. We chose not to buy a commercial platform as
these are often heavily locked down and are too expensive
when multiple cockpits are required. As a result we chose to
base our simulator on an architecture of open source compo-
nents coupled with a robust underlying highly flexible server
application. This approach allows us for example to com-
pletely change the 3D environment with minimal impact on
other aspects and to use the programming languages of our
choice for controlling the simulation environment.

2. SIMULATOR
For the 3D environment we are using Speed Dreams (SD) [7]

which is an open source motor sport simulator which is

Copyright held by author(s). AutomotiveUI’12, October 17-19,
Portsmouth, NH, USA. Adjunct Proceedings

forked from the Torcs platform [8]. The platform supports a
range of cars, standard driving controls (e.g. pedals) and is
edging slowly towards providing networked game play with
multiple drivers. It is written in C++, runs on Linux, Win-
dows and soon Mac OS X and is easily customisable.

2.1 Speed Dreams track model
SD is focused on supporting motor racing and each track

consists of a sequence of segments such that the end of the
last segment coincides with the beginning of the first to form
a lap. A segment may be given a curvature radius, a tilt
and also may have different starting and ending widths and
altitudes. This track information is stored in an XML file. A
car can move only inside the track limited with the barriers.
Any other objects, like trees or buildings, have no impact
with the car, and they are usually placed outside the track.

2.2 Problems Encountered
In order to use SD for our purposes, we had to solve a

couple of problems:

• Road intersections are not foreseen, while these are
a common case for city road-maps (a workaround is
described in ??).

• There is no 3D scene of Luxembourg city integrated in
the simulator (see ??).

• There is no traffic. Moreover, SD robots rely on xml
description of the track (not yet addressed).

• There are no traffic lights (not yet addressed).

2.3 Source code adaptation
As mentioned above, SD could not be used as it is for city

driving due to impossibility of defining road intersections.
Thus, we introduced some changes in the source code based
on the following idea. If we ensure that the track describes a
flat world (i.e. the track has a constant altitude) and disable
the collision test with the barriers, then the car can drive to
any point of the scene. Then, if a driver will not go off the
road1 which he/she sees as a part of 3D scene, we obtain a
solution: one can drive on an arbitrary road-map ignoring
the track information.

Another change we applied is an integration of telemetry
data transmission via TCP (see ??).

1Since we disabled the collision detection with barriers, we
also have to implement it with using objects in the 3D model



Dispatcher

Device

Evaluator

Database

Video camera

Log all data
Telemetry data

Simulation events

Device events yes no
Are you sure?

M
ar

ka
m

Sp
ec

 I

Eye-tracker
data storage

User-triggered
events

yes no
Are you sure?

yes no
Are you sure?

Video feed

Figure 1: A scheme of the simulator usage in I-GEAR

3. 3D CITY MODEL
SD uses AC3D format [1] to describe 3D scene. While

this is flexible, building a 3D model of Luxembourg City
is a complex task and in order to speed up the process we
used data from OpenStreetMaps [10] (OSM) and it’s satellite
projects.

First, we had to crop the OSM country description to
reflect our area of interest (Luxembourg City). The tools
[6] and [5] provide such functionality by taking as input an
OSM data file and a polygon description of the desired area.
The latter can be created in [3] by selecting the desired area
on a the map. Second, we used OSM2World [4] to create
an initial 3D scene of the area which then exported to a
Wavefront .obj file. Third, we imported the .obj file into
Blender [2], a 3D open content creation suite, where the
scene can be edited (e.g. by adding building facade textures)
and using 3rd party scripts, the result was then exported to
AC3D formatted file (.ac). Finally, the .ac file can be used
by SD.

We note that some objects generated by OSM2World have
a relatively high number of polygons which in turn causes
performance issues (if not SD crashes) during the simula-
tion. That is why we had to replace some objects with lower
polygon counts. This was carried out by editing the scene
in Blender, however we plan to use OSM2World.

4. EVALUATION ENVIRONMENT
Our primary focus within the simulator is to observe driver

behaviour and to log their actions. We plan to log various
data relevant to driver’s behaviour, vehicle and in-car de-
vices. In order to achieve this objective we have outlined
the core components in the following section and in ??.

Evaluator PC acts as control centre for the evaluator and
displays the current telemetry data, status of the de-
vice and provides live video feeds of the driver and 3D
model. Additionally it supports setting up and con-
trolling each experiment as well as triggering events
both in the 3D model (e.g. switching traffic lights)
and on devices like tablet PCs.

Video camera A video feed of the drivers cockpit includ-
ing the 3D model and controls.

Eye tracker An SMI head-mounted mobile eye tracker is
used to track the drivers gaze position, dwell time and

eye movements.
Device Any in-vehicle device that is used for capturing and

displaying data (smartphone, tablet PC, etc.).
Database Data from the simulation is logged in SQLite

database. Can be easily switched to any other DBMS.
Dispatcher Dispatches the data flow as shown in the ??.

We implemented it in Python.

As for communication protocol we use JSON. Telemetry
data contains current speed, acceleration, car position, con-
trollers status etc. Every user action on a device is logged
and sent to the dispatcher. All this data is stored in the
database and can be analysed later on.

5. CONCLUSIONS
We have presented an overview of the I-GEAR simulator

environment which will be used for the analysis of driving
patterns and human-factors issues. Among the key benefits
of our approach are: the relative low cost, support for mul-
tiple drivers, high modularity and the ability to support any
part of the world through the use of Open Street Map.

6. ACKNOWLEDGMENTS
Supported by the National Research Fund, Luxembourg

(Project I-GEAR).

7. REFERENCES
[1] The AC3D file format.

www.inivis.com/ac3d/man/ac3dfileformat.html.

[2] Blender project. www.blender.org.

[3] Digitizer tool.
www.birdtheme.org/useful/googletool.html.

[4] Osm2world tool. osm2world.org.

[5] Osmconvert tool. wiki.osm.org/wiki/Osmconvert.

[6] Osmosis tool. wiki.osm.org/wiki/Osmosis.

[7] Speed dreams project. www.speed-dreams.org.

[8] Torcs project. torcs.org.

[9] TomTom 2010 congestion index.
http://www.whatcar.com/car-news/tomtom/249079,
2010.

[10] M. M. Haklay and P. Weber. Openstreetmap:
User-generated street maps. IEEE Pervasive
Computing, 7:12–18, 2008. See www.osm.org.

www.inivis.com/ac3d/man/ac3dfileformat.html
www.blender.org
www.birdtheme.org/useful/googletool.html
osm2world.org
wiki.osm.org/wiki/Osmconvert
wiki.osm.org/wiki/Osmosis
www.speed-dreams.org
torcs.org
http://www.whatcar.com/car-news/tomtom/249079
www.osm.org

	Introduction
	Simulator
	Speed Dreams track model
	Problems Encountered
	Source code adaptation

	3D City Model
	Evaluation environment
	Conclusions
	Acknowledgments
	References

