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ABSTRACT 

Parkinson’s disease (PD) is a multifactorial disorder with complex etiology. The most prevalent PD 

associated mutation, LRRK2-G2019S is linked to familial and sporadic cases. Based on the multitude 

of genetic predispositions in PD and the incomplete penetrance of LRRK2-G2019S, we hypothesize 

that modifiers in the patients’ genetic background act as susceptibility factors for developing PD. To 

assess LRRK2-G2019S modifiers, we used human induced pluripotent stem cell-derived 

neuroepithelial stem cells (NESCs). Isogenic controls distinguish between LRRK2-G2019S dependent 

and independent cellular phenotypes. LRRK2-G2019S patient and healthy mutagenized lines showed 

altered NESC self-renewal and viability, as well as impaired serine metabolism. In patient cells, 

phenotypes were only partly LRRK2-G2019S dependent, suggesting a significant contribution of the 

genetic background. In this context we identified the gene serine racemase (SRR) as a novel patient-

specific, developmental, genetic modifier contributing to the aberrant phenotypes. Its enzymatic 

product, D-serine, rescued altered cellular phenotypes. Susceptibility factors in the genetic 

background, such as SRR, could be new targets for early PD diagnosis and treatment. 
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INTRODUCTION 

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease. 

Pathophysiologically, PD is characterized by the loss of midbrain dopaminergic neurons (DN) in the 

substantia nigra. The triggers that lead to the onset of PD and finally to DN degeneration are poorly 

understood and thus, PD pathogenesis remains largely elusive with no effective protective 

treatment.  PD has been proposed to encompass different multifactorial diseases, with similar 

phenotypic outcome (1). Multiple genetic predispositions, monogenetic mutations, and risk loci can 

cause similar parkinsonian phenotypes and symptoms.  

The most common mutation that causes autosomal dominant PD is a glycine to serine substitution 

at position 2019 (G2019S) in the leucine-rich-repeat-kinase-2 (LRRK2) (2,3). LRRK2 is of special 

interest as its mutations are the monogenetic cause of familial PD and the reason for 1-2 % of the 

sporadic cases (4,5). Furthermore, a single nucleotide polymorphism (SNP) in the LRRK2 gene acts as 

common risk modifier for developing PD (6). Epidemiologic studies suggest that the age of onset 

between individuals carrying LRRK2-G2019S is highly variable and that different ethnicities show 

higher prevalence’s (7). Accordingly genetic variations within the patient-specific genetic background 

may underlie this variability. Such so-called second hits may explain why asymptomatic carriers exist, 

why the penetrance of LRRK2-G2019S is age-dependent and why the LRRK2 phenotypic spectrum is 

practically indistinguishable from that of idiopathic PD (iPD) (4). 

Previous studies suggest that LRRK2 has an impact on neural stem cell (NSC) proliferation and 

integrity and plays a role in neurogenesis (8–12). Furthermore, LRRK2 expression is enhanced in the 

stem cell niches of the developing mouse brain during neurogenesis (13).  These observations imply 

a possible link between LRRK2, impaired neurogenesis, and the onset or progression of PD and 

therefore, we hypothezise that PD might have a neuro-developmental component that could explain 

DN vulnerability.  
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To explore this hypothesis, we investigated human PD patient-specific, iPSC-derived, neuroepithelial 

stem cells (NESC). To differentiate between LRRK2-G2019S dependent phenotypes and genetic 

background-specific changes, isogenic control lines were used (14). The identification of phenotypes 

in LRRK2-G2019S PD patient-specific NESCs allows to gain new insights into NSC deregulations in PD 

pathogenesis and development. Finally, analysing the patient genetic background enables to 

discover susceptibility factors that may control disease-related cellular phenotypes and predispose 

to PD. These novel genetic modifiers could potentially be used as biomarkers for early diagnosis or 

as personalized therapeutic targets for precision medicine.  

 

RESULTS 

Patient cell lines show impaired stem cell self-renewal and serine metabolism 

To get an unbiased overview of the pathways that are affected in patients compared to healthy 

individuals, we assessed the transcriptome of the healthy (H) vs. patients (P) NESCs lines depicted in 

Figure 1A. Quality controls regarding characterisation, derivation, gene-editing and individual 

absolute values of hNESCs phenotypes can be found in the supplements. Microarray analysis was 

performed and 865 significantly differentially expressed genes (DEGs) were identified between the 

six healthy and the six patient derived cell lines (H-6 vs. P-5), FDR ≤ 0.05 (15). Metacore pathway 

enrichment analysis revealed that the transcriptional regulation of amino acid metabolism, the cell 

cycle, cellular development as well as oxidative stress are within the top five networks enriched in 

the PD patients compared to healthy individuals (Figure 1B). We decided to focus the further 

analysis on the deregulated cell cycle and amino acid metabolism by assessing the corresponding 

phenotypes, such as metabolic activity, proliferation and cell death (Figure 1C-F). MTT assay derived 

growth curves revealed reduced cell viability or metabolic activity of the patient cell lines when 

compared to the healthy lines (H1-6 vs. P1-5) (Figure 1C). To link this decrease to lower proliferation 

rates and increased cell death, we stained for the mitosis marker phospho-histone H3 (PH3) (H1-6 
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vs. P1-5) and proliferation marker Ki67 (H1, H2, H6 vs P1, P2, P1.1). In the patient-derived lines, less 

cells were undergoing cell division as compared to healthy controls (Figure 1D and S3E). Moreover, 

immunostainings for cleaved caspase 3 (CC3) (H1-6 vs. P1-5) and for pyknotic nuclei (PYK) (H1-6 vs. 

P1-5), as well as flow cytometric counts for propidium iodide  (H1-2&4-5 vs. P1-5) revealed increased 

cell death and apoptosis in patient-derived lines (Figure 1E, 1F and S3E). 

Next, we used a metabolomics approach to investigate the intracellular levels of amino acids in the 

NESC cultures from healthy individuals and patients (H1-6 vs. P1-5) (Figure 1G). From all amino acids 

measured (H1-6 vs. P1-5), the L-serine increase in patients was the most promising candidate (Figure 

1H). Interestingly, the most decreased amino acid was phospho-serine, the precursor metabolite of 

serine (Figure 1G), suggesting that serine metabolism is deregulated in LRRK2-G2019S patients. This 

hypothesis is further strengthened by the investigation of serine levels in the blood plasma of 25 

healthy individuals, 25 iPD patients and 5 PD patients with the LRRK2-G2019S mutation (Figure 1I). 

(Figure 1I), suggesting that impaired serine metabolism is caused by LRRK2-G2019S. Furthermore, 

this observation supports the concept that findings from a PD patient-specific NSC model can be 

replicated in patients biofluids. 

 

Stratification of LRRK2-G2019S dependent and independent phenotypes 

Next, we investigated whether the phenotypes we observed in patient cells (Figure 1), were indeed 

caused by the LRRK2-G2019S mutation (Figure 2). For this purpose, we made use of the NESCs 

where the mutation had been introduced into the healthy background (H1, H3, H6.1 vs H1G2019S, 

H3G2019S, H6.1G2019S). We were able to detect phenotypes similar to the ones observed in patient 

lines, indicating that the LRRK2-G2019S mutation is sufficient to alter proliferation, cell death and 

metabolic activity (Figure 2A and B). Moreover, LRRK2-G2019S dependency of these phenotypes 

was highlighted by treatment with the LRRK2 inhibitor, CZC-25146, that was able to  rescue the 

mutation-depended increase in cell death and the decrease in mitosis (Figure S4A). We further 
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analyzed the serine levels upon the insertion of the mutation and could show that LRRK2-G2019S 

increases serine levels in hNESCs (Figure 2C). Furthermore, we also detected an increase in the 

serine levels in mice expressing human LRRK2-G2019S (Figure 2D). These observations, support the 

hypothesis that the observed serine deregulations are specific for the LRRK2-G2019S mutation. 

Next, we gene-corrected the LRRK2-G2019S mutation in the patient cell lines (P1, P1.1, P2 vs P1GC, 

P1.1GC, P2GC). Indeed, correcting the mutation resulted in the rescue of previously published  

phenotypes (16), such as increased protein levels of alpha-Synuclein and TAU (Figure S3A). 

Strikingly, the correction of the mutation was, not able to rescue proliferation and survival 

phenotypes in patient-specific NESCs (Figure 2E-G). Moreover, concerning the serine levels only a 

partial rescue can be observed (Figure 2H). This observation suggests that in the patient-derived 

lines, the genetic background is contributing to the phenotypes. To get further insights into the 

origin of the observed phenotypes and to delineate their dependency on LRRK2-G2019S, we 

repeated the proliferation and cell death assays in the presence of the LRRK2 kinase inhibitor CZC-

25146 (17). Previously, CZC-25146 was shown to rescue LRRK2-G2019S induced apoptosis in DNs 

(17). Within the PD patient-derived NESCs, increased cell death and decreased mitosis were not 

rescued by inhibiting LRRK2-kinase activity (Figure 2I and 2J). This observation suggests that other 

factors, which are independent of LRRK2-G2019S, strongly contribute to these  phenotype . 

Moreover, inhibiting LRRK2 in the gene-corrected cells had as expected no effect (Figure S4B). These 

results emphazise the finding that the gene-correction of LRRK2-G2019S was not sufficient to rescue 

the phenotypes and highlight the important contribution of the genetic background.  

 

Identification of potential susceptibility factors in the patient’s genetic background  

Based on the observation that cellular phenotypes partially depend on the information carried by 

the patient’s genetic background, we aimed at identifing responsible genes. For this purpose, we 
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reanalysed the gene expression via whole transcriptome microarray profiling taking into account 

also the isogenic controls. Moreover to narrow down, which genes could act as possible genetic 

modifiers, we performed a stricter analysis using the eBayes method (18). The data confirmed that 

deregulation of the NESC transcriptome is strongly influenced by the patient’s genetic background. 

The heatmap shows that patient cells cluster with their gene-corrected counterpart, suggesting a 

limited contribution of LRRK2-G2019S alone to the changes in gene expression (Figure 3A).  To 

investigate which genes could act as possible succeptibility factors accounting for the patients’ 

genetic background-dependent part of the phenotypes, we evaluated the DEGs from the Healthy vs. 

Patient comparison. The top 50 candidates are represented in a second heat map (Figure 3B). These 

top candidates include genes such as RAB32 and PTGR1 that have implications in LRRK2-G2019S 

induced PD pathogenesis (19) or were linked to the PD genetic background in DNs (20). To further 

emphasize the top candidate genes we performed a variable importance ranking based on the 

significance (Figure 3C) Interestingly, among the top five genes that were unique to the Healthy vs. 

Patient comparison we found 2 genes, ARL17a, ARL17b, in which SNPs have been linked to PD 

before (21) (Figure 3D). Other significant DEGs involved in pathways potentially relevant for PD, 

were serine racemase (SRR), neurotensin (NTS) and DLEU7 Antisense RNA 1 (DLEU7-AS1). The most 

promising candidates that may act as the here sought-after genetic modifiers were SRR and NTS 

because of their involvement in neuromodulation, -transmission and neurological diseases, such as 

PD (22,23).  

 

 

Patient cell lines show impaired SRR expression, deregulated serine metabolism and the 

enzymatic product of SRR, D-serine, rescues patient phenotypes. 

SRR is the enzyme that catalyzes the conversion between L-serine and D-serine (Figure 4A). Since 

serine metabolism was already affected by LRRK2-G2019S in hNESCs (Figure 1 and 2), we decided to 
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focus on SRR as a potential genetic modifier for LRRK2-G2019S induced PD. RT-qPCR for SRR mRNA 

validated the reduced expression in patient cell lines (H1-6 vs. P1-5) (Figure 4B). Consistent with the 

reduced SRR expression, the patient lines showed increased levels of L-serine compared to the 

healthy lines (H1-6 vs. P1-5) (Figure 4A). Therefore, we hypothesized that the reduced levels of SRR 

lead to increased levels of serine and a deficiency in the conversion to D-serine (Figure 4A).  Based 

on the described function of D-serine in NSCs (24,25), the deficiency in D-serine production might 

contribute to the observed cellular phenotypes, and consequently, the effects may be rescued 

through treatment with D-serine. Indeed, treatment with 100 µM D-serine led to the complete 

rescue of the proliferation and cell death phenotypes in PD patient-derived cells without affecting 

healthy lines (H1-6 vs P1-5) (Figure 4C). Strikingly, this rescue is specific for the NSC-related 

phenotypes. No rescue of the neuronal phenotypes (H1-6 vs. P1-5) was achievable through D-serine 

treatment (Figure S5).  Furthermore, D-serine was rescuing LRRK2-G2019S dependent phenotypes in 

the three healthy lines where we inserted the mutation (Figure S4C). In addition, D-serine rescued 

proliferation and partially rescued apotosis in the three patient lines where the mutation had been 

corrected (Figure S4D). These rescue effects highlight the contribution of impaired serine 

metabolism within the phenotypes and emphasizes the role of the LRRK2-G2019S mutation.  

 

DISCUSSION 

This study supports the concept that PD is not a monogenetic disease, a common interpretation of 

its diversity follows the multiple-hit hypothesis, which states that different incidences, or genetic 

predispositions may to act in parallel or consecutively to cause PD (26).  

Our data suggests that both a decrease in SRR expression caused by the genetic background as well 

as an increase of serine levels caused by LRRK2-G2019S influence serine metabolism. In patients 

both deregulations, the reduction of SRR caused by the genetic background and the LRRK2-G2019S 

mutation, may complement each other (Figure 4D).  Based on these results, we propose an interplay 
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between impaired serine metabolism, the PD genetic background and LRRK2-G2019S.  However, we 

are aware that some of the here presented results are unexpected and have clear constrains, 

including the facts that the sample sizes is limited and that some of the observed phenotypes are 

rather subtle or have marginal statistical significance. 

Initially, we thought that within patients LRRK2-G2019S alone leads to increased serine levels as 

observed in NESCs. Increased serine levels were, for instance, previously reported in the striatum of 

6-OHDa leasioned rats (27) and serine inversly correlates with PD progression, suggesting that it 

might inhere a compensatory mechanism (28). This view, however, was challenged in our data by 

the discrepancy that gene-correcting LRRK2-G2019S within the patient genetic background did not 

rescue phenotypes, meaning that other succeptibility factors contribute to phenotype 

manifestation. A screen for potential genes that could act as genetic modifier and represent the 

driving force behind the phenotypes identified SRR, which is directly involved in serine metabolism. 

We showed that cell lines having the patient background have decreased SRR expression, which is in 

accordance with existing transcriptomic data from the substania nigra of PD patients (29). 

Accordingly it seems more likely that two independent pathways exist that both affect serine 

metabolism and might act together under disease conditions.  Mouse studies showed for instance 

similar phenotypes in SRR-KO and LRRK2-G2019S mice, suggesting that LRRK2-G2019S and SRR 

might have opposing modulating capacities (8,30). The mechanism on how LRRK2-G2019S 

deregulates serine levels, however, remains an open question and the possibility of a direct 

interaction between both proteins cannot be excluded (Figure 4d).  

In regards to our hypothesis that PD may have a developmental component, patient NESCs show 

significant alterations in cell death and proliferation, which are both indicators of functionally 

relevant developmental impairments and could have significant consequences for in vivo 

neurogenesis. LRRK2 indeed is necessary for maintaining the balance between self-renewal and cell 

death in NESCs. Moroever, pathway analysis confirmed that developmental genes, independent of 
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LRRK2-G2019S, are altered between healthy and patient cell lines demonstrating that both LRRK2-

G2019S and the patient genetic background can influence organism development in the context of 

PD. 

Lastly, the deregulated serine metabolism by LRRK2-G2019S and decreased SRR expression levels 

consolidated the use of D-serine as potential rescue strategy. Moreover, a pilot study described that 

D-serine treatment alleviates behavioural and motor symptoms in PD (31). The fact that LRRK2 alone 

is not responsible for the investigated impairments, could have implications on PD therapeutic 

strategies in LRRK2-G2019S carriers. SRR, and L/D-serine could serve as new therapeutic targets for 

complementary treatment of early stage PD or may be used as potential blood biomarkers for 

diagnosis, stratification and preventive strategies. Finally, the results presented here might help to 

explain the incomplete penetrance and the variable age of onset and progression of LRRK2-G2019S 

carriers.  
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EXPERIMENTAL PROCEDURES 

Detailed experimental procedures are described in the supplements that can be found online. NESCs 

were generated from iPSCs, gene edited and cultivated as described by Qing et al., 2017 and 

Reinhardt et al., 2013. Antibodies and reagents for immunocytochemiststry can be found in Table 1. 

Confocal images were preprocessed with Zeiss and analysed using image J. MTT was performed 

using the manualfactures protocol (Sigma). Flow cytometry is described in Walter et al., 2019. RT-

qPCR was done using Taqman probes (Table 1). Metabolite blood and mouse extractions are 

described in Jäger et al., 2016 and cellular metabolites have been analysed by the University of 

Leiden. Mice were purchased from Jackson Lab Stock# 012467 derived from the WT funder line 

C5713467. Chemical reagents and treatments can be found in Table 1. RNA was extracted using 

miRNA easy kit. Samples were processed with EMBL Genomics Core Facility using Affymetrix Human 

Gene 2.0 arrays. GEO accession number GSE101534.  
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Figure 1. Patient cell lines show impaired stem cell renewal and serine metabolism compared to 

healthy hNESCs  

(A) Summary of cell lines: patients (P) healthy donors (H), insertion of LRRK2-G2019S (HG2019S) or 

gene correction (PGC).  

(B) Metacore pathway enrichement analysis for H1-6 vs. P1-5, based on 865 DEGs (RankProduct). 

(C) Growth curve of hNESCs by MTT at day 1, 3 and 6. Data as Mean ± SEM. *p≤0.05, 2-way ANOVA. 

Sidak’s multiple comparison *p<0.05 at day 6. N=6 (H1-6 vs. P1-5), n=5. 

 (D) Representative images of phenotypes. P hNESCs show decreased mitosis (pH3) and proliferation 

(Ki67). Quantifications as Mean ± SEM. *p≤0.05, t-test, GRUBB’s test α=0.1, no outlier, N=6 (H1-6 vs. 

P1-5), n=3. For Ki67 N=3 (H1-2, H6 vs. P1-2), n=3. See Figure S3F for individual values. 

(E) Propidium Iodide positive cell count after flow cytometry. Mean ± SEM. *p≤0.05, t-test, GRUBB’s 

test α=0.1, 1 outlier, N=5/6 (H1-2, H4-6 vs. P1-5) n=3. 

 (F) Representative images of phenotypes. P hNESCs show increased pyknosis (white stars) and 

apoptosis (CC3). Average percentages of positive cells ± SEM. *p≤0.05, t-test, GRUBB’s test α=0.1, no 

outlier for CC3, 1 outlier in H and P for PYK. N=6 (H1-6 vs. P1-5), n=3. See Figure S3F for individual 

values. 

(G) Intracellular amino acid metabolite levels of hNESCs show increased serine levels in P. Data is 

shown as logFC, Mean ± SEM.  

(H Serine metabolite levels in P vs. H individuals. Data is shown as Mean ± SEM p≤0.053, t-test. 

GRUBB’s  test within 3 technical and 3 biological replicates per line α=0.1. 1 outlier in H2, H3, H5 and 

P5. N=6 (H1-6 vs. P1-5), n=3. See also Figure S3B for individual values. 

(I) Serine blood plasma levels are increased in in P vs. H and in P vs. iPD cases. Mean ± SEM. *p≤0.05, 

t-test, GRUBB’s test α=0.1, no outliers. 1-way ANOVA p=0.0555. 
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Figure 2. LRRK2-G2019S is sufficient to increase cell death, and serine metabolism and to decrease 

proliferation and metabolic activity. However within patients, LRRK2-G2019S is not necessary to 

maintain phenotypes. 

(A) Representative images of HG2019S hNESCs. Introduction of LRRK2-G2019S in H cell lines 

increases pyknosis (Hoechst) and apoptosis (CC3) and reduces mitosis (PH3). Average percentage of 

positive cells ± SEM. *p≤0.05, **p≤0.01, ***p≤0.001, paired t-test, GRUBB’s test α=0.1, no outliers. 

N=3 (H1,H3,H6 vs. H1G2019S, H3G2019S, H6G2019S), n=3.   

(B) Growth curve of hNESCs by MTT after 1, 3 and 6 days. Mean ± SEM. 2-way ANOVA followed by 

Sidak’s multiple comparison *p<0.05 at day 6. N=2 (H1, H3 vs. H1G2019S, H3G2019S), n=5. 

 (C) Serine levels are increased in HG2019S vs. H individuals. Mean ± SEM. **p≤0.001, t-test, 

GRUBB’s test α=0.1, 1 outlier in H2, H3 and H5. N=2/6 (H1G2019S, H3G2019S vs. H1-6), n=3 

(D) Serine level in striatum of LRRK2-G201S carrying mice is increased compared to WT mice from 

the same strain. Mean ± SEM. *p≤0.05, t-test, GRUBB’s test α=0.1, 1 outlier in WT and G2019S. 

N=7/5. 

(E) Growth curve of hNESCs by MTT after 1, 3 and 6 days. Mean ± SEM. *p<0.05, 2-way ANOVA 

followed by Sidak’s multiple comparison. N=3 (P1-2 vs. P1-2GC), n=5. 

 (F) Representative images of PGC hNESCs. Gene correction is not rescuing reduced mitosis (PH3) 

and increased pyknosis (Hoechst) and apoptosis (CC3). 

(G) Quantification of B. Percentages as Mean ± SEM. *p≤0.05, paired t-test, GRUBB’s test α=0.1, 1 

outlier for PYK (P). N=3 (P1-2 vs. P1-2GC), n=3.  

(H) Serine levels are not significantly decreased by gene-correcting LRRK2-G2019S in patient lines. 

Mean± SEM, *p≤0.053, t-test, GRUBB’s test α=0.1, 1 outlier in P5 and P2GC. N=3 (P1-5 vs. P1-2GC), 

n=3. 

(I) Representative images of hNESCs stained for Hoechst, PH3 and CC3 after treatment with 0.5 µM 

LRRK2 Inhibitor CZC-25146 in DMSO.  
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(J) Quantification of D. Inhibition of LRRK2-G2019S is not rescuing reduced mitosis or cell death in 

patient lines. Data as Mean ± SEM. *p≤0.05, **p≤0.01, ***p≤0.001, t-test, GRUBB’s test α=0.1, 1 

outlier in Pdmso and PLRRK2in for CC3 and PYK and Hdmso for PH3, N=6 (H1-6 vs. P1-5), n=3.  

 

Figure 3. Identification of genes deregulated in LRRK2-G2019S carriers that might act as 

susceptibility factors within the patient genetic background to contribute to the observed 

phenotypes. 

(A) Heatmap showing clustering of the cell lines for the top 50 DEGs between H and P using the 

eBayes method, FDR≤0.05. 

(B) Heatmap of top 50 DEGs between H vs. P comparison, eBayes differential expression analysis, 

FDR≤0.05. N=6, n=3.  

(C) DEGs ranked by significance to identify the top candidates.  

(D) Top five DEGs between H and P are background dependent, *p<0.05 t-test, *FDR<0.05. Each dot 

represents one cell line. For H vs. P N=6 (H1-6 vs. P1-5), n=3. For PGC N=3 (P1-2GC), n=3. For 

HG2019S N=2 (H1G2019S, H3G2019S), n=3. 

 

Figure 4. SRR might contribute to deregulated serine metabolism, and D-serine the metabolic 

product of SRR rescues phenotypes in patients. 

(A) Validation of SRR expression by RT-qPCR. The H lines were set to 1. Mean ± SEM. *p≤0.05, t-test. 

N=6 (H1-6 vs. P1-5), n=3 

(B) SRR converts L-serine to D-serine and is downregulated in the patient genetic background.  

(C) Representative images of hNESCs stained with Hoechst, PH3 and CC3 after treatment with 100 

µM D-serine for 6 days. Quantification: D-serine rescues cell death and mitosis in patient cell lines; 

Mean ± SEM. *p<0.05, t-test, GRUBB’s test α=0.1, 1 outlier in Pser for PH3 and in Hser for CC3.  N=6 

(H1-6 vs. P1-5), n=3. 



18 

(D) SRR acts as genetic modifier for LRRK2-G2019S induced PD. Overview showing the synthesis of 

previous Figures. 
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Figure 4 D-serine rescues phenotypes as SRR might act as succeptibility factor within the patient background
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HIGHLIGHTS 

• Stem cells from LRRK2-G2019S patients show impaired self-renewal, viability, and serine 

metabolism. 

• Patient phenotypes only partly depend on LRRK2-G2019S, the PD genetic background 

contributes.  

• Identification of SRR as a possible susceptibility factor within the PD genetic background.  

• The enzymatic product of SRR, D-serine rescues background related phenotypes within PD 

patient cells. 

 


