Computational analysis of molecular network perturbations in complex diseases Speaker: Enrico Glaab Networks Parkinson Interdisciplinary

Luxembourg Centre for Systems Biomedicine (LCSB)

Group focus

Main goal: Interpret molecular changes in complex disorders by integrating diverse data types using network analyses

Motivation: Diseases as network perturbations

APC mutations

→ Colorectal cancer

Motivation: Diseases as network perturbations

APC mutations

→ Colorectal cancer

AXIN1/2 mutations

→ Colorectal cancer

Multiple mutations, but:

- → one cellular network
- → one mechanism
- → one disease

Catenin mutations
Colorectal cancer

Wnt/β-catenin signaling pathway

(= affected by disease-related mutations)

Classical scientific approach: Reductionist Method

Reductionist Method:

- Hypotheses are specific and of narrow scope (local hypotheses)
- Understanding of an overall biological system (ecosystem, organism, cell) is supposed to be achieved by combining local insights
- however, the combinatorial nature of many biological systems challenges this method

Computational Systems Biology & Network Medicine

Systems biology: The study of an organism, viewed as an integrated and interacting network of genes, proteins and biochemical reactions.

Source: Oltvai & Barabasi, 2002

Computational Systems Biology (2)

Two main driving forces:

- New high-throughput experimental profiling approaches enable organism-wide data collection:
 - Genomics → whole-genome sequencing
 - Transcriptomics → DNA chips / RNAseq
 - Interactomics → High-throughput Y2H screens
- Modern computers enable system-wide bioinformatics analyses for generating new valid or plausible hypotheses, e.g.:
 - which (combinations of) gene variations cause a disease?
 - which drugs inhibit the activity of target proteins most effectively?

Computational Systems Biology (3)

- Bioinformatics is expected to drive progress in Systems Biology
- Some expectations may be too optimistic, but:
 - Bioinformatics can provide useful hypotheses for subsequent targeted experimental testing
 - Bioinformatics can help to select the most promising hypotheses from a larger set of plausible hypotheses

Variety of hypotheses

Challenge: From big data to biological function

Bottleneck:

Which changes are causal / secondary?
Which changes are correlative / predictive?
Which confounders modulate the system?
Which changes are disease-relevant / actionable?

Representing and modeling cellular processes

GENE SETS

NETWORKS

PATHWAYS

- → pure statistical scoring of enriched expression changes
- → scoring of topological + expression criteria
- → scoring of topology + expression changes + consistency criteria

Gene set / pathway resources

- Many public databases on functional gene sets and pathways available
- Both generic, multi-organism pathway collections covered and specialized collections (e.g. disease pathways: PD-Map, AlzMap)
- A total of over 10,000 public pathways available for the human species

Limitations of pathway databases

- manual curation → subjective decisions on pathway members & boundaries
- false-positive and false-negatives among molecular interactions
- database inconsistencies, e.g. "p53 signaling":

BioCarta (p53 signaling)

Invitrogen iPath (p53 signaling)

KEGG (p53 signaling)

Improving pathway definitions using networks

 Questions: Can we make pathway definitions more objective? Can we improve existing pathways according to quantitative criteria?

- Strategy: Use genome-scale networks to redefine pathways:
 - protein-protein interactions
 - genetic interactions
 - gene co-expression relations
 - → large-scale, higher coverage, less biased
 - → can also reveal communication between pathways ("cross-talk")

Network-based pathway extension

Idea: Extend pathways by adding genes according to graph-theoretic criteria:

black = pathway members

red blue green = new candidate pathway members

Automated pathway extension: Example

Known cancer pathway: "BTG family proteins Mutations linked to and cell cycle regulation" (BioCarta) colorectal cancer CCND1 SMARCB RB1 RRMT BTG PRKRAP1 CHEK2 HSPA9 → Disconnected nodes original pathway become connected added genes → increased pathwaycompactness FGF¹

Biological applications (1): Alzheimer's disease

- More than 20 proteins annotated in our molecular network
- 5 proteins added by the extension process (circled)
- 3 known to be associated with the disease
- 2 novel candidates:
 METTL2B, TMED10*

(*later confirmed: Shin et al., Autophagy, 2018)

KEGG Alzheimer disease pathway mapped on human protein interaction network

Biological applications (2): Pancreatic cancer

- "Cell cycle G1/S check point process" - extension procedure adds 7 proteins
- 6 of the added proteins are involved in cell cycle regulation
- the 7th (TGIF2) is known to be mutated in pancreatic cancer
- points to functional role of added proteins

Biological applications (3): Interleukin signaling

- Complex system of intracellular signaling cascades
- New putative pathway regulators identified
- New "cross-talk proteins" identified (associated with multiple pathways)

Two functions: pathway-regulation & pathway-communication?

Scoring of omics/pathway associations (EnrichNet)

Network association scoring (EnrichNet)

Scoring criteria:

- distances between target and reference genes in network
- multiplicity of interactions between target and reference genes
- density of interactions between target and reference genes (compared to rest of the network)

Network association scoring (EnrichNet)

Handling of overlapping genes and long distance outliers:

- → overlapping nodes and small distance node pairs → heigher weight
- → outlier nodes / large distance node pairs → lower weight

Network association scoring (EnrichNet)

Algorithm: Google's "Personalized Page Rank"

Output: Relevance scores for each web-page (in relation to other web-pages)

Output: Relevance scores for each pathway (in relation to a target set of genes)

Example Result: Parkinson's disease

Pathway-independent network analysis

Motivation: Disease perturbations may cluster in network regions outside of known pathways. Finding these clusters may lead to more robust biomarker models.

Question: How can we find clustered gene/protein groups efficiently, accounting for their diagnostic predictivity and connectedness in the network?

Network analysis software (GenePEN)

Input:

- Omics dataset (table with rows = genes/biomolecules, columns = samples)
- Class labels (e.g. "patient" or "control")
- Table of interactions between the biomolecules (e.g. protein-protein interactions)

Output:

• A subset of discriminative biomolecules (rows) representing a connected component in the network that provides a predictive signature to classify new samples

Network analysis approach (GenePEN)

Idea: Find genes maximizing two quantities:

- the diagnostic prediction accuracy of their omics biomarker signature
- the connectedness of the selected genes in the network
- → formulate a corresponding scoring function (details not shown):

$$\frac{\min_{w} loss(w) + \lambda \cdot penalty(w)}{\uparrow}$$

loss-function (minimize error)

trade-off parameter

penalty-function (network grouping)

→ Minimize the function to find a good gene selection

Application to Parkinson's disease (GenePEN)

Network alteration in Parkinson's disease:

- red = over-expressed in PD blue = under-expressed in PD node borders = significance of alteration (from gray to blue with increasing significance)
- significant genes are over-represented in the sub-network (p = 0.01)
- GSK3B, the top significant gene in the sub-network, contains polymorphisms associated with Parkinson's disease

Conclusion & Summary

- Why study diseases using network analysis?
 - → to identify common mechanisms and combinatorial changes
- Three approaches presented:
 - 1) Automated network extension of disease pathways
 - 2) Scoring disease/pathway associations using network information
 - 3) Pathway-independent network analysis using machine learning
- Future: Time series data analysis of causal network perturbation

References

- 1. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. Extending pathways and processes using molecular interaction networks to analyse cancer genome data, BMC Bioinformatics, 11(1):597, 2010
- 2. E. Glaab, A. Baudot, N. Krasnogor, R. Schneider, A. Valencia. EnrichNet: network-based gene set enrichment analysis, Bioinformatics, 28(18):i451-i457, 2012
- 3. N. Vlassis, E. Glaab, GenePEN: analysis of network activity alterations in complex diseases via the pairwise elastic net, Statistical Applications in Genetics and Molecular Biology (2015), 14(2), 221
- 4. E. Glaab, J.P. Trezzi, A. Greuel, C. Jäger, Z. Hodak, A. Drzezga, L. Timmermann, M. Tittgemeyer, N. J. Diederich, C. Eggers, Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease, Neurobiology of Disease (2019), Vol. 124, No. 1, pp. 555
- 5. E. Glaab, *Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification*, Briefings in Bioinformatics (2015), 17(3), pp. 440
- 6. E. Glaab, R. Schneider, Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson's disease, Neurobiology of Disease (2015), 74, 1-13
- 7. Z. Zhang, P. P. Jung, V. Grouès, P. May, C. Linster, E. Glaab, *Web-based QTL linkage analysis and bulk segregant analysis of yeast sequencing data*, GigaScience (2019), 8(6), 1-18
- 8. S. Köglsberger, M. L. Cordero-Maldonado, P. Antony, J. I. Forster, P. Garcia, M. Buttini, A. Crawford, E. Glaab, *Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation: possible implications for tauopathies*, Molecular Neurobiology (2017), 54(10), pp. 7979
- 9. L. Grandbarbe, S. Gabel, E. Koncina, G. Dorban, T. Heurtaux, C. Birck, E. Glaab, A. Michelucci, P. Heuschling, *Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-kB activation*, Molecular Neurobiology (2016), Vol. 53, No. 8, 5041-5055
- 10. S. Kleiderman, J. Sá, A. Teixeira, C. Brito, S. Gutbier, L. Evje, M. Hadera, E. Glaab, M. Henry, S. Agapios, P. Alves, U. Sonnewald, M. Leist, *Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells*, Glia (2016), Vol. 64, No. 5, 695-715
- 11. E. Glaab, R. Schneider, *RepExplore: Addressing technical replicate variance in proteomics and metabolomics data analysis*, Bioinformatics (2015), 31(13), pp. 2235
- 12. E. Glaab, Building a virtual ligand screening pipeline using free software: a survey, Briefings in Bioinformatics (2015), 17(2), pp. 352
- 13. E. Glaab, R. Schneider, *PathVar: analysis of gene and protein expression variance in cellular pathways using microarray data*, Bioinformatics, 28(3):446-447, 2012
- 14. E. Glaab, J. Bacardit, J. M. Garibaldi, N. Krasnogor, *Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data*, PLoS ONE, 7(7):e39932, 2012
- 15. E. Glaab, A. Baudot, N. Krasnogor, A. Valencia. *TopoGSA: network topological gene set analysis*, Bioinformatics, 26(9):1271-1272, 2010
- 16. E. Glaab, J. M. Garibaldi and N. Krasnogor. *ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization*, BMC Bioinformatics, 10:358, 2009
- 17. E. Glaab, J. M. Garibaldi, N. Krasnogor. *Learning pathway-based decision rules to classify microarray cancer samples*, German Conference on Bioinformatics 2010, Lecture Notes in Informatics (LNI), 173, 123-134
- 18. E. Glaab, J. M. Garibaldi and N. Krasnogor. VRMLGen: An R-package for 3D Data Visualization on the Web, Journal of Statistical Software, 36(8),1-18,2010

