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Abstract. Let (S,h) be a closed hyperbolic surface and M be a quasi-
Fuchsian 3-manifold. We consider incompressible maps from S to M that
are critical points of an energy functional F which is homogeneous of de-
gree 1. These “minimizing” maps are solutions of a non-linear elliptic equa-
tion, and reminiscent of harmonic maps – but when the target is Fuchsian,
minimizing maps are minimal Lagrangian diffeomorphisms to the totally
geodesic surface in M . We prove the uniqueness of smooth minimizing
maps from (S,h) to M in a given homotopy class. When (S,h) is fixed,
smooth minimizing maps from (S,h) are described by a simple holomor-
phic data on S: a complex self-adjoint Codazzi tensor of determinant 1.
The space of admissible data is smooth and naturally equipped with a
complex structure, for which the monodromy map taking a data to the
holonomy representation of the image is holomorphic. Minimizing maps
are in this way reminiscent of shear-bend coordinates, with the complexi-
fication of F analoguous to the complex length.
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1. Introduction and results

The aim of this paper is to study “minimizing immersions” of a compact
hyperbolic surface inside germs of hyperbolic 3-manifolds, which are defined
as critical points of a suitable 1-homogeneous functional F .
On one hand, such immersions generalize the notion of minimal Lagrangian
maps between hyperbolic surfaces (which correspond to the target being a
Fuchsian hyperbolic 3-manifold). On the other hand, as the target varies in
the quasi-Fuchsian space, a very natural complexification of F can be used
to define a holomorphic function that looks like a “smooth version” of the
complex length of a measured lamination.

Throughout the paper we will always use the word smooth to mean C∞.

1.1. Minimal Lagrangian diffeomorphisms between hyperbolic sur-
faces. Consider a compact, connected, oriented surface S of genus at least
two.
Given two hyperbolic metrics on S, a central problem in Teichmüller theory is
to find the “best” diffeomorphism of S isotopic to the identity. Usually such a
diffeomorphism is the unique map that minimizes a suitable functional defined
in terms of the two hyperbolic metrics.
One remarkable example is that of harmonic maps, which play an important
role in Teichmüller theory (see [7] and [24]).
Another example is given by minimal Lagrangian maps, which are quite rele-
vant both for Teichmüller theory and for 3-dimensional manifolds of constant
curvature, see e.g. [15, 14, 3, 4].
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Definition 1.1 (Minimal Lagrangian maps). A minimal Lagrangian map
m ∶ (S,h) → (S,h⋆) between hyperbolic surfaces is an area-preserving dif-
feomorphism such that its graph in (S × S,h⊕ h⋆) is minimal.

Here we present another variational characterization of minimal Lagrangian
maps between hyperbolic surfaces.
Let f ∶ (S,h) → (S,h⋆) be a smooth map between hyperbolic surfaces. There
is a unique non-negative h-self-adjoint operator b ∶ TS → TS such that
f∗h⋆(●, ●) = h(b●, b●). We define the functional F ∶ C∞(S,S) → R on the
space of C∞ maps from S to S as

F (f) ∶= ∫
S
tr(b)ωh

where ωh is the area form on S associated to h.
The following statement is almost implicit in some variational formulas in
[3, 4], and also similar to results of Trapani and Valli [23].

Lemma 1.2 (Variational characterization of minimal Lagrangian maps). Let
f ∶ (S,h) → (S,h∗) be a smooth diffeomorphism between hyperbolic surfaces.
Then f is minimal Lagrangian if and only if it is a critical point of F .

One of the key motivations here is to extend the notion of minimal Lagrangian
diffeomorphism to smooth maps from a hyperbolic surface to a hyperbolic 3-
manifold.

1.2. Minimizing immersions of surfaces in 3-manifolds. Suppose now
that the target surface is replaced by a hyperbolic 3-manifold M , which we
assume to be complete and with injectivity radius positively bounded from
below.
In a given homotopy class [f] of embeddings of S into M that induce an
injective homomorphism f∗ ∶ π1(S) → π1(M), there is still a unique harmonic
map from (S,h) to M , but its relation to the moduli space of hyperbolic
structures on M is not direct — for instance, the complex structure on this
moduli is more readily visible if one fixes on S a measured lamination rather
than a metric, and considers shear-bend coordinates associated to it, see [2].
The analog of minimal Lagrangian maps for embeddings of a hyperbolic
surface in a hyperbolic 3-manifold is not clear, if one follows Definition 1.1.
On the other hand, it is possible to adapt the variational approach suggested
by Lemma 1.2.

Let (S,h) be a hyperbolic surface and (M,hM) be a hyperbolic 3-manifold and
let f ∶ S → M be a smooth map. Again, there exists a unique non-negative
h-self-adjoint operator b ∶ TS → TS such that f∗hM(●, ●) = h(b●, b●). We
define the functional F ∶ C∞(S,M) → R as

F (f) ∶= ∫
S
tr(b)ωh .

Lemma 1.2 then suggests the following definition.

Definition 1.3 (Minimizing maps). A smooth map f ∶ S → M from a hy-
perbolic surface to a hyperbolic 3-manifold is minimizing if F achieves a local
minimum at f .
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We will see that minimizing immersions have a number of pleasant properties.
Given (S,h), M and the homotopy class [f] of a map f ∶ S → M , there is
at most one minimizing immersion from (S,h) to M in [f]. Moreover, the
moduli space of minimizing immersions of (S,h) in hyperbolic 3-manifolds has
a complex structure, for which the map sending a minimizing immersion to
the holonomy representation of the target manifold is holomorphic.

1.3. Definition and notations. We now fix the background hyperbolic met-
ric h on S and let h̃ be the pull-back of h to the universal cover S̃ → S.
Rather than considering immersions of S into a hyperbolic 3-dimensional man-
ifold M , it is often more convenient to consider equivariant immersions of S̃
into H3, so that deformations of M correspond to deformations of the repre-
sentation.

Definition 1.4 (Equivariant immersions). An immersion of S in a germ of

a hyperbolic 3-manifold is a couple (f̃ , ρ), where ρ ∶ π1(S) → PSL2(C) is a

representation and f̃ ∶ S̃ → H3 is a ρ-equivariant smooth immersion. The
representation ρ is called the monodromy of the map f̃ .

The set Ĩ of smooth immersions of S in a germ of hyperbolic 3-manifold is
a subset of Hom(π1(S),PSL2(C)) × C∞(S̃,H3) and so it inherits a subspace
topology.
Note that PSL2(C) acts on Ĩ as g ⋅ (f̃ , ρ) ∶= (g ○ f̃ , gρg−1). We denote by [f̃ , ρ]
the orbit of (f̃ , ρ) under this action and by I the quotient PSL2(C)/Ĩ, which
is thus endowed with the quotient topology.
We also say that the family of equivalence classes [f̃t, ρt]t∈I is smooth if it can
be represented by a smooth family of immersions.

Remark 1.5 (Equivariant immersions and classes of immersions). In order to
explain the above definition, consider two immersions f1 ∶ S → M1 and f2 ∶
S →M2 inside two (not necessarily compact) hyperbolic 3-manifolds M1 and
M2. We declare the two immersions equivalent if there exists a third immersion
f3 ∶ S →M3 into a hyperbolic 3-manifoldM3 and local isometries i1 ∶M3 →M1

and i2 ∶ M3 → M2 such that f1 = f3 ○ i1 and f2 = f3 ○ i2. Lifting such an
immersion f ∶ S → M to the universal covering M̃ and composing with a
developing map dev ∶ M̃ → H3, one gets an immersion f̃ ∶ S̃ → H3, which is
equivariant under π1(S) that acts on S̃ by deck transformations and on H3 via
the representation ρ ∶ π1(S) → PSL2(C) obtained by composing the holonomy
of M with the homomorphism f∗ ∶ π1(S) → π1(M). It is easy to see that

equivalent immersions give rise to couples (f̃ , ρ) in the same PSL2(C)-orbit.
Vice versa, given a couple (f̃ , ρ), there exists ϵ > 0 such that the ρ-equivariant

immersion f̃ ∶ S̃ × {0} ≅ S̃ → H3 can be extended to an immersion f̂ ∶ Ũ =
S̃×(−ϵ, ϵ) → H3 in such a way that the restriction to each segment {p̃}×(−ϵ, ϵ)
is a geodesic of unit speed normal to df̃p̃(Tp̃S̃) at f̃(p̃). Pulling back the metric

of H3 via f̂ , we obtain a hyperbolic structure on Ũ . By ρ-equivariance, such f̂
descends to an immersion of S inside a hyperbolic 3-manifold U = S × (−ϵ, ϵ).
Clearly, if (f̃1, ρ1) and (f̃2, ρ2) are in the same PSL2(C)-orbit, then they give
rise to the same equivalence class of immersions.
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Given the class [f̃ , ρ] ∈ Ĩ of an immersion of S in a germ of hyperbolic

manifolds. We denote by ã ∶ T S̃ → T S̃ the shape operator of f̃ , which is then
self-adjoint with respect to the first fundamental form of the immersion. It
is immediate to see by ρ-equivariance of f̃ that ã descends to an operator
a ∶ TS → TS. Thus, to every [f̃ , ρ] we can associate a pair (b, a) of bundle
morphisms b, a ∶ TS → TS, where b is the operator defined in Section 1.2.

Consider now the locus M̃ I the locus of minimizing immersions inside Ĩ and
let M I be its quotient by PSL2(C).

Definition 1.6 (Immersion datum associated to a minimizing immersion).

For every [f̃ , ρ] in M I we define the 1-form on S with values on the bundle
TCS ∶= C⊗R TS

Φ(f̃ , ρ) ∶= b − iJba ,
where J is the almost-complex structure on S associated to h.
Such Φ(f̃ , ρ) is independent of the chosen representative in [f̃ , ρ].

Notice that Φ(f̃ , ρ) can be uniquely extended to a complex-linear endomor-
phism of the bundle TCS. We will often consider such an extension and we
denote it by the same symbol.
We will show in Section 3 that minimizing immersions of (S,h) into a (germ
of a) hyperbolic manifold can be described in terms of their immersion data.
The equations satisfied by such minimizing immersion data describe a complex
space D defined below.

Definition 1.7 (Space of minimizing immersion data). Fix a hyperbolic sur-
face (S,h). The space of minimizing immersion data D is the space of smooth
h-self-adjoint complex-linear operators ϕ ∶ TCS → TCS whose real part R(ϕ)
is positive and that satisfy d∇ϕ = 0 and detϕ = 1.

Here ∇ is the Levi-Civita connection of h, which can be extended as a con-
nection on the complex bundle TCS by C-linearity. The operator d∇ is the
exterior derivative on TS-valued 1-forms defined through ∇, so that d∇ϕ is a
2-form on S with values on TCS: more explicitly, if v,w are two vector fields
on S we have

(d∇ϕ)(v,w) =∇v(ϕ(w)) −∇w(ϕ(v)) − ϕ([v,w]) .

Finally, h can be extended to a complex bilinear form on TCS, still denoted by
h, so that ϕ is h-self-adjoint, i.e. h(ϕ(v),w) = h(v, ϕ(w)) for all vector fields
v,w on S.

1.4. Main results. The first main result of this paper consists of a charac-
terization of the immersion data corresponding to minimizing immersions.

Theorem A (Immersion data of minimizing immersions). Let (S,h) be a
hyperbolic surface.

(i) For every class [f̃ , ρ] ∈M I of minimizing immersions, the immersion

datum Φ([f̃ , ρ]) belongs to D. Moreover, each ϕ ∈ D is obtained from

a unique minimizing class [f̃ , ρ] ∈M I.
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(ii) The map Φ ∶ M I = {[f̃ , ρ]} → D that associates to a minimizing

immersion [f̃ , ρ] its immersion datum is a homeomorphism.

The correspondence established in Theorem A is in fact smooth in the following
sense:

● if a family (f̃t, ρt)t∈I in M̃ I depends C∞ on t, then the corresponding
embedding data (ϕt)t∈I depends C∞ on t too;

● if (ϕt)t∈I is a C∞ family of embedding data in D and (f̃0, ρ0) corre-
sponds to ϕ0, then (f̃0, ρ0) can be deformed to a C∞ family (f̃t, ρt)t∈I
in M̃ I with embedding data (ϕt)t∈I .

In our second main result we show that the space of immersion data of
minimizing maps has a natural structure of complex manifold.

Denote by Q the space of J-holomorphic quadratic differentials on S, viewed
as a real vector space, and by QC ∶= C⊗R Q the complexification of Q .
We now consider more closely the space of immersion data on (S,h). To do
this, we use the decomposition given in Proposition 3.9: for every smooth
ϕ ∶ TCS → TCS which is self-adjoint and Codazzi, there exists a unique triple
(u, q, q′), where u ∶ S → C is a smooth function and q, q′ ∈ Q such that

ϕ = (u1 −Hess(u)) + (bq + ibq′) ,

where

● 1 is the identity operator;
● Hess(u) = ∇(gradu) ∶ TS → TS is the bundle morphism associated
(through the Riemannian metric h) to the covariant Hessian of u;
● bq ∶ TS → TS is the bundle morphism associated (through h) to the
bilinear form R(q) on TS.

In other words, the complex vector space Cod of smooth d∇-closed h-self-
adjoint 1-forms with values in TCS (endowed with the smooth topology) splits
as

Cod = C∞(S,C) ⊕QC

We will denote by Q ∶ Cod → QC the projection to QC induced by this splitting.

Theorem B (Manifold structure on the space of minimizing maps). Let (S,h)
be a hyperbolic surface. The space D of immersion data is a complex subman-
ifold of Cod of complex dimension 6g − 6. Moreover, the restriction of Q over
D is a local biholomorphism.

In our third result we show that the monodromy map that sends a minimizing
immersion datum ϕ to the conjugacy class [ρϕ] of the monodromy of the
corresponding germ of hyperbolic 3-manifold is a biholomorphism onto its
open image.

Definition 1.8 (Space of non-elementary SL2(C)-representations).
The space X of non-elementary representation is the locus in
Hom(π1(S),PSL2(C))/PSL2(C) of conjugacy classes of representations

without fixed points in H3
.
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Theorem C (Monodromy map is holomorphic). Let (S,h) be a hyperbolic
surface. For every ϕ ∈ D, the conjugacy class [ρϕ] is non-elementary. More-
over, the map Mon ∶ D → X that sends ϕ to [ρϕ] is a biholomorphism onto an
open subset of X that contains the Fuchsian locus.

In view of Theorem C, we define a functional F ∶ X → R≥0 on the representation
space X as

F([ρ]) ∶= inf{F (f̃) ∣ [f̃ , ρ] ∈ I}.
In our fourth result we show that, in view of Theorem C, for every hyperbolic
metric h on S there exists a suitable open subset of X that contains the
Fuchsian locus and on which the functional F is the real part of a holomorphic
function.

Theorem D (Complexification of the functional). Let (S,h) be a hyperbolic
surface. For every ϕ ∈ D, we have F([ρϕ]) = R ∫S tr(ϕ)ωh. As a consequence,
the restriction of F to the open subset Mon(D) is the real part of the function
FC ∶Mon(D) → C defined as

FC([ρ]) ∶= ∫
S
tr(Mon−1(ρ))ωh ,

which is holomorphic.

The conjectural link between the holomorphic function FC associated to a hy-
perbolic metric h and the complex length associated to a measured lamination
λ on S is discussed in Section 5.3.

1.5. Structure of the paper. In Section 2 we define the main objects of
investigation, such as equivariant maps, immersion data and the 1-energy
functional F . Then we discuss first-order deformations of equivariant maps,
we prove convexity of F along geodesic displacements and from that we deduce
uniqueness of smooth minimizing immersions.
In Section 3 we compute the first-order variation of F and we deduce Euler-
Lagrange equations for minimizing immersions, thus proving Theorem A.
Then we obtain Theorem B through an implicit function theorem argument.
In Section 4 we resume the deformation theory of equivariant immersions
developed in Section 2.7, and we rephrase it in terms of the bundle of local
Killing vector fields. Using such rephrasing, we prove Theorem C and its
immediate consequence, namely Theorem D.
In Section 5 we list some open problems and perspectives that came up natu-
rally when working at the present article.
Finally, we collect in Appendix A some facts on 1-Schatten norms of matrices
and of families of matrices, that are used in Section 2.
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2. A 1-energy functional

In this section we introduce certain spaces of equivariant maps and immersions
from the universal cover S̃ of the surface S to H3 and we define the 1-energy
of such maps.
A key space of our constructions is the space C∞(S̃,H3) of smooth maps

S̃ → H3. While introducing a structure of Fréchet manifold on C∞(S̃,H3) is
possible, for the sake of simplicity we limit ourself to introduce the minimum
technical background to develop first-order computations at a single point of
C∞(S̃,H3). For this reason, we study the deformation theory of (equivari-

ant) maps S̃ → H3 and we define appropriate tangent spaces to such (usually
infinite-dimensional) spaces of maps. Our interest in such tangent spaces is
twofold: on one hand, they will allow us to define the differential of a map
from or to such infinite-dimensional spaces; on the other hand, they will be the
natural setting to linearise differential operators defined in a neighbourhood
of an equivariant map. One example of the former application will be the
monodromy map from the space C̃ of smooth equivariant maps S̃ → H3 with
non-elementary monodromy to the manifold X̃ of non-elementary representa-
tions π1(S) → PSL2(C).
Toward the end of the section, we show that the 1-energy has a convexity
property with respect to geodesic displacements. We conclude by showing that
equivariant minimal immersions (whenever they exist) are the unique critical
point for the 1-energy functional among maps with the same monodromy, and
in fact they are a point of absolute minimum with non-elementary reductive
monodromy. We also show that in the Fuchsian case minimizing maps are
exactly minimal Lagrangian maps between hyperbolic surfaces.

2.1. Setting. Let S be a compact, connected, oriented surface with χ(S) < 0.
Fix a universal cover π ∶ S̃ → S and an identification between π1(S) and the
group Aut(π) of the deck transformations of π.

Notation. We will use the symbol γ ∈ Aut(π) ≅ π1(S) to denote an auto-

morphism γ ∶ S̃ → S̃ over the covering space π, and by γ∗ the push-forward
operator on vector fields or other tensors on S̃ induced by the diffeomorphism
γ.

Fix also a hyperbolic metric h on S and let h̃ be its pull-back on S̃, so that
(S̃, h̃) is isometric to the hyperbolic plane H2 and π1(S) acts on (S̃, h̃) via
hyperbolic isometries.

2.2. Maps and immersions. Given a complete hyperbolic 3-manifold M ,
we can identify its universal cover M̃ to H3 and the group of orientation-
preserving isometries of M̃ to PSL2(C). Note that a continuous map f ∶ S →M
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can be lifted to a π1(S)-equivariant continuous map f̃ ∶ S̃ → M̃ = H3, where

π1(S) acts on S̃ by deck-transformations and on H3 through a representation
ρ ∶ π1(S) → PSL2(C).
The advantage of the following definition is in its flexibility, since looking at
equivariant maps “allows M to vary”.

Definition 2.1 (Equivariant maps). An equivariant (non-elementary) map

from S̃ to H3 is a couple (f̃ , ρ), where ρ ∶ π1(S) → PSL2(C) is a non-elementary

representation and f̃ ∶ S̃ → H3 is a π1(S)-equivariant smooth map.

If (f̃ , ρ) is an equivariant map, the representation ρ is called the monodromy

of f̃ . Notice that ρ is determined by f̃ provided that the rank of df̃ is 2 at
least at one point p̃ ∈ S̃.
Since π1(S) is generated by 2g loops, the evaluation at those loops identifies
Hom(π1(S),PSL2(C)) to a closed algebraic variety inside PSL2(C)2g. We

denote by X̃ the locus in Hom(π1(S),PSL2(C)) consisting of non-elementary
representations.
As a consequence of the above discussion, the space C̃ of smooth non-
elementary equivariant maps inherits a topology as a subset of C∞(S̃,H3)× X̃ .

The group PSL2(C) of orientation-preserving isometries of H3 acts on C̃ as

g ⋅ (f̃ , ρ) ∶= (g ○ f̃ , gρg−1). Let C ∶= PSL2(C)/C̃ and denote by [f̃ , ρ] the class
of smooth non-elementary equivariant maps up to this PSL2(C)-action.

We recall from the introduction that X is the space of PSL2(C)-conjugacy
classes of representations in X̃ . The following fact is well-known, see [11].

Lemma 2.2 (Smoothness of the representation space). The space X̃ is a com-

plex manifold of dimension 3(1−χ(S)), the quotient map X̃ → X is a principal
PSL2(C)-fibration and X is a complex manifold of dimension −3χ(S).
Lemma 2.2 allows us to define smooth families of equivariant maps.

Definition 2.3 (Paths of (equivariant) maps). A (germ of a) path of maps

is a smooth map f̃ ∶ S̃ × (−ε, ε) → H3 for some ε > 0. A (germ of a) path of

equivariant maps is a couple (f̃ ,ρ), where f̃ ∶ S̃×(−ε, ε) → H3 and ρ ∶ (−ϵ, ϵ) →
X are smooth maps for some ϵ > 0 such that for any t ∈ (−ϵ, ϵ) the restriction

f̃t ∶= f̃(●, t) and the representation ρt ∶= ρ(t) form a smooth equivariant map

(f̃t, ρt). Such a path (f̃ ,ρ) is a deformation of the equivariant map (f̃ , ρ) if
f̃ = f̃0 and ρ = ρ0; moreover, it is an isomonodromic deformation if ρt = ρ for
all t ∈ (−ϵ, ϵ).
In this paper we will be mainly interested in equivariant immersions, that is,
equivariant maps (f̃ , ρ) such that df̃ has rank 2 at every point. As in the

introduction, we will denote by Ĩ the space of equivariant smooth immersions,
which is an open subset of C̃ for the smooth topology. This in particular
implies that if (f̃ ,ρ) is a path of equivariant maps and f0 is an immersion,
then ft is an immersion for t sufficiently small.
Clearly Ĩ is preserved by the action of PSL2(C). Equivariant immersions that
differ by post-composition with an isometry of H3 are geometrically equivalent.
For this reason, we introduce the quotient space I = PSL2(C)/Ĩ.
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2.3. Geometry of equivariant immersions. Given an equivariant immer-
sion (f̃ , ρ), the pullback Ĩ = f̃∗hH3 on S̃ of the hyperbolic metric hH3 of H3 is

a Riemannian metric on S̃, which is invariant under the action of π1(S). So

Ĩ is the lift of a Riemannian metric I on S. This metric I is called the first
fundamental form of the immersion.
On the other hand, associated to f̃ there is a normal field Ñ on S̃, which is
defined by the conditions that at every p̃ ∈ S̃

● Ñ(p̃) ∈ Tf̃(p̃)H
3 is a unitary vector orthogonal to the image of df̃p̃.

● if (e1(p̃), e2(p̃)) is a positively oriented basis of Tp̃S̃, then

(Ñ(p̃), df̃p̃(e1(p̃)), df̃p̃(e2(p̃))) is a positively oriented basis of Tf̃(p̃)H
3

Formally, Ñ is a section of the bundle Θf̃ ∶= f̃
∗TH3, which comes endowed

with the pull-back ∇H3
of the Levi-Civita connection of H3. Thus ∇H3

Ñ is a 1-

form on S̃ with values in Θf̃ . Standard arguments show that ∇H3

w̃ Ñ is tangent

to the immersion for every w̃ ∈ T S̃. Thus an endomorphism ã ∶ T S̃ → T S̃ is
defined by requiring that

∇
H3

w̃ Ñ = df̃(ã(w̃))

for every w̃ ∈ T S̃. It is a classical fact that ã is Ĩ-self-adjoint. Moreover the
equivariance of Ñ with respect to the action of π1(S) implies that ã is π1(S)-
invariant, so that it is the lift of an endomorphism a ∶ TS → TS called the
shape operator of the immersion.
The pair (I, a) are called the immersion datum of f̃ . Since H3 has curvature
−1, the couple (I, a) obeys a system of integrability conditions called the
Gauss-Codazzi equations:

(1)

⎧⎪⎪⎨⎪⎪⎩

KI = det(a) − 1 ,
d∇

I
a = 0 ,

where KI is the intrinsic curvature of the metric I and d∇
I
is the exterior

differential associated to the Levi-Civita connection of I. Namely, d∇
I
a is the

2-form with values in TS defined by (d∇I
a)(v,w) = (∇I

va)(w) − (∇I
wa)(v).

Remark 2.4. Once we have fixed a reference metric h over S, any other Rie-
mannian metric h′ over S can be described by an h-self-adjoint positive opera-
tor b by requiring that h′(v,w) = h(bv, bw) for every v,w ∈ TS. Notice that b is
the square root of the operator obtained by “rising” an index of h′ with respect
to the background metric h. More precisely, the Riemannian metric h induces
a bundle isomorphism between the bundle of positive bilinear forms h′ and
the bundle of positive h-self-adjoint endomorphisms b such that h′ = h(b, b),
so that a family of metrics (h′t) is smooth if and only if the corresponding
family of endomorphisms (bt) is.

The following classical result states that the space I of equivariant immersions
up to the action of PSL2(C) is naturally identified to the space of solutions

of (1) through the correspondence that sends (f̃ , ρ) to its immersion datum.
It is a direct consequence of the Fundamental Theorem of Surface theory, see
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e.g. [8, Section 64] or [20, Chapter 1], but also [21, 13] for other applications
to equivariant surfaces in H3.

Proposition 2.5 (Immersions and immersion data). Two equivariant immer-
sions correspond to the same immersion datum (I, a) if and only if they differ
by post-composition by an element of PSL2(C).
Moreover, if (I, a) is a solution of the Gauss-Codazzi equations (1), where I
is a Riemannian metric and a is an I-self-adjoint endomorphism of TS, then
(I, a) is the immersion datum of some equivariant immersion.

The above correspondence between immersions and immersion data can be
promoted to a correpondence between paths of immersions.

Proposition 2.6 (Paths of immersions and of immersion data). If (f̃ ,ρ)
is a smooth path of equivariant immersions, then the corresponding family
of immersion data (It, at)t∈(−ϵ,ϵ) is smooth, i.e. for any couple of vector fields
X,Y over S the functions (t, p) ↦ It(X(p), Y (p)) and (t, p) → at(X(p), Y (p))
defined on (−ϵ, ϵ) × S are smooth.
Conversely, if (It, at)t∈(−ϵ,ϵ) is a smooth family of immersion data, there is a

smooth path (f̃ ,ρ) of equivariant immersions such that (It, at) are the embed-
ding data of ft for every t ∈ (−ϵ, ϵ).

Before getting into the proof of the above proposition, let us make some ob-
servations about any immersion f̃ ∶ S̃ → H3.
Fix global coordinates u = (u1, u2) on S̃ and x = (x1, x2, x3) on H3, and let

∂i ∶= ∂
∂ui

. Consider any immersion f̃ = (f̃1, f̃2, f̃3) and choose a unit vector

field Ñf̃ orthogonal to f̃(S̃), and let Ĩ be its first fundamental form and ã its

shape operator. Denote by ∇Ĩ be the Levi-Civita connection on S̃ associated

to Ĩ and by ∇f̃ the connection on f̃∗TH3 obtained by pulling back the Levi-
Civita connection of H3 via f̃ . The partial derivatives ∂if̃ are sections of

f̃∗TH3 and the covariant derivatives ∇f̃(∂if̃) are determined by Ĩ and ã as
follows

∇
f̃
∂j
(∂if̃) = df̃(∇Ĩ

∂j∂i) + Ĩ(∂j , ã(∂i))Ñf̃

Writing such identity in coordinates, we deduce that the map f̃ = (f̃1, f̃2, f̃3)
satisfies a system of equations of the form

(2)
∂2

∂ui ∂uj
f̃α = Cα

ij (uk, f̃β,
∂f̃γ

∂uk
)

and Cα
ij are functions that smoothly depend on the coefficients of Ĩ and ã. Here

we adopt the convention that Latin indices range in {1,2}, whereas Greek in-
dices take values in {1,2,3}. The fundamental theorem of Riemannian geome-
try asserts that the Gauss-Codazzi equations are equivalent to the integrability
of the system.
Now, denote byM3,2 the vector space of 3 × 2 real matrices and consider the

locus of S̃ ×H3 ×M3,2 defined by

JĨ ∶= {(u,x, ξ) ∈ S̃ ×H
3 ×M3,2 ∣ gα,β(x)ξαi ξ

β
j = Ĩij(u)} ,
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where gαβ is the hyperbolic metric on H3.
First note that JĨ is a submanifold: this is a consequence of the implicit

function theorem, since JĨ is the fiber over 0 of the map S̃×H3×M3,2 →Msym
2,2

defined as (u,x, ξ) ↦ ξT g(x)ξ − Ĩ(u), which is easily seen to be a submersion

as Ĩ(u) is non-degenerate.
Note also that the graph of the 1-jet map j1f̃ = (f̃α, ∂if̃α) ∶ S̃ → H3 ×M3,2

associated to f̃ is contained in JĨ . Actually, once Ĩ , ã are fixed, the manifold
JĨ is foliated by the graphs of the 1-jets of all the immersions with embedding

data (Ĩ , ã): by Proposition 2.5 for every element (u,x, ξ) of JĨ there is a

unique immersion f̃(u,x,ξ) ∶ S̃ → H3 such that f̃(u,x,ξ)(u) = x and the differential
df(u,x,ξ) at u is ξ.
In fact, there is a distribution of planes PĨ,ã on JĨ so that the graphs of the

1-jets of the immersions with embedding data (Ĩ , ã) are the corresponding
integral surfaces. Such a distribution PĨ,ã is clearly generated by the two

vector fields

Gi(u,x, ξ) = ∂i + d(j1f̃(u,x,ξ))(∂i) for i = 1,2,

and, using (2), we see that at every (u,x, ξ) we have

Gi(u,x, ξ) =
∂

∂ui
+

3

∑
α=1

ξαi
∂

∂xα
+

2

∑
j=1

3

∑
α=1

Cα
ij(u,x, ξ)

∂

∂ξαj
for i = 1,2.

Proof of Proposition 2.6. The first part is straightforward. As for the second
part, consider a smooth family of immersion data (Ĩt, ãt) obtained by pulling

(It, at) back via S̃ → S. Let us set Jt ∶= JĨt and Pt ∶= PĨt,ãt the corresponding

distribution of planes.
Notice that on S̃ there is a field of positive-definite 2 × 2 symmetric matrices
bt, smoothly depending on t, such that

(Ĩt)ij = (Ĩ0)kh(bt)ki (bt)hj .

In this way we see that the map Ψt ∶ S̃ ×H3 ×M3,2 → S̃ ×H3 ×M3,2 defined by

Ψt(u,x, ξ) ∶= (u,x, ξ ⋅ bt(u)) restricts to a diffeomorphism of J0
∼Ð→ Jt. From

the discussion above it turns out that the family (Ψ∗tPt) of distributions on
J0 is smooth in t.
Now, from the very definition of Ψt it follows that, if f̃ ∶ S̃ → H3 is an immersion
with embedding data (Ĩt, ãt), then

Ψ−1t (graph(j1f̃)) = {(u, f̃(u),
∂f̃
∂u(u) ⋅ b(u)

−1) ∣ u ∈ S̃ } ,

and so its projection on S̃ × H3 is still the graph of f̃ . Moreover,
Ψ−1t (graph(j1f̃)) is an integral surface for Ψ∗tPt if and only if f̃ is an iso-

metric immersion with embedding data (Ĩt, ãt).
As a consequence of the above observations, we can construct a smooth family
of immersions (f̃t), as required in the statement, by fixing any (u,x, ξ) in

the graph of j1f̃0 and considering the family of integral surfaces for Ψ∗tPt
passing through such (u,x, ξ). Smoothness of f̃t(u) in u and t follows from
the Frobenius theorem.
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Finally, since (Ĩt, ãt) are π1(S)-invariant, by Proposition 2.5 there exists a

unique ρt ∶ π1(S) → PSL2(C) such that the maps f̃t are ρt-equivariant. It is

easy to see that, since f̃t(u) depends smoothly on u and t, the family (ρt) is
smooth too. □

Finally, we will associate to any section of Θf̃ a self-adjoint and a skew-self-

adjoint endomorphism of Θf̃ , using the following simple linear algebra lemma

(see [3, Section 5.2]).

Lemma 2.7 (A-S decomposition of a linear immersion). Let V be an Euclidean
vector space of dimension 3 and let W be a 2-dimensional linear subspace.
Then any linear map L ∶W → V can be uniquely decomposed as L = AL + SL,
where AL ∶W →W is self-adjoint and SL can be written as SL(●) ∶= v × ● for
some fixed v ∈ V .

Given a section X̃ of Θf̃ , at every point p̃ of S̃ we can view (∇H3
X̃)p̃ as a linear

map from Tf̃(p̃)f̃(S̃) to Tf̃(p̃)H
3, where we have identified Tp̃S̃ and Tf̃(p̃)f̃(S̃)

via df̃p̃.

Definition 2.8 (Self-adjoint and skew-self-adjoint derivative of a section of

Θf̃ ). Let f̃ be an immersion and X̃ be a section of Θf̃ . The self-adjoint

derivative of X̃ is the endomorphism AX̃
f̃
∶ T S̃ → T S̃ defined as (AX̃

f̃
)
p̃
∶=

A(∇
H3

X̃)p̃ for all p̃ ∈ S̃. The skew-self-adjoint derivative of X̃ is the linear

morphism SX̃
f̃
∶ T S̃ → Θf̃ defined as (SX̃

f̃
)
p̃
∶= S(∇

H3
X̃)p̃ for all p̃ ∈ S̃.

We will usually denote by X̃ ′ the section of Θf̃ such that SX̃
f̃
(●) = X̃ ′ × ●.

2.4. The 1-Schatten energy. In this subsection we introduce a functional
on F on the space C of smooth equivariant maps from S̃ to H3 that will be
a central object of our investigation in this paper. We incidentally mention
that such functional can be defined on a space of maps of lower regularity
(for example, Lipschitz maps).

Given a smooth equivariant map (f̃ , ρ), the 1-Schatten norm of f is defined as

the function on S̃ given by p̃ ↦ ∥df̃p̃∥1, where ∥df̃p̃∥1 denotes the 1-Schatten

norm of the linear map df̃p̃ as defined in Section A.1.

Clearly, this norm is unchanged if we replace f̃ by g ○ f̃ with g ∈ PSL2(C).
Hence, the function ∥df̃∥1 on S̃ descends to a function on S, denoted as ∥df∥1.

Definition 2.9 (1-Schatten norm of an equivariant map). The 1-Schatten

norm of the equivariant map (f̃ , ρ) is the function ∥df∥1 ∶ S → R≥0 defined in
such a way that for every p ∈ S the value ∥dfp∥1 agrees with the 1-Schatten

norm ∥df̃p̃∥1 of the linear map df̃p̃ ∶ Tp̃S̃ → Tf̃(p̃)H
3 where p̃ ∈ S̃ is any lift of p.

Notation. The symbol ∥df∥1 associated to an equivariant map (f̃ , ρ) aims at
helping the reader in remembering that ∥df∥1 is a well-defined function on S,

and not just on S̃. In general, though, no map f is involved in its definition.
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However, if f̃ is a lift of a map f ∶ S →M to a complete hyperbolic 3-manifold
M , then ∥dfp∥1 is exactly the 1-Schatten norm of dfp ∶ TpS → Tf(p)M .

The following is a direct consequence of Lemma A.3.

Lemma 2.10 (Regularity of 1-energy density). Let (f̃ ,ρ) be a path of equi-
variant maps. The function S × (−ϵ, ϵ) ∋ (p, t) ↦ ∥(dft)p∥1 ∈ R≥0 is Lipschitz;

moreover, it is smooth at all points p ∈ S such that (df̃t)p̃ has rank 2.

Remark 2.11 (1-energy density and b-operator). If (f̃ , ρ) is an equivariant im-
mersion with first fundamental form I and let b be the h-self-adjoint operator
on TS such that I(v,w) = h(bv, bw). Then its pull-back b̃ to T S̃ is the h-self-

adjoint component in the polar decomposition of df̃ . Thus ∥df∥1 = tr(b).
Definition 2.12 (1-Schatten energy). The 1-Schatten energy of a smooth

equivariant map (f̃ , ρ) in H3 is defined as

F (f̃) ∶= ∫
S
∥df∥1 ωh.

Remark 2.13. The 1-Schatten energy F (f̃) can be defined for equivariant maps

f̃ of lower regularity, such as Lipschitz maps (in this case ∥df∥1 is bounded
measurable).

Clearly, F (g ○ f̃) = F (f̃) for every g ∈ PSL2(C). We also note that, for a path

of equivariant maps (f̃ ,ρ), the function t ↦ F (f̃t) is smooth at t0 provided

that the map f̃t0 is an immersion.
The following simple and important property is a consequence of Lemma A.4.

Lemma 2.14 (1-Schatten energy and Lipschitz maps). If f̃ ∶ S̃ → H3 is a
smooth equivariant immersion and g ∶ H3 → H3 is C-Lipschitz, then the 1-
Schatten energy (in the sense of Remark 2.13) of the Lipschitz map g ○ f̃
satisfies ∥d(g ○ f̃)∥1 ≤ C ⋅ ∥df̃∥1 at almost every point of S̃. Hence, F (g ○ f̃) ≤
C ⋅ F (f̃).
2.5. Minimizing maps and critical points of F . Fix a non-elementary
representation ρ ∶ π1(S) → PSL2(C) throughout the whole section.

Let us denote by C̃ρ the space of smooth equivariant maps of S̃ into H3 with

monodromy ρ, equipped with the C∞ topology, and by Ĩρ the subspace of
smooth equivariant immersions with monodromy ρ.

Definition 2.15 (Minimizing ρ-equivariant maps). A ρ-equivariant map f̃ ∈
C̃ρ is minimizing if it realizes the minimum of the functional F on C̃ρ.

By Lemma A.3, the functional F on Ĩρ is smooth in the following sense: if

f̃ ∶ (−ϵ, ϵ) × S̃ → H3 is a smooth path of equivariant immersions with constant
monodromy ρ, then the function t ↦ F (ft) is smooth. The following is then
immediate.

Lemma 2.16 (Minimizing immersions are critical points of F ). If (f̃ , ρ) ∈ Ĩρ is
a ρ-equivariant minimizing immersion, then it is a critical point of F , i.e. for
any isomonodromic deformation f̃ ∶ (−ϵ, ϵ) × S̃ → H3 of f̃ we have

d

dt
F (f̃t)∣

t=0
= 0 .
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In Section 2.8 we will discuss the convexity of F showing that any critical
immersion is in fact minimizing (Corollary 2.38).

2.6. Minimizing maps with Fuchsian monodromy. In this section we
consider the case where the representation ρ is Fuchsian, that is, ρ is a discrete
and faithful representation of π1(S) into PSL2(R) ⊂ PSL2(C). We identify H2

to the totally geodesic plane of H3 stabilised by PSL2(R).
We begin with a more general remark (see [6, Section II.1.3] for more details
on the nearest point retraction).

Lemma 2.17 (Nearest point retraction). Let K be a non-empty closed convex
subset of H3, invariant under the action of π1(S) induced by a representation
π1(S) → PSL2(C). Then the nearest point retraction r ∶ H3 → K is π1(S)-
equivariant and 1-Lipschitz. Moreover, if the representation takes values in
PSL2(R) and K = H2, then r is smooth.

Thus for any ρ-equivariant map f̃ , the composition r ○ f̃ is ρ-equivariant and
F (r ○ f̃) ≤ F (f̃) by Lemma 2.14. This implies that, if (f̃n) is any minimizing

sequence in C̃ρ, then (r ○ f̃n) is still a minimizing sequence in the space of

ρ-equivariant Lipschitz maps from S̃ to K.
Now let ρ be a Fuchsian representation, so that K = H2 is a ρ-invariant closed
convex set. If (f̃n) is any minimizing sequence in C̃ρ, then (r ○ f̃n) is still a

minimizing sequence in C̃ρ consisting of maps that take values in H2. Hence,
minimizers of F among ρ-equivariant maps with values into H2 are indeed
minimizers of F .
We will prove in Section 3.1 the following characterization of ρ-equivariant
local diffeomorphisms S̃ → H2 that are F -minimizers.

Lemma 2.18 (Fuchsian minimizers are minimal Lagrangian). Let ρ be a Fuch-

sian representation. A ρ-equivariant local diffeomorphism f̃ ∶ S̃ → H2 is mini-
mizing if and only it is minimal Lagrangian.

In this setting we can interpret the result proved by Schoen in [19] in terms
of the existence result of good minimizers for F when ρ is Fuchsian.

Theorem 2.19 (Fuchsian minimizers). Let ρ ∶ π1(S) → PSL2(R) be a Fuch-

sian representation. There exists a unique smooth ρ-equivariant map f̃ which
is a critical point of F . Such f̃ takes values in H2 and it is the lift of the unique
minimal Lagrangian map f ∶ S → S⋆ ∶= H2/ρ between hyperbolic surfaces. As

a consequence, f̃ is a real-analytic diffeomorphism.

Uniqueness is in fact a consequence the convexity of the functional proved in
Section 2.8.

2.7. Infinitesimal deformations. In this section we study first-order defor-
mations of a (not necessarily equivariant) smooth map f̃ ∶ S̃ → H3, namely

smooth paths of maps f̃ such that f̃0 = f̃ .

2.7.1. Deformations of maps. We recall that f̃∗TH3 is the vector bundle on
S̃ consisting of pairs (p̃, v), where p̃ ∈ S̃ and v ∈ Tf̃(p̃)H

3. As in Section 2.3, we

also denote such vector bundle by Θf̃ .
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Definition 2.20 (Velocity vectors of smooth paths of maps). Let f̃ ∶ S̃ ×
(−ε, ε) → H3 be a path of maps. The velocity vector of f̃ is the smooth section

of Θf̃ obtained by differentiating f̃t at t = 0.

The velocity vector of f̃ is also classically called variational field of the smooth
deformation f̃ of f̃0. We remark that, for any map f̃ , any smooth section X̃
of Θf̃ is the variational field of a smooth deformation of f̃ : for example, X̃ is

the variational field of the geodesic displacement f̃ X̃ introduced in Definition

2.22 below. Thus, we can identify first-order deformations of f̃ with their
variational fields.
The tangent cone to the space of maps at f̃ is the set of all velocity vectors of
deformations of f̃ . We have seen above that, in the present case, such tangent
cone at f̃ is given by the vector space of all sections of Θf̃ : because of such

linear structure, it will then be natural to call it “tangent space”.

Definition 2.21 (Tangent space to the space of maps). The tangent space

Tf̃C
∞(S̃,H3) to the space C∞(S̃,H3) at the map f̃ is the vector space Γ(Θf̃).

A geodesic displacement is a very natural deformation of a map to a Riemann-
ian target. Its relevance also relies on the fact that many energy functionals
turn out to be convex when such target is non-positively curved. Here we
briefly recall such notion.

Definition 2.22 (Geodesic displacement). Let X̃ be a smooth section of Θf̃ .

The geodesic displacement of f̃ along X̃ is the path of smooth maps f̃ X̃ ∶
R × S̃ → H3 defined as f̃ X̃(t, p̃) ∶= expf̃(p̃)(t ⋅ X̃(p̃)).

Since the exponential map of the hyperbolic space induces a diffeomorphism
between H3 and TxH3 for any x ∈ H3, we get the following property.

Lemma 2.23 (Uniqueness of geodesic displacements between given maps). If

f̃0, f̃1 are ρ-equivariant smooth maps, then there is a unique first-order smooth
deformation X̃ of f̃0 such that f̃ X̃(1, p̃) = f̃1(p).

Proof. It is immediate to check that the only infinitesimal deformation
of f̃0 with the stated properties is defined by the formula X̃(p̃) ∶=
(expf̃0(p̃))

−1(f̃1(p̃)). □

2.7.2. Deformation of representations. Fix ρ ∈ X̃ and let ρ be a smooth defor-
mation of ρ, namely a smooth path ρ ∶ (−ϵ, ϵ) → X such that ρ0 = ρ.
For every γ ∈ π1(S), let ςγ ∈ sl2(C) be defined as

ςγ ∶=
d

dt
ρt(γ)ρ(γ)−1∣

t=0
.

We recall that sl(2,C) can be identified to the Lie algebra of Killing vector
fields on H3. Under this identification, ςγ can be regarded as the Killing
vector field over H3 whose value at x ∈ H3 is the velocity of the curve t ↦
ρt(γ)ρ(γ)−1(x) at time t = 0. Thus, to the given deformation ρ of ρ we can
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associate the sl2(C)-valued function

ς ∶ π1(S) // sl2(C)
γ � // ςγ

It is easy to check that, since ρt is a representation for all t, the function ς
satisfies the condition

(3) ςγ1γ2 = ςγ1 +Adρ(γ1)ςγ2 .

Remark 2.24. Elements of sl2(C) can be considered as Killing vector fields on
H3. For any element ζ ∈ sl2(C), and any x ∈ H3 we can put

ζ(x) = d exp(tζ)(x)
dt

∣0 .

With this definition notice that Adg(ζ)(x) is the push-forward of ζ through
the map g:

Adg(ζ)(x) =
d(g exp(tζ)(g−1(x)))

dt
∣0 = dgg−1x(ζ(g−1(x))) .

Definition 2.25 (ρ-twisted 1-cocycles). A sl2(C)-valued ρ-twisted 1-cocycle
is a function ς ∶ π1(S) → sl2(C) that satisfies (3). The vector space of such
functions is denoted by Z1

ρ .

The following is rather classical, see [10].

Lemma 2.26 (Deformations of representations as cocycles). For every ρ ∈ X̃ ,
the map

TρX̃ Ð→ Z1
ρ

that sends a first-order deformation of ρ to its associated 1-cocycle is a bijec-
tion.

Because of the above lemma, we will identify the first-order deformation ρ of
ρ with its associated cocycle function ς.
The following fact will be useful later.

Lemma 2.27 (Existence of an equivariant deformation). Let (f̃ , ρ) be an equi-
variant map and let ρ be a deformation of ρ. Then there exists a deformation
f̃ ∶ (−ϵ, ϵ) × S̃ → H3 of f̃ such that f̃t is ρt-equivariant for all t ∈ (−ϵ, ϵ).

Proof. Let ζt ∈ Z1
ρt the cocycle representing the derivative of ρ at t, and denote

by π ∶ S̃×H3 → H3 the natural projection. We first construct a continuous fam-
ily of sections σt of the bundle π

∗(TH3) which satisfy the following coboundary
condition

(4) σt(γ(p), x) = d(ρt(γ))(σt(p, ρ−1t (γ)(x))) + ζt(γ)(x)

for all γ ∈ π1(S), p ∈ S̃ and x ∈ H3. The construction is pretty standard,
based on the partition of the unity. Fix a covering {Uα} of S, made by simply

connected open subsets. For each α let Ũα a lifting of Uα in S̃, through the
covering map P ∶ S̃ → S so that

P−1(Uα) = ⊔γ∈π1(S)γ(Ũα)
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Define the family of section σαt of π∗(TH3) only on π−1(Uα) ×H3 by putting

on γ(Ũα) ×H3

σαt (p, x) ∶= ζt(γ)(x) .

Notice that (4) is verified for all p ∈ P−1(Uα) and x ∈ H3. Now if (µα) is a
partition of unity subordinate to {Uα}, then the global family of sections

σt(p, x) = ∑µα(P(p))σαt (p, x)

satisfies (4).

Now for each p ∈ S̃ consider the path cp ∶ (−ϵ(p), ϵ(p)) → H3 solution of the
following Cauchy problem:

{ ċp(t) = σt(p, cp(t))
cp(0) = f0(p)

For a fixed γ ∈ π1(S) we observe that the velocity of the path β(t) ∶= ρt(γ)cp(t)
is

β̇(t) = d(ρt(γ))(ċ(t))+ζγ(β(t)) = d(ρt(γ))(σt(p, cp(t)))+ζγ(β(t)) = σt(γ(p), β(t))

where the last equality holds by (4). So we deduce that cγ(p)(t) = β(t) since
they are solutions of the same Cauchy problem. In particular ϵ(γ(p)) = ϵ(p),
so there exists ϵ > 0 such that ϵ(p) > ϵ for all p ∈ S̃. Finally let us put

f(t, p) ∶= cp(t)

By the standard smooth dependence results, this function is smooth, and from
what we have proved f(t, γ(p)) = f(t, ρt(γ)(p)) for all t ∈ (−ϵ, ϵ) and p ∈ S̃. □

2.7.3. Deformation of equivariant maps. If f̃ is an equivariant map with non-
elementary monodromy ρ, there is a natural action of π1(S) on Θf̃ , plays an

important role to detect the variational fields of deformations through equi-
variant maps.
Namely, if X̃ ∈ Γ(Θf̃) and γ ∈ π1(S), we set

γ∗X̃(p̃) ∶= d(ρ(γ))f̃(γ−1(p̃))X̃(γ
−1(p̃))

for every p̃ ∈ S̃. We denote by Θf the vector bundle on S obtained as the
quotient of Θf̃ by the action of π1(S). Quite similarly, given a deformation

(f̃ ,ρ)t∈(−ϵ,ϵ) of (f̃ , ρ), we denote by Θf the vector bundle on (−ϵ, ϵ)×S defined
as the quotient of Θf̃ by the action of π1(S).
It follows that the vector space Γ(Θf) can be identified to the space Γ(Θf̃)

ρ

of ρ-invariant elements in Γ(Θf̃). Thus sections X of Γ(Θf) correspond to

ρ-invariant sections X̃ of Θf̃ .

Notation. In general, the symbol Θf is defined without using a map f from

S to a hyperbolic 3-manifold. However, if f̃ is the lift of a map f ∶ S →
M to a hyperbolic 3-manifold M , then Θf identifies to f∗TM . The same
considerations hold for a vector bundle of type Θf .
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Note that C̃ρ can be naturally viewed as a subset of C∞(S̃,H3). Thus we can

define the tangent cone to C̃ρ at a point f̃ as the subset of Tf̃C
∞(S̃,H3) =

Γ(Θf̃) consisting of all velocity vectors of deformations f̃ of f̃ entirely con-

tained inside C̃ρ.

Remark 2.28 (Connectedness of C̃ρ). We also note that C̃ρ is path-connected:

indeed, if f̃ , f̃ ′ are points in C̃ρ, then the geodesic displacement between f̃ and

f̃ ′ gives a path of maps in C̃ρ between them. In fact, C̃ρ is also locally path-

connected: it can be easily checked that, if f̃ ′ is close to f̃ , then the geodesic
displacement from f̃ to f̃ ′ remains close to f̃ .

We will see in the following lemma that Tf̃ C̃ρ is indeed a vector subspace.

Lemma 2.29 (Isomonodromic deformations). Let (f̃ , ρ) ∈ C̃ be a smooth equi-
variant map. Then the map

Tf̃ C̃ρ Ð→ Γ(Θf̃)
ρ

that sends a first-order deformations of (f̃ , ρ) inside C̃ρ to its corresponding

(ρ-invariant) variational field X̃ is a bijection.

Proof. Consider a deformation f̃ of f̃ inside C̃ρ. Since all f̃t are ρ-equivariant,
so is the corresponding variational field X̃, which thus belongs to Γ(Θf̃)

ρ. Vice

versa, given X̃ ∈ Γ(Θf̃)
ρ, we let f̃ be the geodesic displacement associated to

X̃. Since X̃ is ρ-invariant, so are the maps f̃t for all t. Hence, f̃ is a smooth
deformation of f̃ with fixed monodromy ρ and variational field X̃. □

Consider now a smooth deformation (f̃ ,ρ) of (f̃ , ρ) in which the monodromy

ρt need not be the same at all t. Let X̃ be the variational field of f̃ and ς the
1-cocycle attached to ρ. For every γ ∈ π1(S), the relation ρt(γ) ○ f̃t = f̃t ○ γ
can be rewritten as

(f̃−1 ○ (ρt(γ)ρ−1(γ)) ○ f̃) ○ (f̃−1ρ(γ)f̃) ○ (f̃−1f̃t) = (f̃−1f̃t) ○ γ.

Differentiating it at t = 0 and evaluating it at γ−1(p̃), we obtain

(f̃∗ςγ)(p̃) + (γ∗X̃)(p̃) = X̃(p̃),
namely

(5) γ∗X̃ = X̃ − ςγ ∣S̃
where ςγ ∣

S̃
= f̃∗ςγ is pull-back to S̃ of the Killing vector field ςγ in H3, viewed

as a section of f̃∗TH3.

Definition 2.30 (1-cocycle attached to a deformation of an equivariant map).

A 1-cocycle associated to (f̃ , ρ) is a couple (X̃, ς) such that ς ∈ Z1
ρ and Equa-

tion (5) is satisfied. Such vector space of 1-cocycles is denoted by Z1
(f̃ ,ρ)

.

Since C̃ is a subset of C∞(S̃,H3) × X̃ , the tangent cone at a point (f̃ , ρ) to
C̃, namely the set of all velocity vectors of deformations of (f̃ , ρ) entirely

contained in C̃, can be viewed as a subset of Tf̃C
∞(S̃,H3) ⊕ TρX̃ .
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Remark 2.31 (Connectedness of C̃). Since X is a connected manifold, Lemma

2.27 implies that (local) path-connectedness of C̃ is a consequence of (local)

path-connectedness of each C̃ρ, which was observed in Remark 2.28.

Again, we will see in the following lemma that tangent cones to C̃ are in fact
vector spaces.

Lemma 2.32 (First-order deformations of equivariant maps). Let (f̃ , ρ) ∈ C̃
be a smooth equivariant map. The application

T
(f̃ ,ρ)C̃ Ð→ Z

1
(f̃ ,ρ)

that sends a first-order deformation to its associated 1-cocycle is a bijection.

We have already seen how to associate a cocycle to a deformation: such appli-
cation is injective essentially by definition. Surjectivity of such map is more
subtle. The point is that it is not true in general that, if X̃ is a variational
field on f̃ which satisfies (5) for some ς, then the geodesic displacement f̃ X̃ is
a family of maps that are equivariant with respect to some deformation ρ of
ρ.

Proof of Lemma 2.32. Let (X̃, ς) be an element of Z1
(f̃ ,ρ)

and let ρ be a de-

formation of ρ with associated 1-cocycle ς. By Lemma 2.27, there exists
ϕ̃ ∶ (−ϵ, ϵ) × S̃ → H3 that deforms ϕ̃ and such that ϕ̃t is ρt-equivariant. Let

X̃⋆ be the variational field of ϕ̃. Since both X̃ and X̃⋆ solve Equation (5)

with respect to ρ and ς, their difference Ỹ0 ∶= X̃ − X̃⋆ is π1(S)-invariant,
and so descends to a section Y0 of Θϕ. Since Θϕ is smoothly isomorphic to
(−ϵ, ϵ) ×Θϕ, the section Y0 of {0} ×Θϕ can be extended to a smooth section

Y of Θϕ. Consider now the path of maps f̃ ∶ (−ϵ, ϵ) × S̃ → H3 defined as

f̃t(p̃) ∶= expϕ̃t(p̃)
(t ⋅ Ỹt(p̃)) Such family (f̃ ,ρ) is a smooth deformation of (f̃ , ρ)

with variational field X̃⋆ + Ỹ0 = X̃, as desired. □

As we wrote above, we consider two equivariant maps in the same PSL2(C)-
orbit as “geometrically equivalent”. A typical geometrically trivial deforma-
tion (f̃ ,ρ) of (f̃ , ρ) can be obtained by setting f̃t ∶= gt ○ f̃ and ρt ∶= Adgtρ,
where g ∶ (−ϵ, ϵ) → PSL2(C) satisfies g0 = 1 and ġ0 ∈ sl2(C). In this case, a

straightforward computation shows that its associated (X̃, ς) satisfy

X̃ = ġ0∣
S̃
, ςγ = ġ0 −Adρ(γ)ġ0.

Definition 2.33 (1-coboundary associated to an equivariant map). A 1-

coboundary associated to (f̃ , ρ) is a couple (X̃, ς) such that X̃ = ġ∣
S̃

and

ς = ġ − Adρġ for some ġ ∈ sl2(C). The vector space of 1-coboundaries is de-
noted by B1

(f̃ ,ρ)
.

As a subset of C̃, the tangent cone at a point (f̃ , ρ) to its PSL2(C)-orbit is a
subset of T

(f̃ ,ρ)C̃. The above discussion can be condensed into the following.
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Lemma 2.34 (Geometrically trivial first-order deformations). Let (f̃ , ρ) ∈ C̃
be an equivariant map. The map

T
(f̃ ,ρ)(PSL2(C) ⋅ (f̃ , ρ)) Ð→ B1(f̃ ,ρ)

is a bijection.

We say that a path in C = PSL2(C)/C̃ is smooth if it is induced by a smooth

path in C̃, and that two smooth paths (f̃ ,ρ) and (f̃ ′,ρ′) determine the same
tangent vector to C if, for every t, there exists gt ∈ PSL2(C) such that the path

gt ⋅ (f̃t, ρt) is smooth and determines the same tangent vector in C̃ as (f̃ ′,ρ′).
It will follow from Lemma 2.35 below that the path g = (gt) in PSL2(C) is
necessarily smooth and so T

[f̃ ,ρ]C can be identified to the quotient of T
(f̃ ,ρ)C̃

by the vector subspace T
(f̃ ,ρ)(PSL2(C) ⋅ (f̃ , ρ)). As a consequence, T

[f̃ ,ρ]C is
a vector space.

Lemma 2.35 (Smoothness of the path g). Let (f̃ ,ρ) be a smooth path in C̃
and let g = (gt) be any path in PSL2(C). Then t↦ gt ⋅ (f̃t, ρt) is a smooth path

in C̃ if and only if g is a smooth path in PSL2(C).

Proof. If g is smooth, then clearly (gt ⋅ (f̃t, ρt)) is smooth. So suppose now

that (gt ⋅(f̃t, ρt)) is smooth. Since ρ0 is non-elementary, the image of f̃0 cannot

be contained inside a geodesic. Hence, there exist three points p̃1, p̃2, p̃3 in S̃
such that f̃0(p̃1), f̃0(p̃2), f̃0(p̃3) are not contained inside the same geodesic of

H3. Call xi,t ∶= f̃t(p̃i) and yi,t ∶= gt(xi,t) for i = 1,2,3. Since the path f̃ is
continuous, the triple (x1,t, x2,t, x3,t) does not sit on the same geodesic of H3

for ∣t∣ small enough. It follows that gt is the only element of PSL2(C) that
takes (x1,t, x2,t, x3,t) to (y1,t, y2,t, y3,t). Since the three paths (xi,t) in H3 are

smooth (because f̃ is smooth), and the three paths (yi,t) in H3 are smooth

too (because (gt ⋅ f̃t) is smooth), the path g is smooth. □

We can finally summarize the statement of Lemma 2.32 and Lemma 2.34 in
this way.

Corollary 2.36 (Encoding first-order deformations). Let (f̃ , ρ) ∈ C̃ be a
smooth equivariant map.

● The tangent space Tf̃ C̃ρ can be identified to Γ(Θf).
● The tangent space T

(f̃ ,ρ)C̃ can be identified to Z1
(f̃ ,ρ)

.

● The tangent space at (f̃ , ρ) to the PSL2(C)-orbit inside C̃ can be iden-
tified to B1

(f̃ ,ρ)
.

Hence, T
[f̃ ,ρ]C can be identified to H1

(f̃ ,ρ)
∶= Z1

(f̃ ,ρ)
/B1
(f̃ ,ρ)

.

2.8. Convexity. Given a (not necessarily non-elementary) representation ρ,

we denote by C∞(S̃,H3)ρ the subset of C∞(S̃,H3) consisting of maps that
are ρ-equivariant.
One of the main properties of the 1-Schatten energy is that it is convex along
geodesic deformations. The rest of this section will be devoted to proving the
following statement.
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Proposition 2.37 (Convexity of the 1-Schatten energy). Let ρ be a repre-

sentation and f̃ a smooth path inside C∞(S̃,H3)ρ and let X̃ ∈ Γ(Θf̃)
ρ be its

variational field. If f̃X̃ is the geodesic displacement of f̃ = f̃0 along X̃, then

the 1-Schatten energy of the ρ-equivariant map f̃X̃,t satisfies

(i) the function t→ F (f̃X̃,t) is convex;

(ii) if f̃0 is an immersion, then d2

dt2
F (f̃X̃,t)∣t=0

> 0.

The proof of Proposition 2.37 is based on some technical lemmas on a smooth
perturbation of the Schatten norm, contained in Section A.2. Essentially the
same proof shows that the result still holds for equivariant maps inside a
negatively curved complete manifold.

Proof of Proposition 2.37. Let us fix p̃ ∈ S̃. We will prove that the function
t ↦ ∥d(f̃X̃,t)p̃∥1 is convex; and moreover that it is strictly convex at t = 0,

provided that df̃X̃,0 has rank 2 at p̃ and X̃(p̃) ≠ 0.
Consider the parallel transport τ̃t ∶ Θf̃X̃,t

→ Θf̃X̃,0
along geodesics in H3.

We can define a smooth family s̃ of sections of Hom(T S̃,Θf̃) by setting

s̃t ∶= τ̃t ○ df̃X,t ∶ T S̃ → Θf̃ . Clearly we have that ∥df̃X,t∥1 = ∥s̃t∥1. So we need

to prove that the function t↦ ∥s̃t∥1 is convex.

Claim. The family s̃ ∶ R → Hom(T S̃,Θf̃) is a solution of the following

Cauchy problem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¨̃s = Ξ ○ s̃
s̃0 = df̃X̃,0

˙̃s0 = ∇H3
X̃

where ∇H3
is the connection on H3 and Ξ ∶ Θf̃X,0

→ Θf̃X,0
is the self-adjoint

operator defined by

Ξ(●) ∶= −R(●, X̃)X̃
where R is the Riemann curvature tensor of H3.

Assuming the above claim, the operator Ξ is nonnegative because the
curvature of H3 is, and Proposition A.5 shows that the function t ↦ ∥s̃t∥1 is
convex, thus proving (i).

In order to verify the above claim, fix a point p̃ ∈ S̃ and let α̃ be the geodesic
in H3 defined by α̃(t) ∶= f̃t(p̃) = expf̃X̃,0(p̃)

tX̃(p̃).

For every fixed ṽ ∈ Tp̃S̃. define a vector field J̃ along α as J̃(t) ∶= df̃X̃,t(ṽ).

Then J̃ is a Jacobi field with initial conditions J̃(0) = df̃X̃,0(ṽ) and
˙̃J(0) =

(∇H3

ṽ X̃)p̃.
Now, let {ei} be a parallel orthonormal frame along α̃. Putting J̃(t) =
∑i c

i(t)ei(t) we have that

c̈i(t) = −⟨R(J̃(t), ˙̃α(t)) ˙̃α(t), ei(t)⟩ .
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Now considering that s̃t(ṽ) = ∑i c
iei(0), we deduce that

¨̃st(ṽ) = −τ̃t (R(τ̃−1t (ṽ), ˙̃α(t)) ˙̃α(t)) = −R(ṽ, X̃)X̃ = Ξ(s̃t(ṽ)) ,

where the second equality holds because R and ˙̃α are parallel along the
geodesic displacement and ˙̃α(0) = X̃. Since p̃ and ṽ were arbitrary, the claim
is proven.

Finally, in order to prove (ii), notice that negativity of the curvature of H3 has

the following consequence: at every point p̃ ∈ S̃ where X̃(p̃) ≠ 0, the quadratic
form Tp̃S̃ ∋ ṽ ↦ ⟨Ξ(ṽ), ṽ⟩ = −⟨R(ṽ, X̃(p̃))X̃(p̃), ṽ⟩ is semi-positive definite.

Moreover, if df̃X̃,0 has rank 2 at p̃ and X̃(p̃) ≠ 0, then Ξ ○ s̃0 ≠ 0. Hence, by

Proposition A.5 we deduce that

d2∥df̃t(p̃)∥1
dt2

∣
t=0
> 0

and the proof is complete. □

Let us draw the first consequences of the convexity property proven above.

Corollary 2.38 (ρ-equivariant critical immersions as minima). Let ρ be a

representation. If f̃ is an immersion and critical point for the restriction of F
to C∞(S̃,H3)ρ, then f̃ is the unique critical point and the absolute minimum

of the restriction of F to C∞(S̃,H3)ρ.

Proof. Let f̃1 ∈ C∞(S̃,H3)ρ be map different from f̃0 = f̃ . There is an invariant

vector field X̃ ≠ 0 along f̃0 such that the geodesic displacement f̃X̃ connects

f̃0 to f̃1. By Proposition 2.37, the function t ↦ F (f̃X̃,t) is strictly convex.

Such a function though has vanishing first derivative at t = 0, because f̃0 is a
critical point for F . Hence, its derivative at t = 1 is strictly positive. Hence,
we deduce that f̃1 is not a critical point for F and that F (f̃0) < F (f̃1). □

Another consequence of the convexity of the 1-Schatten energy is the following
observation, which also motivates why we usually limit ourselves to investigate
equivariant maps with non-elementary monodromy.

Lemma 2.39 (Monodromy of critical immersions). Let ρ ∶ π1(S) → PSL2(C)
be a representation and suppose that f̃ is a critical point for the restriction of
F to C∞(S̃,H3)ρ.

(i) The representation ρ is reductive, i.e. the closure of the image of ρ is
a reductive subgroup of PSL2(C).

(ii) If df̃ has rank 2 at some point, then ρ is non-elementary.

Proof. We analyze case by case the possible types of monodromy representa-
tions.
If ρ fixes a point x in H3, then it is elementary and reductive and the unique
critical point is the constant map with value x. Hence, both (i) and (ii) hold.
If ρ fixes exactly one point x∞ ∈ ∂H3, then it is elementary but not reductive
and a ρ-equivariant map f̃ cannot have image contained in a geodesic that
limits to x∞. As a consequence, the convexity properties of F imply that F is
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strictly descreasing along the geodesic displacement from f̃ towards x∞. Thus,
there is no ρ-equivariant f̃ which is critical for F , and so (i) and (ii) hold.
If ρ fixes exactly two points in ∂H3, then it fixes a geodesic L in H3. Hence, ρ
is elementary and reductive and the closest-point retraction Π from H3 to L
is 1-Lipschitz, smooth and ρ-equivariant. As a consequence, minimizers must
take values in L and so both (i) and (ii) hold.
If ρ does not fix any point in H3 or in ∂H3, then ρ is not elementary. In this
case, the image of ρ cannot have a finite-index subgroup that fixes a point.
Hence, ρ is reductive. □

3. Minimizing immersions

The aim of this section is to study the space of smooth minimizing immersions
of a given hyperbolic surface (S,h) into germs of hyperbolic manifolds. This is

equivalent to studying the space M I of equivalence classes [f̃ , ρ] of minimizing
smooth equivariant immersions. The first step is to describe an element of M I
as a pair (b, a) of endomorphisms of TS that satisfy some relatively elementary
properties. The second step is to notice that the package consisting of all such
properties can be expressed in a particularly simple way in terms of the C-
linear operator ϕ = b− iJba on the complexified tangent bundle TCS. The last
step is to describe the local structure of the space D of all such operators ϕ,
and show that D is a complex manifold of dimension −3χ(S).

3.1. Euler-Lagrange equations. In this section, we fix an equivariant im-
mersion (f̃ , ρ) ∈ Ĩ, consisting of a representation ρ ∶ π1(S) → PSL2(C) together
with a smooth ρ-equivariant immersion f̃ of S̃ into H3. We further consider a
smooth isomonodromic deformation (f̃) of f̃ in Ĩρ and we determine here the
first-order variation of F (ft) at t = 0.
As in the previous section, denote by X̃ = d

dt f̃t∣t=0
the variational field of f̃ ,

which descends to a section X ∈ Γ(Θf). Since f̃ is an immersion, the following
is immediate.

Lemma 3.1 (Decomposition of the variational field). The variational field
X can be decomposed as X = XT + νN , where ν ∶ S → R is a function, XT

is tangent to S and N ∈ Γ(Θf) is the positively-oriented unit normal vector.

Moreover, the almost-complex structure JI on S induced by I coincides with
the operator N × ● on S.

After the notation is set as above, we can state a formula for the first variation
of F .

Proposition 3.2 (First-order variation of F at an equivariant immersion).

The first-order variation of F along the isomonodromic family (f̃) with vari-
ational field X satisfies

d

dt
F (f̃t)∣

t=0
= ∫

S
(ν ⋅ tr(ba) + I(bW,JIXT ))ωh ,

where W ∶= det(b)−1b−1 ∗ d∇b and ∗ ∶ Λ2(T ∗S) ⊗ TS → TS is the Hodge ∗-
operator associated with h.
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Proof. Clearly,

dF (f̃t)
dt

∣
t=0
= ∫

S
tr(ḃ)ωh

so we need to compute ḃ. In order to do so, we compute the first-order variation
of the metric It induced on S by f̃t at t = 0 in two different way. On one hand,
differentiating the identity It = h(bt, bt) at t = 0, we get

İ = I(b−1ḃ●, ●) + I(●, b−1ḃ●) .

On the other hand, the self-adjoint derivative AX̃
f̃

of X̃ (see Defintion 2.8)

satisfies AX̃
f̃
= ∇ĨX̃T + ν̃ã, and it thus descends to an operator on TS, which

we denote by AX . It follows that İ can be also written as

İ = I(AX●, ●) + I(●,AX●) .

Comparing those two equations, we find that b−1ḃ and AX have the same
self-adjoint component, and therefore

b−1ḃ = AX + gJI =∇IXT + νa + ηJI ,

where η ∶ S → R is a function. Since bJI = Jb is traceless, it follows that

tr(ḃ) = tr(bAX) = tr(b∇IXT ) + νtr(ba) .

By Lemma 3.7 of [4], given any vector field w on S, we have ∇I
●w = b−1∇●(bw)+

I(●,W )JIw. Taking w =XT , we obtain

tr(b∇IXT ) = divh(bXT ) + I(bW,JIXT )

and so

tr(ḃ) = divh(bXT ) + I(bW,JIXT ) + ν tr(ba)
Since the integral of divh(bXT )ωh over S vanishes, the conclusion follows. □

The following is then immediate.

Corollary 3.3 (Characterization of critical equivariant immersions). An equi-

variant immersion (f̃ , ρ) is a critical point of F if and only if the corresponding
operator b satisfies the Codazzi equation d∇b = 0, and the second fundamental
form a satisfies tr(ba) = 0.

Proof. Consider the first-order variation formula as in Proposition 3.2. If b
satisfies the Codazzi equation, then W = 0. If furthermore tr(ba) = 0, then

clearly (f̃ , ρ) is a critical point.

Vice versa, suppose that (f̃ , ρ) is a critical point. Considering first-order

deformations of (f̃ , ρ) that are tangent to the image of f̃ , namely with ν = 0
and arbitrary XT , we obtain that W = 0 and so d∇b = 0. Considering then
first-order deformations with arbitrary ν, we obtain tr(ba) = 0. □

Recall that b is h-self-adjoint by definition, and that it is positive-definite
because f̃ is an immersion. Taking in account also the Gauss-Codazzi equation
of the immersions, we obtain the following statement, that implements the first
step announced at the beginning of the section.
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Corollary 3.4 (Euler-Lagrange equations for a critical immersion). A pair
of operators (b, a) on (S,h) corresponds to a critical equivariant immersion

(f̃ , ρ) if and only if the following equations are satisfied:

d∇b = 0 , d∇(ba) = 0 ,(6)

tr(Jb) = 0 , tr(ba) = 0 ,(7)

tr(Jb2a) = 0 , det b − det(ba) = 1 ,(8)

b > 0.(9)

Proof. Suppose that (b, a) corresponds to a critical equivariant immersion.
The first equation of (7) is equivalent to the fact that b is h-self-adjoint.

Condition (9) is equivalent to f̃ being an immersion. The first equation
of (6) and the second equation of (7) follow from Corollary 3.3. Since ã is

the shape operator of an immersion with first fundamental form Ĩ, we have

that d∇
I
a = 0. On the other hand, since b satisfies the Codazzi equation,

we have d∇
I (●) = b−1d∇(b●) and so d∇

I
a = b−1d∇(ba): the second equation

of (6) follows. Imposing that a is I-self-adjoint, we have that tr(JIa) = 0.
But JI = b−1Jb and it follows that tr(b−1Jba) = 0. Since b is h-self-adjoint,
b−1 = −(det b)−1JbJ , and the first equation of (8) follows. Finally by the Gauss
equation, KI = KH3 + det(a) = −1 + det(a). On the other hand, since b is a
Codazzi operator and h is hyperbolic, KI =Kh/det(b) = −1/det b. The second
equation of (8) easily follows by comparing these identities.
Vice versa, suppose that (b, a) satisfies Equations (6)-(9). Reversing the above
argument, we have that b is h-self-adjoint, positive-definite and it satisfies the
Codazzi equation, that I = h(b●, b●) is a Riemannian metric on S, that a is

I-self-adjoint and satisfies the I-Codazzi equation d∇
I
a = 0, and that (I, a)

satisfies the Gauss equation KI = −1 + det(a). By Proposition 2.5 such (I, a)
correspond to an immersion f̃ inside H3. Invariance of (b, a) implies that f̃ is
equivariant with respect to some representation ρ. Since b satisfies the Codazzi
equation and tr(ba) = 0 by the second equation of (7), it follows that (f̃ , ρ) is
critical by Corollary 3.3. □

The proof of Lemma 2.18 follows directly from this corollary.

Proof of Lemma 2.18. If f ∶ S̃ → H2 is a ρ-equivariant local diffeomorphism,
then a = 0 so Equation (6) reduces to d∇b = 0, (7) is equivalent to b being
self-adjoint for h, and (8) to det(b) = 1. Those are precisely the conditions for
f to be minimal Lagrangian, see e.g. [14]. □

3.2. Complex interpretation of the Euler-Lagrange equations. Given
a pair of linear operators (b, a) on TS, it is convenient to introduce the operator
ϕ ∶ TCS → TCS on the complexified tangent bundle TCS = C⊗R TS defined as

ϕ ∶= b − iJba .

Denoting (with some abuse) by ∇ the C-linear extension to TCS of the Levi
Civita connection of h, the Euler-Lagrange equations in Corollary 3.4 can be
rephrased in a more compact way, a more precise version of Theorem A.
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Corollary 3.5 (Complex Euler-Lagrange equations for a critical immersion).
The operator ϕ = b − iJba corresponds to a critical equivariant immersion if
and only if ϕ ∈ Cod , i.e.

d∇ϕ = 0 ,(10)

ϕ is h-self-adjoint(11)

det(ϕ) = 1 ,(12)

R(ϕ) is positive definite.(13)

Proof. The fact that (10) and (11) are equivalent to (6) and (7) respectively
is straightforward.
Equation (12) is equivalent to Equation (8). In fact, if B,C are complex 2× 2
matrices and J is a complex skew-symmetric 2 × 2 matrix such that J2 = −1,
then det(B)1 = −BTJBJ , and so det(B+C) = det(B)+det(C)− tr(JBTJC).
If moreover B is symmetric, we have

det(B +C) = det(B) + det(C) − tr(JBJC) .

As a consequence,

det(ϕ) = det(b) − det(ba) + itr(Jb2a) .

Finally (13) is clearly equivalent to (9). □

The following observation will be used in the proof of Theorem B.

Corollary 3.6. In Corollary 3.5 Equation (12) can be replaced by

(12’) tr ((Jϕ)2) = −2.

Proof. Let p be a point of S. In h-orthonormal coordinates at p we can write

J = ( 0 −1
1 0

) and ϕ = ( ϕ11 ϕ12
ϕ12 ϕ22

) ,

and a direct computation gives

JϕJϕ = −det(ϕ)( 1 0
0 1

) .

It follows that tr ((Jϕ)2) = −2det(ϕ) and the conclusion follows. □

3.3. Codazzi operators. Before addressing Theorem B, it will be useful to
consider a natural decomposition of Codazzi operators.

Definition 3.7 (Space of Codazzi operators). The space of complex Codazzi
operators Cod is the space of smooth h-self-adjoint bundle morphism ϕ ∶ TCS →
TCS satisfying the Codazzi equation d∇ϕ = 0.

Clearly Cod is infinite-dimensional. It contains a subspace that is in one-to-
one correspondence with the space C∞(S,C) of C∞ complex-valued function
on S, as shown in the following lemma.
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Lemma 3.8 (The operator cod). For every u ∈ C∞(S,C) define
cod(u) ∶= u1 −Hess(u) ∈ End(TCS)

where 1 ∈ End(TCS) is the identity map, Hess(u) ∈ End(TCS) is defined as
Hess(u) = ∇(gradu) and the gradient is computed with respect to the metric
h. Then

(a) cod(u) is h-self-adjoint and satisfies the Codazzi equation;
(b) the map cod ∶ C∞(S,C) → Cod is C-linear, continuous and injective

onto a closed subspace Codtr.

Proof. Concerning claim (a), note that cod(u) is h-self-adjoint by definition,
because Hess(u) is. Consider now two vector fields v,w on S. Then

(d∇(u1))(v,w) = ∇v((u1)(w)) −∇w((u1)(v)) − u1([v,w])
= ∇v(uw) −∇w(uv) − u(∇vw −∇wv)
= du(v)w − du(w)v .

It follows that

(d∇(u1))(v,w) = ωh(v,w)J gradu .

On the other hand, since h is a hyperbolic metric on S,

(d∇Hess(u))(v,w) = ∇v(∇w gradu) −∇w(∇v gradu) −∇[v,w] gradu
= −R(v,w)gradu
= ωh(v,w)J gradu .

As a consequence, d∇(u1 −Hess(u)) = 0 and so cod(u) ∈ Cod .
Concerning claim (b), continuity is obvious, since both spaces are endowed
with the smooth topology. As for the injectivity, suppose that cod(u) = 0
and so tr(cod(u)) = 0. Since tr(cod(u)) = 2u −∆u (where the Laplacian is
computed with respect to the metric h), an easy application of the maximum
principle shows that u = 0.
The closure of the image Codtr of the map cod is a consequence of Proposition
3.9 below. □

It is convenient to endow Cod with the structure of tame Fréchet space. Let
us recall that a Fréchet space is a completely metrizable, locally convex topo-
logical vector space, whose topology is induced by a countable family of semi-
norms. A tame Fréchet space is a Fréchet space endowed with choice of an
increasing family of seminorms ∥ ⋅ ∥n as above, which also satisfies some ad-
ditional technical property. We will refer to [12] for an introduction on the
topic.
For the aim of the present paper we only remark the following points.

● The relevance for us of these spaces is due to the fact that the Nash-
Moser inverse function theorem ([18], [17]) works in this category.
● In the category of tame Fréchet spaces, a linear map L ∶ E → F is
tame if there exists n0, k such that ∥L(v)∥n < Cn∥v∥n+k for all v ∈ E,
all n ≥ n0 and for some constant Cn that may depend on n. In a
similar way one can define a (non-necessarily linear) tame map between
Fréchet spaces (see Definition II.2.1.1 of [12]).
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● The space of C∞-smooth sections of any vector bundle on a compact
manifold is naturally equipped with a structure of tame Fréchet space
(see Corollary II.1.3.9 of [12]). Here the family of seminorms is given by
the Ck-norm of the section computed with respect to some background
metric and connection. While the tame Fréchet structure depends on
those choices, different choices produce isomorphic structures in the
category of tame Fréchet spaces.

In particular, Cod is a closed linear subspace of the space of smooth sections
of the vector bundle End(TCS), and so it carries a structure of tame Fréchet
space.

Notation. We will denote by QC ∶= Q ⊗R C the complex vector space ob-
tained by complexifying the space of J-holomorphic quadratic differential on
S (viewed as a real vector space). An element of QC with real part q and
imaginary part q′ will be denote by (q, q′), so that i ⋅ (q, q′) = (−q′, q). For
every q ∈ Q we will denote by bq the endomorphism of TS associated to the
quadratic form R(q) via h. Note that Q and QC can be seen as a closed linear
subspaces (of finite dimension!) of the space of smooth sections of the vector
bundle of quadratic differentials on S and of its complexification respectively.

We can now provide a canonical decomposition, in the category of tame Fréchet
spaces, of self-adjoint complex Codazzi tensors on S which will be useful for
the proof of Theorem B, see [5].

Proposition 3.9 (Canonical decomposition of Codazzi operators). The map

H ∶ C∞(S,C) ×QC // Cod
(u, q, q′) � // cod(u) + bq + ibq′

is a C-linear tame isomorphism of tame Fréchet spaces.

Proof. We recall that endomorphisms of TS which are h-self-adjoint, traceless
and satisfy Codazzi are exactly of type bq for some holomorphic quadratic
differential q. Hence, H is well-defined and it is manifestly linear. We
need to show that H is tame, bijective, and that H −1 is tame. In or-
der to do that, we endow C∞(S,C) × QC with the family of seminorms
∥(u, q, q′)∥n = ∥u∥n + ∥q∥n + ∥q′∥n.

Tameness of H . It is enough to note that ∥cod(u) + bq + ibq′∥n ≤
C ′n∥u∥n+2 + C ′′n(∥q∥n + ∥q′∥n) ≤ C ′′′n ∥(u, q, q′)∥n+2, and so the linear map
H is tame.

Bijectivity of H . For every u ∈ C∞(S,C), denote by ∆u ∶= tr(Hess(u)) the
(negative semi-definite) Laplacian (with respect to h). Consider now the linear
operator

tr(cod) = (2 −∆) ∶ C∞(S,C) → C∞(S,C).
For every τ ∈ C∞(S,C) the equation −∆u+2u = τ has a unique solution, which
is in fact smooth. It follows that tr(cod) is invertible. We want to show that
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the inverse of H is given by

Cod // C∞(S,C) ×QC

ϕ � // (uϕ,R(ϕ − cod(uϕ)),I(ϕ − cod(uϕ)))

with uϕ ∶= (tr ○ cod)−1tr(ϕ). In order to check that the above map is
well-defined, observe that ϕ − cod(uϕ) is self-adjoint and Codazzi, and is also

traceless since tr (ϕ − cod(uϕ)) = tr(ϕ) − (tr ○ cod)(uϕ) = tr(ϕ) − tr(ϕ) = 0.
The real and imaginary parts of ϕ − cod(uϕ) are therefore real, self-adjoint,
Codazzi and traceless, and so each of them is equal to the endomorphism
associated to the real part of a holomorphic quadratic differential. It can be
easily verified that the above map is the set-theoretic inverse of H .

Tameness of H −1. Since ∥(2 −∆)−1τ∥n+2 ≤ Cn∥τ∥n by elliptic regularity, the
linear map (2−∆)−1 ∶ C∞(S,C) → C∞(S,C) is tame. As a consequence, H −1
is tame too. Being linear and tame, H −1 is automatically continuous. □

We will denote by Cod+ = {ϕ ∈ Cod ∣R(ϕ) > 0} and by

U = {(u, q, q′) ∈ C∞(S,C) ×QC ∣ R(u1 −Hess(u) + bq + ibq′) > 0} ,

the corresponding subset of C∞(S,C)×QC, so that U = H −1(Cod+) is an open
neighborhood of H −1(D).

3.4. Local structure of the space of immersion data. We now turn to
a more precise analysis of the space D, with the goal of proving Theorem B
stating that D is a finite-dimensional complex manifold.
As mentioned in the introduction, Proposition 3.9 allows for the definition of
a tame C-linear map

Q ∶ Cod → QC ,

simply by composing H −1 with the projection onto QC.
Recalling that D ⊂ Cod , we are now fully equipped to state Theorem B, which
we recall here.

Theorem B (Manifold structure on the space of minimizing maps). Let (S,h)
be a hyperbolic surface. The space D of immersion data is a complex subman-
ifold of Cod of complex dimension 6g − 6. Moreover, the restriction of Q over
D is a local biholomorphism.

The proof will use an additional map that extends the map Q defined above.
We denote by Π the map

Π ∶ Cod // C∞(S,C) ⊕QC

ϕ � // (Π1(ϕ),Q(ϕ)),

where Π1 ∶ Cod → C∞(S,C) is defined as

Π1(ϕ) ∶= tr((Jϕ)2) .

Note that Π1 is induced by a smooth (and fiberwise holomorphic) morphism
of vector bundles over S, and so the map Π1 is smooth and tame (see Example
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3.6.5 in part I of [12]). As a consequence, Π is a smooth, tame and it is induced
by a fiberwise holomorphic morphism of vector bundles.
Since D = Π−11 (−2), Theorem B is an immediate consequence of the following
proposition.

Proposition 3.10 (Π restricted to Cod+ locally biholomorphic). The restric-
tion of Π to Cod+ is a local biholomorphism onto its image. As a consequence,
D is a complex submanifold of Cod and the restriction of Q to D is a local
diffeomorphism at ϕ.

Proof. Recall that H ∶ C∞(S,C) × QC → Cod is a tame C-linear isomorphism
by Proposition 3.9, and consider

Π̂ ∶ U → C∞(S,C) ⊕QC.

obtained by restricting the tame (non-linear) map Π ○H to the open subset
U .
We will show that Π̂ is holomorphic and locally invertible, and that every
local inverse of Π̂ is smooth and tame. The conclusion will follow, since H (U)
is a neighbourhood of D.

Notice that Π̂(u, q, q′) = (tr(J(u1 −Hess(u) + bq + ibq′))2, q, q′), so Π̂ is holo-
morphic and its first component is a fully non-linear differential operator with
respect to the variable u.
The fact that Π̂ is locally invertible and that every local inverse of Π̂ is smooth
and tame will be a consequence of Nash-Moser theorem. In order to verify the
hypotheses of that theorem for the map Π̂ (see Theorem 1.1.1 in Section III
of [12]), we need to check two facts:

(a) the differential D(u,q,q′)Π̂ ∶ C∞(S,C) ⊕ QC → C∞(S,C) ⊕ QC is an

isomorphism for every (u, q, q′) ∈ U ;
(b) the map

G ∶ U × (C∞(S,C) ⊕QC) // C∞(S,C) ⊕QC

((u, q, q′), (k̇, q̇, q̇′)) � // (D(u,q,q′)Π̂)−1(k̇, q̇, q̇′)

is smooth and tame.

(a) Notice that

D(u,q,q′)Π̂(u̇, q̇, q̇′) = (LH (u,q,q′)(u̇) +MH (u,q,q′)(q̇, q̇′), q̇, q̇′) ,

where we have put Lϕ(u̇) = 2tr(JϕJ((u̇1 − Hess(u̇))) and Mϕ(q̇, q̇′) =
2tr(JϕJ(bq̇ + ibq̇′)) for every ϕ ∈ Cod+. So in order to prove that D(u,q,q′)Π̂

is an isomorphism for all (u, q, q′) ∈ U , it is sufficient to prove that
Lϕ ∶ C∞(S,C) → C∞(S,C) is invertible for all ϕ ∈ Cod+. This is exactly the
content of Lemma 3.12.

(b) Recall now that the set Diff2 of second-order linear differential operators
on C∞(S,C) can be identified to the set of smooth sections of the complex
bundle (J 2)∗, where J 2 is the bundle of 2-jets of smooth complex-valued
functions on S. In particular Diff2 is a tame Fréchet space. Moreover, the
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subset Diff2
ell of invertible elliptic operators is open inside Diff2, and the map

Diff2
ell × C∞(S,C) → C∞(S,C) given by (L, ṙ) ↦ L−1(ṙ) is smooth and tame

(this is a particular case of Theorem 3.3.1 in part II of [12]).
Now, for all ϕ ∈ Cod+ the operator Lϕ is elliptic by Lemma 3.11 and invertible

by Lemma 3.12, and so Lϕ belongs to Diff2
ell. Observe also that the map

U → Diff2
ell given by (u, q, q′) ↦ LH (u,q,q′) is a differential operator, so it is

smooth and tame. Putting together the above information, we conclude that
the map U ×C∞(S,C) → C∞(S,C) given by (u, q, q′, k̇) ↦ (LH (u,q,q′))−1(k̇) is
smooth and tame. Now it is easy to see that

G((u, q, q′), (k̇, q̇, q̇′)) = (L−1H (u,q,q′)(k̇ −MH (u,q,q′)(q̇, q̇′)), q̇, q̇′)

and so G can be regarded as a composition of smooth and tame maps, as M
is manifestly smooth and tame. It follows that G is smooth and tame. □

Lemma 3.11. For every ϕ ∈ Cod+ the operator Lϕ ∶ C∞(S,C) → C∞(S,C),
defined as Lϕ(u̇) = 2tr(JϕJ((u̇1 −Hess(u̇))), is elliptic.

Proof. The principal symbol σ(Lϕ) of Lϕ is a complex-valued quadratic form
on T ∗S. We have to show that its real part is positive-definite at each point
of S. It is thus enough to verify it in any chart.
Fix a chart. The operator Lϕ will take the form Lϕ(u̇) = ∑2

i,j=1 aij∂ij u̇ +
∑2

i=1 bi∂iu̇ + cu̇, where aij , bi, c are complex valued functions. Its principal
symbol can be written in the given chart as

σ(Lϕ)ψ = ∑
2

i,j=1
aijψiψj

where ψ1, ψ2 are the coordinates of ψ ∈ T ∗S in the chart.
Now, considering the Hessian as a differential operator Hess ∶ C∞(S,C) →
End(TCS) = (TCS)∗ ⊗ (TCS), its associated principal symbol (which is a
End(TCS)-valued quadratic form on T ∗S) is given by σ(Hess)ψ = ψ ⊗ ψ♯,
where ψ♯ ∈ TS is the vector that corresponds to ψ ∈ T ∗S through the isomor-
phism T ∗S ≅ TS determined by the metric h. This fact can be easily checked
using normal coordinates.
It follows that the principal symbol of Lϕ is the complex-valued quadratic form

on the cotangent space of S given by σ(Lϕ)ψ = −2tr(JϕJ(ψ⊗ψ♯)), which can

be also written as σ(Lϕ)ψ = 2h(ϕJ(ψ♯), J(ψ♯)). Since R(ϕ) is a positive-
definite self-adjoint operator, it follows that R(σ(Lϕ)) is positive-definite. □

Lemma 3.12. For all ϕ ∈ Cod+ the operator Lϕ ∶ C∞(S,C) → C∞(S,C) is
invertible.

Before proving Lemma 3.12, we will need the following computation.

Sublemma 3.13. Let φ ∶ TS → TS be an h-self-adjoint, invertible operator
that satisfies the Codazzi equation. Then

(14) ∫
S
u̇ ⋅ tr((JφJ)Hess(u̇′))ωh = ∫

S
det(φ)⟨φ−1 grad(u̇) ,grad(u̇′)⟩ωh

for all u̇, u̇′ ∈ C∞(S,R).
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Proof. The key observation is that, since φ is a real Codazzi operator from
TS to TS, then the operator JφJ is divergence-free for h, i.e. ∇∗(JφJ) = 0.
Indeed, if (e1, e2) is a local orthonormal frame, then

∇
∗(JφJ) = J∇∗(φJ)

= −J(∇e1(φJe1) +∇e2(φJe2) − φJ(∇e1e1 +∇e2e2))
= −J(∇e1(φe2) −∇e2(φe1) − φ(∇e1e2 −∇e2e1)
= −J(d∇φ)(e1, e2)
= 0 .

As a consequence,

∫
S
u̇ ⋅ tr((JφJ)Hess(u̇′))ωh = ∫

S
⟨u̇(JφJ), ∇grad(u̇′)⟩ωh

= ∫
S
⟨∇∗(u̇(JφJ)), grad(u̇′)⟩ωh

= ∫
S
⟨−(JφJ)grad(u̇), grad(u̇′)⟩ωh ,

and the conclusion follows by observing that JφJ = −det(φ)φ−1. □

We now have all the ingredients to prove Lemma 3.12.

Proof of Lemma 3.12. We denote by ⟨⋅, ⋅⟩ the L2 scalar product on complex-
valued functions on S, defined by

⟨u1, u2⟩ =R(∫
S
u1u2 ωh) ,

and by H1(S) the Sobolev space of complex-valued L2 functions with L2

derivative on S. The operator Lϕ extends to a second-order linear differential

operator Lϕ ∶H1(S) →H−1(S) as Lϕ = 2tr(JϕJ ⋅ cod(●)).
We will show that −Lϕ is positive, namely that that there exists a constant
c > 1 such that for all u̇ ∈ C∞(S,C),

(15)
1

c
∥u̇∥2H1 ≤ ⟨−Lϕ(u̇), u̇⟩ ≤ c∥u̇∥2H1 .

As a consequence, Lϕ is invertible as a map from H1(S) to H−1(S). The
fact that Lϕ is invertible from C∞(S,C) to itself then follows from standard
elliptic regularity arguments (see, for instance, Theorem 3 in Section 6.3.1 of
[9]).
Let u̇ = u̇

R
+ iu̇

I
, where u̇

R
and u̇

I
are smooth real-valued functions on S, and

let ϕ = ϕ
R
+ iϕ

I
, where ϕ

R
and ϕ

I
are real operators from TS to TS. Then:

1

2
⟨Lϕu̇, u̇) =R∫

S
u̇ ⋅ tr(JϕJ ⋅ cod(u̇))ωh =

=R(∫
S
(u̇

R
− iu̇

I
)tr([J(ϕ

R
+ iϕ

I
)J][(u̇

R
1 −Hess(u̇

R
)) + i(u̇

I
1 −Hess(u̇

I
))])ωh) =

= ∫
S
u̇

R
tr[Jϕ

R
J(u̇

R
1 −Hess(u̇

R
))]ωh + ∫

S
u̇

I
tr[Jϕ

R
J(u̇

I
1 −Hess(u̇

I
))]ωh

− ∫
S
u̇

R
tr[Jϕ

I
J(u̇

I
1 −Hess(u̇

I
))]ωh + ∫

S
u̇

I
tr[Jϕ

I
J(u̇

R
1 −Hess(u̇

R
))]ωh .
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Since the right-hand side in (14) is clearly symmetric in u̇ and u̇′, the last two
summands above cancel out. Using Sublemma 3.13, we obtain that

⟨Lϕu̇, u̇) = 2∫
S
(u̇2

R
tr(Jϕ

R
J) + u̇2

I
tr(Jϕ

R
J)) ωh

− 2∫
S
(det(ϕ

R
)⟨ϕ−1

R
(grad u̇

R
),grad u̇

R
⟩ + det(ϕ

R
)⟨ϕ−1

R
(grad u̇

I
),grad u̇

I
⟩) ωh

so that

⟨−Lϕu̇, u̇) = 2∫
S
tr(ϕ

R
)(u̇2

R
+ u̇2

I
) ωh

+ 2∫
S
det(ϕ

R
)(⟨ϕ−1

R
(grad u̇

R
),grad u̇

R
⟩ + ⟨ϕ−1

R
(grad u̇

I
),grad u̇

I
⟩) ωh .

Equation (15) now follows from the fact that ϕ
R
= R(ϕ) is positive-definite:

it is enough to take c =max{4λ+, 1/4λ−}, where λ+ and λ− are the maximum
and the minimum eigenvalue of R(ϕ)p as p ranges over all points of S. □

4. Holomorphicity of the monodromy map

Thanks to Theorem A, the space M I of minimizing immersions in germs of
hyperbolic manifolds can be identified to the space D of immersion data. The
aim of this section is to show that, under this identification, the monodromy
map Mon ∶ D → X , that sends the datum ϕ ∈ D corresponding to the PSL2(C)-
class of an immersion [f̃ϕ, ρϕ] ∈M I to the conjugacy class of its monodromy
[ρϕ] ∈ X , is a biholomorphism onto its (open) image and so to prove Theorem
C.
In order to do that, we first provide a description of the tangent space to
the space I of equivariant immersions in H3 (up to the action of PSL2(C))
and then of the locus M I ⊂ I that is more suited to reveal its complex-linear
nature, compared to the one given in Section 3. Then we show that dMon is
C-linear.

Remark 4.1. Through the statement of Theorem C only deals with the map
Mon between complex manifolds of finite dimension, our proof will involve the
space C̃ and its open subset Ĩ, as well as C and its open subset I. In Section 2
we defined smooth paths in C̃ (resp. in C) and tangent spaces to C̃ (resp. to C).
If M ,M ′ are either an open subset of C̃ or C, or a finite-dimensional manifold,
we say that a map F ∶ M → M ′ is differentiable at m ∈ M if there exists a
linear map dFm ∶ Tm M → TF (m)M ′ such that F sends any germ of a smooth

path at (F ,m) with velocity v to the germ of a smooth path at (M ′,F (m))
with velocity dFm(v). In this case we will say that dFm is the differential of
F at m .

4.1. The bundle of local Killing vector fields on a hyperbolic man-
ifold. We collect in this section some well-known facts that will be useful
below.
Given a point x ∈ H3, we call local Killing vector fields the germs at x of
Killing vector fields on H3 for the hyperbolic metric. The vector space Ex of
such germs at x has a natural structure of Lie algebra, isomorphic to sl2(C).
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Definition 4.2 (Bundle of local Killing vector fields). The bundle of local
Killing vector fields in H3 is the bundle E → H3 whose fiber Ex at a point
x ∈ H3 is the Lie algebra of local Killing vector fields at x.

Via the identification of sl2(C) with the space of global Killing vector fields
on H3, the bundle E has a natural trivialization

sl2(C) ×H3 Ð→ E
that sends a couple (ξ̌, x) to the germ of ξ̌ at x. The natural flat connection
on sl2(C)×H3 then induces a flat connection D on E: thus, global flat sections
of D identify with global Killing vector fields on H3.
The action of PSL2(C) on H3 lifts to the product bundle sl2(C) ×H3 via the
adjoint action on sl2(C). Similarly, it also naturally lifts to E: if g ∈ PSL2(C)
and ξ̌ ∈ Ex is a local Killing vector field at x ∈ H3, the image of ξ̌ in Eg⋅x

is the local Killing vector field g∗ξ̌ at g ⋅ x. The above trivialization of E is
equivariant with respect to such PSL2(C)-actions.

4.1.1. Identification between E and TCH3. There is a very natural evaluation
map E → TH3 that, at x ∈ H3, sends a local Killing vector field ξ̌(x) ∈ Ex to
its value at x.
Such evaluation map can be enriched so to include first-order derivatives of the
local Killing vector field. Specifically in dimensione 3 there is an identification

EÐ→ TCH3

that is defined as follows. Given x ∈ H3, it sends a local Killing vector field
ξ̌(x) ∈ Ex to the unique complex tangent vector X̌ξ̌(x) + iY̌ξ̌(x) ∈ TC,xH

3 that
satisfies

● X̌ξ̌(x) equal to the value at x of ξ̌(x), considered as a Killing vector
field defined in the neighborhood of x,

● Y̌ξ̌(x) is defined by the condition that SX̌ξ̌ = Y̌ξ̌ × ● (see Lemma 2.7),

where we denoted by ∇H3
the Levi-Civita connection of the hyperbolic metric

on H3, and by the same symbol its complexification on TCH3 ≅ (TH3) ⊗R C.
Abusing notations a bit, we will still denote by D the flat connection on TCH3

obtained as the image of the connection D on E through the identification of
E with TCH3.

Lemma 4.3 (Naturality of E ≅ TCH3). The identification

E // TCH3

ξ̌ � // X̌ξ̌ + iY̌ξ̌
is C-linear and it is equivariant with respect to the natural action of PSL2(C)
on E and on TCH3. Moreover, the flat connection D on TCH3 can be expressed
as

D●(X̌ + iY̌ ) =∇H3

● (X̌ + iY̌ ) + i(X̌ + iY̌ ) × ●
in terms of ∇H3

.

Proof. The C-linearity is easy to check. The relation between D and ∇H3
is

proven in [16]. □
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4.1.2. The case of equivariant maps. Fix a universal cover S̃ → S and an
equivariant map f̃ ∶ S̃ → H3 with monodromy ρ ∶ π1(S) → PSL2(C).
The bundle E pulls-back via f̃ to the bundle Ẽ on S̃ (isomorphic to sl2(C) ×
S̃) endowed with a flat connection D̃ and π1(S)-action via ρ. Its quotient

Eρ ∶= Ẽ/π1(S) is a sl2(C)-bundle on S and we denote by D its induced flat
connection.
On the other hand, the bundle f̃∗TCH3 carries a connection still denoted by

∇
H3
, which is the pull-back via f̃ of the complexified Levi-Civita connection

on TCH3.
As on H3, there is a natural evaluation map Ẽ → f̃∗TH3 that can be upgraded

to an identification Ẽ → f̃∗TCH3 using Lemma 4.3. We denote by ∇Ẽ the

connection on Ẽ corresponding to ∇H3
on f̃∗TCH3, and by ∇E the induced

one on E.

4.2. The application σ̃. Let (f̃ , ρ) be an equivariant immersion of S̃ into
H3. Define

σ̃ ∶ Γ(f̃∗TH3) // Γ(f̃∗TCH3) ≅ Γ(Ẽ)

X̃ � // σ̃X̃ = X̃ + iX̃
′

where X̃ ′ is the unique vector field that satisfies SX̃
f̃
= X̃ ′ × ● (see Definition

2.8). The main properties of σ̃ are collected in the following statement.

Lemma 4.4 (Properties of σ̃). The map σ̃ is R-linear and it satisfies the
following properties:

(i) σ̃γ∗X̃(γ(p̃)) = Adρ(γ)σ̃X̃(p̃) for all p̃ ∈ S̃;
(ii) X̃ ∈ Γ(f̃∗TH3) is the evaluation of a global Killing vector field ξ̃ ∈ Γ(Ẽ)

if and only if σ̃X̃ is D̃-parallel (and in this case σ̃X̃ = ξ̃);
(iii) σ̃X̃ ∈ Γ(f̃

∗TCH3) is D̃-parallel if and only if AX̃
f̃
= 0;

for every X̃ ∈ Γ(f̃∗TH3).

Proof. The R-linearity of σ̃ follows directly from the definition.

As for (i), we compute σ̃γ∗X̃(γ(p̃)) = γ∗X̃(γ(p̃)) + i(γ∗X̃)′(γ(p̃)). Since

π1(S) acts on f̃∗TH3 isometrically, it preserves the cross-product and ∇H3
.

Hence, Sγ∗X̃
f̃
○ γ∗ = γ∗ ○ SX̃f̃ and so (γ∗X̃)′ = γ∗X̃

′. We have then that

σ̃γ∗X̃(γ(p̃)) = γ∗ ((X̃ + iX̃
′)(p̃)). The conclusion then follows because the

identification Ẽ ≅ f̃∗TCH3 is equivariant with respect to the action of π1(S).

About (ii), σ̃X̃ is DẼ-parallel if and only if there exists a global Killing field

ξ̃ such that σ̃X̃ = ξ̃. This clearly happens if and only if X̃ is the evaluation of

such global Killing vector field ξ̃.

Concerning (iii), suppose first that σ̃X̃ is D̃-parallel. By (ii), the vector field

X̃ is the evaluation of a global Killing vector field and so AX̃
f̃
= 0.
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Vice versa, suppose that AX̃
f̃
= 0, and so ∇H3

X̃ = SX̃
f̃
. Let X̃ ′, X̃ ′′ be the

sections of f̃∗TH3 defined by SX̃
f̃
= X̃ ′ × ● and SX̃

′

f̃
= X̃ ′′ × ●. Now

R(D̃σ̃X̃) =R(D̃(X̃ + iX̃
′)) =∇H3

X̃ − (X̃ ′ × ●) = 0.

On the other hand, the imaginary part of D̃σ̃X̃ is given by

I(D̃σ̃X̃) = I(D̃(X̃ + iX̃
′)) =∇H3

X̃ ′ + (X̃ × ●) = AX̃′

f̃
+ ((X̃ ′′ + X̃) × ●) .

By [3, Lemma 5.7], we have that

J ĨAX̃′

f̃
+ ⟨X̃ + X̃ ′′, Ñ⟩1 = 0

where Ñ is the positive unit vector normal to the immersion.

Since AX̃′

f̃
is Ĩ-self-adjoint, J ĨAX̃′

f̃
is traceless and so

(16) AX̃′

f̃
= 0 .

Moreover, ⟨X̃ + X̃ ′′, Ñ⟩1 = 0 so that X̃ + X̃ ′′ is tangent to the immersion. On
the other hand, by the curvature properties of H3 we have

(17) R(e1, e2)X̃ = (e1 × e2) × X̃

for any local frame (e1, e2) on S̃. Since AX̃′

f̃
= 0, we have ∇H3

X̃ ′ = (X̃ ′′ × ●)
and so
(18)

R(e1, e2)X̃ =∇H3

e1 X̃
′×e2−∇H3

e2 X̃
′×e1 = (X̃ ′′×e1)×e2−(X̃ ′′×e2)×e1 = −(e1×e2)×X̃ ′′.

Comparing (17) and (18), we deduce that (e1 × e2) × (X̃ + X̃ ′′) = 0 and so the

tangential part of X̃ + X̃ ′′ vanishes. Since we have seen above that X̃ + X̃ ′′ is
tangent to the image of f̃ , we conclude that X̃ + X̃ ′′ = 0. This identity and
(16) together prove that I(D̃σ̃X̃) = 0. □

4.3. A complex viewpoint on first-order deformations of immer-
sions. Let f̃ be an immersion of S̃ into H3. We recall that a deformation
f̃ = (f̃t)t∈(−ϵ,ϵ) of f̃ determines a variational field X̃ ∈ Γ(f̃∗TH3) by Corollary

2.36. Moreover, the deformation f̃ is tangent to a PSL2(C)-orbit if and only

if X̃ is the evalution of a global Killing vector field.
The above considerations can be rephrased in terms of the complex C●

D̃
(Ẽ) of

Ẽ-valued differential forms on S̃ with differential induced by D̃.

Lemma 4.5 (First-order deformations of immersions and Ẽ-valued forms).
The sequence

0 // Z0
D̃
(Ẽ) // Γ(f̃∗TH3) θ̃ // Z1

D̃
(Ẽ)

induced by the evaluation map Γ(Ẽ) → Γ(f̃∗TH3) and by θ̃ defined as θ̃X̃ ∶=
D̃σ̃X̃ is exact. Moreover, first-order deformations of f̃ “up to the action of

PSL2(C)” identify to the image of θ̃ inside Z1
D̃
(Ẽ).
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Remark 4.6 (Non-surjectivity of θ̃). It is not true that the map θ̃ is surjective,

since elements of Z1
D̃
(Ẽ) of type σ̃X̃ are determined by their real part.

4.3.1. The equivariant case. Suppose now that (f̃ , ρ) is an equivariant immer-

sion of S̃ into H3 and that (f̃ ,ρ) is a deformation of (f̃ , ρ). By Lemma 2.32
and Lemma 2.34

● (X̃, ς) ∈ Z1
(f̃ ,ρ)

, i.e. γ∗X̃ = X̃ − ςγ ∣S̃ , and
● (f̃ ,ρ) is tangent to a PSL2(C)-orbit if and only if (X̃, ς) ∈ B1

(f̃ ,ρ)
,

i.e. there exists a global Killing vector field ξ̃ ∈ Γ(Ẽ) such that X̃ is

the evaluation of ξ̃ and ςγ = ξ̃ −Adρ(γ)ξ̃ for all γ ∈ π1(S).

Applying Lemma 4.4 and using that γ∗X̃ = X̃ − ςγ ∣
S̃
, we have that

(19) σ̃X̃(γ(p̃)) − ςγ(p̃) = Adρ(γ)σ̃X̃(p̃) .

Applying D̃ to (19) and remembering that ςγ is D̃-parallel, we obtain

(20) θ̃X̃(γ(p̃)) ○ (dγ)p̃ = Adρ(γ) ○ θ̃X̃(p̃).

Condition (20) is in fact equivalent to the fact that θ̃ is the lift of a D-closed

E-valued 1-form on S. Thus, an infinitesimal deformation (X̃, ς) corresponds
to a deformation through a family of equivariant maps if and only if θ̃X̃ is the
lift of an E-valued D-closed 1-form θX̃ , whose periods then correspond to the

infinitesimal variation of the monodromy. In particular, if X̃ is a ρ-invariant
section of f̃∗TH3, then the couple (X̃, ς = 0) corresponds to an infinitesimal

isomonodromic deformation and θ̃X̃ is the lift of a D-exact E-valued 1-form
on S, i.e. the section σ̃X̃ is the lift of a section of E.
Using the complex C●D(E) is E-valued differential forms on S with differential
induced by D, we can condense the above observations in the following lemma.

Lemma 4.7 (First-order deformations of equivariant immersions and

E-valued forms). First-order deformations of the equivariant immersion (f̃ , ρ)
correspond to those elements θ ∈ Z1

D(E) that are induced by θ̃X̃ for some X̃.

In particular, elements in B1
D(E) correspond to first-order deformations that

fix the conjugacy class of the monodromy. Moreover, first-order deformations
of ρ ∈ X correspond to elements of H1

D(E), whose periods give the infinitesimal
deformation of the monodromy.

Remark 4.8. Note that ς does not have any role in the definition of θ̃X̃ . Indeed,

θ̃X̃ determines X̃ up to adding a vector field obtained by evaluation a global

Killing field, and ς can be recovered from ςγ ∣
S̃
= X̃ − γ∗X̃, since f̃ is assumed

to be an immersion.

If (f̃ϕ, ρϕ) corresponds to the immersion datum ϕ ∈ D, then the conclusions
drawn in the above lemma can be also visually synthetized into the following
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commutative diagram

T
(f̃ϕ,ρϕ)

M̃ I �
� //

����

T
(f̃ϕ,ρϕ)

Ĩ

����

σ̃ //

Θ

))

{σ̃ ∈ Γ(Ẽ) ∣ D̃σ̃ is ρϕ-invariant}

D̃

��
TϕD oo //

dMonϕ

..

T
[f̃ϕ,ρϕ]

M I �
� // T

[f̃ϕ,ρϕ]
I //

��

Z1
D(E)

����
T[ρϕ]X

≅ // H1
D(E)

in which the horizontal arrow in the top-right corner sends X̃ to σ̃X̃ , and Θ

sends X̃ to θX̃ .
We remark that the vector spaces in the above diagram that are endowed with
a complex structure are TϕD ≅ T

[f̃ϕ,ρϕ]
M I and the ones in the right column.

As a consequence, T
(f̃ϕ,ρϕ)

M̃ I is a complex vector space too. We will see

below that the map TϕD → Z1
D(E) between complex vector spaces that sends

ϕ̇ associated to a variational field X̃ to θX̃ is not C-linear in general.

4.4. Complex-linearity of dMon. Fix an immersion (f̃ϕ, ρϕ) with corre-

sponding datum ϕ ∈ D and let Ẽ → S̃ and E → S be the associated bundles of
local Killing vector fields.
Denote by Ñ the section of f̃∗ϕTH

3 representing the positively-oriented unit

vector field normal to the image of f̃ϕ. Viewing Ñ as a section of Ẽ, it is
ρϕ-invariant and so it descends to a section N ∈ Γ(E).
Consider a tangent vector ϕ̇ ∈ TϕD. By Theorem A, there is a germ of path

t↦ ϕ+t ⋅ϕ̇+o(t) of immersion data which is realized by a deformation (f̃ ,ρ) of
(f̃ϕ, ρϕ). Denote by X̃ the variational field associated to f̃ and by θ1 ∈ Z1

D(E)
the 1-cocycle θX̃ associated to X̃. Similarly, the path t ↦ ϕ + t ⋅ (iϕ̇) + o(t) is
realized by a family of immersions corresponding to the 1-cocycle θi ∈ Z1

D(E).
The holomorphicity of Mon will then be a consequence of the following result.

Theorem 4.9 (Relation between θ1 and θi). There exists a smooth function
ν ∶ S → C such that iθ1 − θi +D(νN) = 0. As a consequence, [θi] = i[θ1] ∈
H1

D(E).

Remark 4.10. Since the function ν can be nonzero, the map TϕD → Z1
D(E) is

not C-linear in general.

Since f̃ is an immersion, T S̃ is a subbundle of f̃∗TH3. Having identified
f̃∗TCH3 to Ẽ, it makes sense to decompose θ1 into a component θT1 tangent
to the surface and a normal component. More explicitly, separating real and
imaginary parts as θ1 =R(θ1)+iI(θ1), we have θT1 =R(θ1)T +iI(θ1)T . Indeed,
θT1 is a TCS-valued 1-form on S.

The following proposition relates ϕ̇ with θT1 and will be the key point to prove
Theorem 4.9.
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Proposition 4.11 (First-order variation of immersion data and 1-cocycles).
There exists a smooth function η ∶ S → R such that

ϕ̇ = bθT1 + ηJϕ.

Proof. Recall that θ̃1 = D̃σ̃X̃ = D̃(X̃ + iX̃
′), where X̃ ′ is defined as above in

Section 4.2. Since f̃ is fixed, we denote the Ĩ-self-adjoint derivative Af̃ and

the Ĩ-skew-self-adjoint derivative Sf̃ just by A and S.

As in Lemma 5.5 of [3], we have

˙̃I = 2Ĩ(AX̃●, ●).
Since

˙̃I = h̃( ˙̃b, b̃) + h̃(b̃, ˙̃b) = Ĩ(b̃−1 ˙̃b●, ●) + Ĩ(●, b̃−1 ˙̃b●) ,
the operators AX̃ and b−1ḃ have the same Ĩ-self-adjoint component, so

(21)
˙̃
b = b̃AX̃ + η̃J̃ b̃

for some smooth function η̃ ∶ S̃ → R. On the other hand, by Lemma 5.6 of [3]
we have

˙̃a = J ĨAX̃′ − ⟨X̃ + X̃ ′′, Ñ⟩I −AX̃ ã .

Since d
dt
(b̃ã) = b̃ ˙̃a + ˙̃bã, we get

d

dt
(b̃ã) = b̃J ĨAX̃′ − ⟨X̃ + X̃ ′′, Ñ⟩b̃ − b̃AX̃ ã + b̃AX̃ ã + η̃J̃ b̃ã(22)

= J̃ b̃AX̃′ − ⟨X̃ + X̃ ′′, Ñ⟩b̃ + η̃J̃ b̃ã .(23)

Since ϕ̃ = b̃ − iJ̃ b̃ã, using (21) and (23), we obtain that

˙̃
ϕ = b̃AX̃ + ũJ̃ b̃ + i(b̃(AX̃′ + η̃ã) + ⟨X̃ + X̃ ′′, Ñ⟩J̃ b̃)

= b̃AX̃ + η̃J̃ b̃ + ib̃(AX̃′ + η̃ã − ⟨X̃ + X̃ ′′, Ñ⟩b̃−1J̃ b̃)

= b̃(AX̃ + i(AX̃′ + ⟨X̃ + X̃ ′′, Ñ⟩J Ĩ)) + η̃J̃ b̃ + iη̃b̃ã .
Notice that

θ̃1 = D̃(X̃ + iX̃ ′)
= (∇X̃ − X̃ ′ × ●) + i(∇X̃ ′ + X̃ × ●)

= (AX̃ + SX̃ − X̃ ′ × ●) + i(AX̃′ + SX̃
′

+ X̃ × ●)

= AX̃ + i(AX̃′ + (X̃ + X̃ ′′) × ●) ,

and so θ̃T1 = AX̃ + i(AX̃′ + ⟨X̃ + X̃ ′′, Ñ⟩J Ĩ). It follows that
˙̃
ϕ = b̃θ̃T1 + η̃J̃(b̃ − iJ̃ b̃ã) = b̃θ̃T1 + η̃J̃ ϕ̃.

Since all the other tensors are invariant, η̃ must come from a function η ∶ S → R
and the result follows. □

As a consequence of the above proposition, we obtain a relation between the
tangent components of θ1 and θi.

Corollary 4.12 (Tangent components of θ1 and θi). There exists a smooth
complex valued function ν ∶ S → C such that iθT1 − θTi + ν ⋅DN = 0.
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Proof. By Proposition 4.11 there exist smooth functions η1, ηi ∶ S → R such
that

ϕ̇ = bθT1 + η1Jϕ

iϕ̇ = bθTi + ηiJϕ

so we deduce that b(iθ1 − θi)T + iν ⋅ Jϕ = 0, where ν ∶= η1 + iηi. Recalling that
DN = −a + iJI , or equivalently Jϕ = −ib ⋅DN , we obtain that

b ⋅ (iθT1 − θTi + ν ⋅DN) = 0 .
Since b is invertible, the result follows. □

The relation obtained in the above corollary is almost the wished one. In order
to take care of the normal component of θ1 and θi, we will need the following.

Lemma 4.13 (Vanishing 1-cocycles are detected by their tangent component).
Let τ ∈ Z1

D(E) be any smooth 1-cocycle. Then τ = 0 if and only if τT = 0.

Proof. Clearly, if τ = 0, then its tangent component vanishes.
Conversely, suppose that τT = 0, so that τ = ζ ⊗N , where ζ is a (complex-
valued) 1-form on S. We want to prove that ζ = 0.
Since 0 =Dτ = dζ⊗N +ζ ∧DN , and since DN takes values in TCS, we deduce
that dζ = 0 and ζ ∧DN = 0.
Fix any point of S and take a I-orthonormal basis (e1, e2) of TS at that point,
formed by eigenvectors for a. Then imposing that (ζ ∧DN)(e1, e2) = 0, and
using that DN = −a + iJI , one gets

ζ ∧DN = (−(Rζ) ∧ a − (Iζ) ∧ JI) + i ((Rζ) ∧ JI − (Iζ) ∧ a)
and so

0 = 2R(ζ ∧DN)(e1, e2) = −((Rζ)(e1)a(e2) + (Iζ)(e1)JIe2) + ((Rζ)(e2)a(e1) + (Iζ)(e2)JIe1) ,
0 = 2I(ζ ∧DN)(e1, e2) = ((Rζ)(e1)JIe2 − (Iζ)(e1)a(e2)) − ((Rζ)(e2)JIe1 − (Iζ)(e2)a(e1)) .

Putting a(ei) = λiei, by the first equation it follows that

(24)
λ2(Rζ)(e1) = (Iζ)(e2) ,
−(Iζ)(e1) = λ1(Rζ)(e2) .

By the second equation

(25)
(Rζ)(e1) = λ1(Iζ)(e2) ,
−λ2(Iζ)(e1) = (Rζ)(e2) .

Suppose by contradiction that ζ ≠ 0. Then Equations (24) and (25) imply
that det(a) = λ1λ2 = 1. But for a critical immersion, Equations (7) and (9)
together show that det(a) ≤ 0. This contradiction proves the lemma. □

The C-linearity of dMon is then readily obtained.

Proof of Theorem 4.9. Let ν be the function given in Corollary 4.12 and con-
sider the 1-cocycle τ ∶= iθ1 − θi +D(νN) ∈ Z1

D(E). Since

τT = iθT1 − θTi + ν ⋅DN,
Corollary 4.12 implies that τT = 0. Hence, we conclude that τ = 0 by Lemma
4.13. □
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We can now give a complete proof of Theorem C.

Proof of Theorem C. By Lemma 2.39, a minimal immersion corresponding to
ϕ ∈ D has non-elementary monodromy. Moreover, the mapMon is holomorphic
by Theorem 4.9 and it is injective by Corollary 2.38. Since D and X are
complex manifolds of the same dimension, Mon is a biholomorphism onto its
image, which is in fact an open subset of X . Note finally that such open subset
Mon(D) contains the Fuchsian locus by Theorem 2.19. □

4.5. The complexified functional. As in the introduction, define now the
functional F ∶ X → R≥0 as

F(ρ) ∶= inf {F (f̃) ∣ [ρ, f̃] ∈ I} .
The uniqueness proven in Corollary 2.38 implies that the map Mon that sends
the immersion datum ϕ to the class [ρϕ] of the monodromy representation of
the immersion corresponding to ϕ is injective.
Thus, we can identify D to Mon(D) ⊂ X , so that

F(ρϕ) = F (ϕ) = ∫
S
tr(R(ϕ))ωh =R∫

S
tr(ϕ)ωh

for every ϕ ∈ D, by the minimality property of Corollary 2.38. By the complex
nature of D, such F can be viewed as the real part of FC ∶Mon(D) → C defined
as

FC([ρ]) ∶= ∫
S
tr(Mon−1(ρ))ωh .

We can now prove the last main result of our paper.

Proof of Theorem D. In view of the above discussion, we are only left to show
that FC is a holomorphic function. Note that the map D → C defined as
ϕ ↦ ∫S tr(ϕ)ωh is clearly holomorphic. Thus the conclusion follows, since
Mon ∶ D →Mon(D) is a biholomorphism by Theorem C. □

5. Questions and applications

Let T (S) be the Teichmüller space of hyperbolic metrics on S, ML(S) be
the space of measured laminations on S and let QF(S) be the quasi-Fuchsian
space of S, i.e. the space of quasi-Fuchsian metrics on M = S ×R. The Fuch-
sian locus in QF(S) consists of metrics for which S ×{0} is a totally geodesic
hyperbolic surface. Consider only maps f ∶ S →M that are homotopy equiv-
alences.

5.1. Existence of smooth minimizing maps. Once a hyperbolic metric h ∈
T (S) on S is fixed, we have seen (Theorem C) that there exists a neighborhood
Ωh of the Fuchsian locus in QF(S) consisting of quasi-Fuchsian structures g
on M for which there exists a smooth minimizing map f ∶ (S,h) → (M,hM).
This smooth minimizing map is unique by Theorem B.
However, we do not know how large this neighbourhood Ωh is. Moreover, a
priori, Ωh might depend on h.
Does Ωh coincide with the whole QF(S)? Does Ωh at least contain all “almost
Fuchsian” structures (i.e. metrics hM for which (M,hM) contains an embedded
minimal surface with principal curvatures in (−1,1))?
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The following less ambitious statement asks whether the neighbourhood Ωh

can be chosen to be independent of the hyperbolic metric h.

Question 5.1. Is there a neighborhood Ω of the Fuchsian locus in QF(S) such
that, for all hM ∈ Ω and all h ∈ T (S), there exists a smooth minimizing map
from (S,h) to (M,hM)?

We believe that given any quasi-Fuchsian structure hM on M , there exists
a mapping f ∶ (S,h) → (M,hM) in the BV class which is minimizing in a
weak sense (but which might be not smooth) – we believe that the existence
of minimizing BV maps can be obtained by relatively standard methods.

5.2. Uniform convexity and uniqueness among non-smooth maps.
Once h ∈ T (S) and hM ∈ QF(S) are fixed, one can ask whether a (possibly
non-smooth) minimizing map f ∶ (S,h) → (M,hM) is unique. Note that
such question is equivalent to the uniqueness of the ρ-equivariant minimizing
f̃ ∶ (S̃, h̃) → H3, where ρ ∶ π1(S) → PSL2(C) is the monodromy representation
associated to M ≅ H3/ρ(π1(S)).
Since our arguments for the uniqueness of minimizing maps require some regu-
larity, we believe that uniqueness can be proven among maps of class C1. One
can ask whether uniqueness holds among continuous maps which are mini-
mizing in the weak sense. This question can be related to the convexity of
the functional F over the space of maps of lower regularity from (S,h) to
(M,hM), if (M,hM) is a quasi-Fuchsian (or more generally a complete hy-
perbolic) 3-dimensional manifold. It is even less clear whether uniqueness of

the ρ-equivariant minimizing map can be proven for maps S̃ → H3 in the BV
class.

5.3. Relation between FC and the complex length. When considering
diffeomorphisms between hyperbolic surfaces, the 1-energy F is closely related
to the hyperbolic length of measured laminations. Specifically, let h⋆ ∈ TS be
a hyperbolic metric with monodromy ρ, and let (hn)n∈N be a sequence of
hyperbolic metrics such that tn ⋅ hn → λ in the sense of convergence of the
length spectrum, where λ ∈ ML(S) and tn → 0. Call fn ∶ (S,hn) → (S,h⋆)
the unique minimal Lagrangian map homotopic to the identity, which can
be in fact viewed as a minimizing embedding inside the Fuchsian 3-manifold
(M,hM) associated to h⋆, and denote by Fhn([ρ]) the 1-enegy F (fn).
In [3] we proved that tn ⋅ Fhn([ρ]) → ℓλ([ρ]), where ℓλ([ρ]) is the length of
the lamination λ in (S,h⋆), or equivalently in (M,hM). Such result can be
rephrased by saying that, if ρ is the (Fuchsian) monodromy representation of
(S,h⋆), then F●([ρ]) defines a continuous function

F●([ρ]) ∶ (R+ × T (S)) ∪ML(S) Ð→ R

that restricts to ℓ●(h⋆) onML(S).

Suppose now that (M,hM) is a fixed quasi-Fuchsian manifold with mon-
odromy ρ and that (hn) is a sequence of hyperbolic metrics on S with tn⋅hn → λ
and tn → 0 as above. Assume that for all n there exists a minimizing map
fn ∶ (S,hn) → (M,hM) with associated immersion datum ϕn (which would
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follow, for example, if the answer to Question 5.1 was positive). Denote by
FC,hn([ρ]) the complex number ∫S tr(ϕn)ωhn associated to the minimizing map
fn.

Question 5.2. Does tn ⋅ FC,hn([ρ]) → ℓC,λ([ρ]), where ℓC,λ([ρ]) is the complex
length of the lamination λ in (M,hM)?

More ambitiously, fixed a quasi-Fuchsian manifold (M,hM) with monodromy
ρ, one could ask whether the complex valued functional FC,●([ρ]) can be ex-
tended so to define a continuous function

FC,●([ρ]) ∶ (R+ × T (S)) ∪ML(S) Ð→ C
that restricts to the complex length function ℓC,●(M,hM) onML(S).

5.4. Non-quasi-Fuchsian targets. This above questions are not necessar-
ily restricted to quasi-Fuchsian manifolds – given a closed 3-dimensional hy-
perbolic manifold (M,hM) and a homotopy class of maps from (S,h) into
(M,hM) that induce an injection π1(S) ↪ π1(M), one can ask whether it
contains a smooth minimizing immersion, or whether uniqueness holds among
minimizing maps of lower regularity. The arguments used to prove unique-
ness of smooth minimizing maps in quasi-Fuchsian manifolds also work in this
setting.

Appendix A. On the 1-Schatten norm of linear maps

In this section we recall properties of the 1-Schatten norm on the space of
linear homomorphisms between vector space of finite dimension endowed with
a positive-definite scalar product.

A.1. Definition and basic properties. Let V and W be finitely generated
vector spaces, equipped with positive-definite scalar products, and assume
that dimV ≤ dimW . Any linear map L ∶ V → W can be factorized as the

composition L = σL ○ bL, where bL =
√
LT ○L is a non-negative g-self-adjoint

endomorphism of V , the map σL ∶ V → W is an isometric linear embedding
and LT ∶W → V denotes the adjoint of L.

Remark A.1 (Polar decomposition). While bL is always well-defined, σL
is uniquely determined provided that L is injective (or equivalently that
det bL ≠ 0). In this case we refer to the decomposition L = σL ○ bL as the
polar decomposition of L.

Definition A.2 (1-Schatten norm of a linear map). The 1-Schatten norm of

a linear map L ∶ V →W is ∥L∥1 ∶= tr(bL), where bL ∶=
√
LT ○L.

Lemma A.3 (Lipschitz nature of 1-Schatten norm on a Hom-space). The
function ∥ ⋅ ∥1 ∶ Hom(V,W ) → R is a norm on the vector space Hom(V,W ).
Moreover, it is Lipschitz as a function from Hom(V,W ) to R (say, with respect
to the natural Riemannian metric on Hom(V,W )). It is smooth at homomor-
phism of maximal rank, but not C1 at homomorphisms of non-maximal rank.

Proof. The only non-obvious point is that the Schatten norm is a norm. This
is proved in [1, Section IV.2]. □
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Lemma A.4 (1-Schatten norm and Lipschitz linear maps). If A is a linear
endomorphism of W which is C-Lipschitz, then ∥AL∥1 ≤ C ⋅ ∥L∥1.
Proof. This easily follows from the fact that ∥ALv∥W ≤ C ⋅∥Lv∥W for all v ∈ V ,
which is a particular case of [1, Prop IV.2.4], together with the fact that the
Schatten norm is unitarily invariant, see [1, Theorem IV.2.1]. □

A.2. Convexity. In order to study the convexity properties of the 1-Schatten
norm, we consider a smooth perturbation of it. For brevity, our treatment is
limited to the special case we are interested in. There result we want to prove
is the following.

Proposition A.5 (Convexity of 1-Schatten norm along paths with positive
acceleration). Let V and W be vector spaces of dimension 2 and 3 respec-
tively and let A ∶ [0,1] → Hom(W,W ) be a smooth path of positive self-adjoint
operators on W . Consider a smooth path T ∶ [0,1] → Hom(V,W ) of linear

operators such that T̈ (s) = A(s) ○ T (s). Then the function u ∶ [0,1] → R de-
fined as u(s) ∶= ∥T (s)∥1 is convex. Moreover, if the rank of T (s) is 2 and
A(s) ○ T (s) ≠ 0, then ü(s) > 0.
Before proving Proposition A.5, let us introduce suitable regularized versions
of the 1-Schatten norm and study their properties.

Let V,W be real vector spaces endowed with positive-definite scalar products,
of dimension 2 and 3 respectively. For any ϵ ≥ 0 and for L ∈ Hom(V,W ) the
ϵ-regularized 1-Schatten norm of L is

qϵ(L) ∶= tr
√
ϵ21 +L∗L

where L∗ is the adjoint of L. Notice that q0 coincides with the 1-Schatten
norm.

Lemma A.6 (Basic properties of regularized 1-Schatten norms). The ϵ-
regularized 1-Schatten norm qϵ ∶ Hom(V,W ) → R satisfies the following prop-
erties.

(a) For any L ∈ Hom(V,W ),

(26) qϵ(L) =
√

tr(ϵ21 +L∗L) + 2
√
det(ϵ21 +L∗L) .

As a consequence, qϵ is smooth for ϵ > 0.
(b) The function qϵ is convex for any ϵ ≥ 0.
(c) Let L ∶ V →W be a linear map, A ∶W →W be nonnegative self-adjoint

and let ϵ ≥ 0. In the case ϵ = 0, suppose furthermore that L has rank
2. Then

d

dt
qϵ((1 + tA)L)∣

t=0
≥ 0 .

Moreover the strict inequality holds if A ○L ≠ 0.
Before proving the lemma, we mention the following observation.

Sublemma A.7. Let ϵ ≥ 0. Consider the planar domain Ω = {t = (t1, t2) ∈
R2∣t2 ≥ t1 ≥ 0} and define nϵ ∶ Ω → R by nϵ(t1, t2) ∶=

√
ϵ2 + t21 +

√
ϵ2 + t22.

Then, nϵ is convex. Moreover, given (t1, t2), (t′1, t′2) ∈ Ω such that t2 ≤ 2′1 and
t1 + t2 ≤ t′1 + t′2, we have nϵ(t1, t2) ≤ nϵ(t′1, t′2).
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Proof. Clearly, the function t↦
√
ϵ2 + t2 is increasing and convex and so nϵ is

convex too. It follows that nϵ(t′1, t′2) ≥ nϵ(t1, t2)+(∂t1nϵ)t(t′1−t1)+(∂t2nϵ)t(t′2−
t2). Now, the simple and key remark is that (∂t2nϵ)t ≥ (∂t1nϵ)t ≥ 0 for every
t ∈ Ω. Thus, (∂t1nϵ)t(t′1 − t1) + (∂t2nϵ)t(t′2 − t2) ≥ (∂t1nϵ)t(t′1 − t1 + t′2 − t2) ≥ 0
and the conclusion follows. □

The relevance of the above sublemma relies on the fact that, given L ∈
Hom(V,W ), we have that qϵ(L) = nϵ(λ1, λ2), where λ1 ≤ λ2 are the singu-
lar values of L.

Proof of Lemma A.6. If λ1, λ2 are the singular values of L, that is, the eigen-
values of bL =

√
L∗L, then

qϵ(L) =
√
ϵ2 + λ21 +

√
ϵ2 + λ22 .

So qϵ(L)2 = 2ϵ2 + λ21 + λ22 + 2
√
(ϵ2 + λ21)(ϵ2 + λ22). As the eigenvalues of

ϵ21 + L∗L are ϵ2 + λ21 and ϵ2 + λ22, the identity (26) is immediately ver-
ified. Moreover, qϵ(L)2 can be written as qϵ(L)2 = 2ϵ2 + tr(L∗L) +
2
√
ϵ4 + 2ϵ2tr(L∗L) + det(L∗L), which shows that qϵ is smooth for ϵ > 0. This

proves (a).
In order to prove (b), note that qϵ is continuous and so it is enough to show
that 2qϵ(L + L′) ≤ qϵ(2L) + qϵ(2L′) for all L,L′ ∈ Hom(V,W ). Consider then
L,L′ ∈ Hom(V,W ) and denote by λ1 ≤ λ2 the singular values of L, by λ′1 ≤ λ′2
the singular values of L′ and by µ1 ≤ µ2 the singular values of L + L′. By
Theorem 2 of [22] there are linear isometries P,Q ∶ V → V such that

bL+L′ ≤ P ∗bLP +Q∗bL′Q

where ≤ means that the difference is a nonnegative self-adjoint matrix.
If µ̂1 ≤ µ̂2 are the eigenvalues of P ∗bLP + Q∗bL′Q, we deduce that µi ≤ µ̂i
for i = 1,2. Thus qϵ(L + L′) ≤ nϵ(µ̂1, µ̂2). Moreover, µ̂1 + µ̂2 = tr(bL+L′) ≤
tr(P ∗bLP +Q∗bL′Q) = tr(bL) + tr(bL′) = λ1 + λ′1 + λ2 + λ′2. On the other hand,
by the classical Weyl Theorem, µ̂2 ≤ λ2 + λ′2. Hence, using Sublemma A.7, we
get

2qϵ(L +L′) ≤ 2nϵ(µ̂1, µ̂2) ≤ 2nϵ(λ1 + λ′1, λ2 + λ′2) ≤

≤ nϵ(2λ1,2λ2) + nϵ(2λ′1,2λ′2) = qϵ(2L) + qϵ(2L′) ,
which shows that qϵ is convex.
As for (c), note that t ↦ qϵ((1 + tA)L) is a smooth function near t = 0. For
ϵ > 0 this is clear, because qϵ is smooth. For ϵ = 0 this depends on the fact that
L has rank 2 and so has (1+tA)L for ∣t∣ small. A straightforward computation
using (26) shows that
(27)
d

dt
qϵ((1 + tA)L)∣

t=0
= 1

2qϵ(L)
(tr(Â) +

√
det(ϵ21 +L∗L)tr((ϵ21 +L∗L)−1Â)) ,

where we have put

Â ∶= d
dt
(((1 + tA)L)∗(1 + tA)L)∣

t=0
= 2L∗AL .
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Now, Â and (ϵ21+L∗L) are respectively non-negative and positive self-adjoint
operators of V , so the derivative in (27) is non-negative. Finally, if A ○L ≠ 0,
then Â ≠ 0, and this implies the strict positivity of the derivative. □

After such preparation, we can now prove the main statement of this section.

Proof of Proposition A.5. For ϵ ≥ 0 let uϵ(s) = qϵ(T (s)), so that u0 = u. We
remark that for ϵ > 0 the function uϵ is smooth at every s ∈ [0,1], whereas for
ϵ = 0 it is smooth at those s ∈ [0,1] such that T (s) has rank 2. At those points
we have

üϵ(s) = (d2qϵ)T (s)(Ṫ (s), Ṫ (s)) + (dqϵ)T (s)(T̈ (s))

where (d2qϵ) ∶ V × V → W is the Hessian of qϵ and we view üϵ(s), Ṫ (s) and
T̈ (s) as elements of Hom(V,W ).
As qϵ is convex, (d2qϵ)T (s)(Ṫ (s), Ṫ (s)) ≥ 0. Moreover, (dqϵ)T (s)(T̈ (s)) =
d
dtqϵ((1+ tA(s))T (s))∣t=0

. Hence, by Lemma A.6(c) the term (dqϵ)T (s)(T̈ (s))
is non-negative, and in fact strictly positive if A(s) ○ T (s) ≠ 0.
For ϵ = 0 this shows the positivity of ü at those s ∈ [0,1] such that the rank
of T (s) is 2 and A(s) ○ T (s) ≠ 0. On the other hand, for ϵ > 0 the function uϵ
turns out to be convex. The convexity of u follows, since u = limϵ→0 uϵ. □
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