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Group focus

Main goal: Interpret molecular changes in complex disorders by
integrating diverse data types using network analyses
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Motivation: Diseases as network perturbations

Wnt/β-catenin signaling pathway
(         = affected by disease-related

mutations)

APC mutations 
à Colorectal cancer

AXIN1/2 mutations 
à Colorectal cancer

ß-Catenin mutations 
à Colorectal cancer
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Motivation: Diseases as network perturbations

Wnt/β-catenin signaling pathway
(         = affected by disease-related

mutations)

APC mutations 
à Colorectal cancer

AXIN1/2 mutations 
à Colorectal cancer

ß-Catenin mutations 
à Colorectal cancer

Multiple mutations, but: 
à one cellular network
à one mechanism
à one disease
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Classical scientific approach: Reductionist Method

Reductionist Method:

• Hypotheses are specific
and of narrow scope
(local hypotheses)

• Understanding of an
overall biological system
(ecosystem, organism, cell)
is supposed to be achieved
by combining local insights

• however, the combinatorial
nature of many biological
systems challenges this method 
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Computational Systems Biology & Network Medicine

Systems biology: The study of an organism, viewed as an integrated 
and interacting network of genes, proteins and biochemical reactions.

Source: Oltvai & Barabasi, 2002
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Computational Systems Biology (2)

Two main driving forces:

• New high-throughput experimental profiling approaches enable 
organism-wide data collection:
- Genomics à whole-genome sequencing
- Transcriptomics à DNA chips / RNAseq
- Interactomics à High-throughput Y2H screens

• Modern computers enable system-wide bioinformatics analyses for 
generating new valid or plausible hypotheses, e.g.:
- which (combinations of) gene variations cause a disease?
- which drugs inhibit the activity of target proteins most effectively?
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Computational Systems Biology (3)

• Bioinformatics is expected to drive progress in Systems Biology

• Some expectations may be too optimistic, but:
- Bioinformatics can provide useful hypotheses for subsequent 
targeted experimental testing

- Bioinformatics can help to select the most promising 
hypotheses from a larger set of plausible hypotheses
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Challenge: From big data to biological function

Big data Statistics Function

Bottleneck:
Which changes are causal / secondary?

Which changes are correlative / predictive?
Which confounders modulate the system?

Which changes are disease-relevant / actionable?
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Representing and modeling cellular processes

Mitochondrion

P53 signaling

Gene.1
Gene.2
Gene.3

Gene.2
Gene.4
Gene.5

à pure statistical scoring
of enriched expression
changes

GENE SETS NETWORKS

à scoring of topological +
expression criteria

à scoring of topology + 
expression changes + 
consistency criteria

PATHWAYS
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Gene set / pathway resources

• Many public databases on functional gene sets and pathways available

• Both generic, multi-organism pathway collections covered and specialized 
collections (e.g. disease pathways: PD-Map, AlzMap)

• A total of over 10,000 public pathways available for the human species
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Limitations of pathway databases

• manual curation à subjective decisions
on pathway members & boundaries

• false-positive and false-negatives
among molecular interactions

• database inconsistencies, e.g. “p53 
signaling“:

BioCarta (p53 signaling) KEGG (p53 signaling)

Invitrogen iPath (p53 signaling)
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Improving pathway definitions using networks

• Questions: Can we make pathway definitions more objective? Can we 
improve existing pathways according to quantitative criteria? 

• Strategy: Use genome-scale networks to redefine pathways:

- protein-protein interactions
- genetic interactions
- gene co-expression relations

à large-scale, higher coverage, less biased
à can also reveal communication between

pathways (“cross-talk“)
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Network-based pathway extension

Idea: Extend pathways by adding genes according to graph-theoretic criteria: 

black = pathway members

red blue green = new candidate pathway members

...

...

...

1) High density of connections (“triangle-links“)

2) High specificity of connections (more in than out)

3) High coverage of connected pathway members
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Automated pathway extension: Example

Known cancer pathway: “BTG family proteins
and cell cycle regulation“ (BioCarta)

original pathway
added genes

à Disconnected nodes  
become connected

à increased pathway-
compactness

Mutations linked to 
colorectal cancer



16

Biological applications (1): Alzheimer‘s disease

• More than 20 proteins

annotated in our

molecular network

• 5 proteins added by the 

extension process (circled)

• 3 known to be associated
with the disease

• 2 novel candidates:

METTL2B, TMED10*

(*later confirmed: Shin et al., Autophagy, 2018)
KEGG Alzheimer disease pathway mapped 

on human protein interaction network
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Biological applications (2): Pancreatic cancer

• “Cell cycle G1/S check 

point process” - extension 

procedure adds 7 proteins

• 6 of the added proteins are 

involved in cell cycle regulation

• the 7th (TGIF2) is known to be
mutated in pancreatic cancer

• points to functional role
of added proteins
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Biological applications (3): Interleukin signaling

• Complex system of
intracellular signaling 
cascades

• New putative pathway 
regulators identified 

• New “cross-talk proteins”
identified (associated
with multiple pathways) Two functions: pathway-regulation & pathway-

communication?
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Scoring of omics/pathway associations (EnrichNet)

Pathway genes
(reference genes)

Experimentally derived
genes (target genes)

target
genes

reference
genes

target node reference node       other nodes
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� distances between target and reference genes in network

� multiplicity of interactions between target and reference genes

� density of interactions between target and reference genes (compared to rest of the network) 

Network association scoring (EnrichNet)

Scoring criteria: 

reference node
target set node
other nodes

Example 1:
dense inter-
connections

Example 2:
sparse inter-
connections
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Network association scoring (EnrichNet)

Handling of overlapping genes and long distance outliers: 

à overlapping nodes and small distance node pairs à heigher weight

à outlier nodes / large distance node pairs à lower weight

outlier
(low weight)

outlier
(low weight)

pathway node
target set node
other nodes

overlap (high weight)

Example:
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Network association scoring (EnrichNet)

Algorithm: Google‘s “Personalized Page Rank“

Output: Relevance scores for each web-page
(in relation to other web-pages)

target genes         target/pathway overlap

pathway 1            pathway 2          interaction

Transfer approach to
molecular networks

Output: Relevance scores for each pathway
(in relation to a target set of genes)

web-page
Real hyperlink
virtuel hyperlink
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Differentially exp. genes

PD risk factor genes

GO process: Synaptic      
vesicle endocytosis

molecular interaction

Example Result: Parkinson‘s disease

Mutations in familial
Parkinson’s disease (Ben et al., 2018)



24

Pathway-independent network analysis

Motivation: Disease perturbations may cluster in network regions outside of known
pathways. Finding these clusters may lead to more robust biomarker models.

Question: How can we find clustered gene/protein groups efficiently, accounting for 
their diagnostic predictivity and connectedness in the network?

Increased in Parkinson‘s 
disease

Decreased in Parkinson‘s    
disease
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Network analysis software (GenePEN)

Input:
• Omics dataset (table with rows = genes/biomolecules, columns = samples)
• Class labels (e.g. “patient” or “control”)
• Table of interactions between the biomolecules (e.g. protein-protein interactions)

Output:
• A subset of discriminative biomolecules (rows) representing a connected component 
in the network that provides a predictive signature to classify new samples
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Network analysis approach (GenePEN)

Idea: Find genes maximizing two quantities:

� the diagnostic prediction accuracy of their omics biomarker signature
� the connectedness of the selected genes in the network

à formulate a corresponding scoring function (details not shown):

loss-function (minimize error)       trade-off parameter penalty-function (network grouping)

à Minimize the function to find a good gene selection
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Application to Parkinson‘s disease (GenePEN)

Network alteration in Parkinson’s 
disease:

• red = over-expressed in PD
blue = under-expressed in PD
node borders = significance of 
alteration (from gray to blue with 
increasing significance)

• significant genes are over-represented 
in the sub-network (p = 0.01)

• GSK3B, the top significant gene in the 
sub-network, contains polymorphisms
associated with Parkinson’s disease
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Conclusion & Summary

• Why study diseases using network analysis? 
à to identify common mechanisms and combinatorial changes

• Three approaches presented:
1) Automated network extension of disease pathways
2) Scoring disease/pathway associations using network information
3) Pathway-independent network analysis using machine learning

• Future: Time series data analysis of causal network perturbation 
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