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An efficient approach towards the source-target
control of Boolean networks

Soumya Paul, Cui Su, Jun Pang, Andrzej Mizera

Abstract—We study the problem of computing a minimal subset of nodes of a given asynchronous Boolean network that need to be
perturbed in a single-step to drive its dynamics from an initial state to a target steady state (or attractor), which we call the
source-target control of Boolean networks. Due to the phenomenon of state-space explosion, a simple global approach that performs
computations on the entire network, may not scale well for large networks. We believe that efficient algorithms for such networks must
exploit the structure of the networks together with their dynamics. Taking this view, we derive a decomposition-based solution to the
minimal source-target control problem which can be significantly faster than the existing approaches on large networks. We then show
that the solution can be further optimised if we take into account appropriate information about the source state. We apply our solutions
to both real-life biological networks and randomly generated networks, demonstrating the efficiency and efficacy of our approach.

Index Terms—Boolean networks, attractors, network control, decomposition
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1 INTRODUCTION

C Ell reprogramming is a way to change one cell pheno-
type to another, allowing tissue or neuron regeneration

techniques. Recent studies have shown that differentiated
adult cells can be reprogrammed to embryonic-like pluripo-
tent state or directly to other types of adult cells without the
need of intermediate reversion to pluripotent state [1], [2].
This has led to a surge in regenerative medicine and there
is a growing need for the discovery of new and efficient
methods for the control of cellular behaviour.

In this work we focus on the study and control of gene
regulatory networks (GRNs) and their combined dynamics
with an associated signalling pathway. GRNs are graphical
diagrams visualising the relationships between genes and
their regulators. They represent biological systems charac-
terised by the orchestrated interplay of complex interac-
tions resulting in highly nested feedback and feed-forward
loops. Signalling networks consist of interacting signalling
pathways that perceive the changes in the environment and
allow the cell to correctly respond to them by appropriately
adjusting its gene-expression. These pathways are often
complex, multi-component biological systems that are regu-
lated by various feedbacks and that interfere with each other
via diverse cross-talks. As a result, GRNs with integrated
signalling networks are representatives of complex systems
characterised by non-linear dynamics. These factors render
the design of external control strategies for these biological
systems a very challenging task. So far, no general mathe-
matical frameworks for the control of this type of systems
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have been developed [3], [4], [5].
Boolean networks (BNs), first introduced by Kauff-

man [6], is a popular and well-established framework for
modelling GRNs and their associated signalling pathways.
Its main advantage is that it is simple and yet able to
capture the important dynamic properties of the system
under study, thus facilitating the modelling of large bio-
logical systems as a whole. The states of a BN are tuples
of 0s and 1s where each element of the tuple represents
the level of activity of a particular protein in the GRN or
the signalling pathway it models - 0 for inactive and 1 for
active. The BN is assumed to evolve dynamically by moving
from one state to the next governed by a Boolean function
for each of its components. The steady state behaviour of a
BN is given by its subset of states called attractors to one of
which the dynamics eventually settles down. In biological
context, attractors are hypothesised to characterise cellular
phenotypes [6] and also correspond to functional cellular
states such as proliferation, apoptosis differentiation etc. [7].

Cellular reprogramming, or the control of the GRNs and
their signalling pathways therefore amount to being able to
drive the dynamics of the associated BN from an attractor
to another ‘desirable’ target attractor by perturbing or re-
programming the nodes of the BN. This needs to be done
while respecting certain constraints viz. a minimal subset of
nodes of the BN are perturbed or the perturbation is applied
only for a minimal number of time steps. Under such
constraints, it is known that the problem of driving the BN
from a source to a target attractor (the source-target control
problem) is computationally difficult [8], [9] and does not
scale well to large networks. Thus a simple global approach
(see Section 3.5 for a description) treating the entire network
in one-go is highly inefficient. This is intuitively due to the
infamous state-space explosion problem. Since most real-
life networks are large, there is a strong need for designing
algorithms which exploit certain properties (structural or
dynamic or both) of a BN and can efficiently address the
control problem.
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Our contributions. In this work, we develop a generic
approach towards solving the minimal source-target control
problem (defined formally in Section 3) on large BNs with
asynchronous dynamics, based on combining both their
structural and the dynamic properties. We show that:
• The problem of computing the minimal set of nodes

to be perturbed in a single time-step (hence simultane-
ously) to drive the system from a source state s to a
target attractor At (driver nodes) is equivalent to com-
puting a subset of states of the state transition graph of
the BN called the strong basin (defined in Section 3) of
attraction of At (dynamic property).

• The network structure of a large BN can be explored
to decompose it into smaller blocks. The strong basins
of attractions of the projections of At to these blocks
can be computed locally and then combined to recover
the global strong basin of attraction of At (structural
property).

• Any algorithm for the computation of the global strong
basin of attraction of At can also be used (with slight
modifications) to compute the local strong basins of
attraction of the projections of At to the blocks of BN.
Doing so results in the improvement in efficiency for
certain networks which have modular structures (real-
life biological networks).

• We concretise our approach by describing in detail one
such algorithm (Algorithm 1) which is based on the
computation of fixed points of set operations.

• Furthermore, taking relevant information about source
state s into consideration, we can avoid the computa-
tion of local strong basins in some blocks. This results
in a subset of the global strong basin of At, which still
contains all the states that are required for the compu-
tation of the minimal control. Such an optimisation can
accelerate the computation of the basin of At.

• We have implemented our decomposition-based ap-
proach (Algorithm 4) and its optimisation (Algorithm 5)
using Algorithm 1b (which is a slight modification of
Algorithm 1) as the basis for computation of strong
basins, and applied them to a number of case studies of
BNs corresponding to real-life biological networks and
randomly generated BNs. Our results show that for cer-
tain structurally well-behaved BNs our decomposition-
based approach is efficient and outperforms the global
approach. Moreover, its efficiency is further improved
by the optimisation of Algorithm 5.

2 RELATED WORK

In recent years, several approaches have been developed
for the control of complex networks [3], [4], [8], [9], [10],
[11], [12], [13], [14], [15]. Among them, the methods [3], [4],
[13] were proposed to tackle the control of networks with
linear time-invariant dynamics. Liu et al. [3] first developed
a structural controllability framework for complex networks
to solve full control problems, by identifying the minimal
set of (driver) nodes that can steer the entire dynamics of
the system. Afterwards, Gao et al. extended this method to
the target control of complex networks [4]. They proposed
a k-walk method and a greedy algorithm to identify a set
of driver nodes for controlling a pre-selected set of target

nodes. However, Czeizler et al. [13] proved that it is NP-
hard to find the minimal set of driver nodes for structural
target control problems and they improved the greedy al-
gorithm [4] using several heuristics. The above methods
have a common distinctive advantage that they are solely
based on the network structures, which are exponentially
smaller than the number of states in their dynamics. Nev-
ertheless, they are only applicable to systems with linear
time-invariant dynamics.

The control methods proposed in [8], [9], [10], [11], [12],
[14], [15] are designed for networks governed by non-linear
dynamics. Among these methods, the ones based on the
computation of the feedback vertex set (FVS) [10], [11],
[15] and the ‘stable motifs’ of the network [12] drive the
network towards a target state by regulating a component
of the network with some constraints (feedback vertex sets
and stable motifs). The method based on FVS is purely a
structure-based method, while that based on stable motifs
takes into account the functional information of the network
(network dynamics) and has a substantial improvement in
computing the number of driver nodes. These two methods
are promising, even though none of them guarantees to
find the minimal set of driver nodes. In [14], Wang et al.
highlighted an experimentally feasible approach towards
the control of nonlinear dynamical networks by constructing
‘attractor networks’ that reflect their controllability. They
construct the attractor network of a system by including all
the experimentally validated paths between the attractors
of the network. The concept of an attractor network is
inspiring. However, this method cannot provide a straight-
forward way to find the paths from one attractor to a desired
attractor, and it fails to formulate a generic framework for
the control of nonlinear dynamical networks.

Closely related to our work, Mandon et al. [8], [9]
proposed approaches towards the control of asynchronous
BNs. In particular, in [8] they proposed a few algorithms
to identify reprogramming determinants for both existential
and inevitable reachability of the target attractor with per-
manent perturbations. Later on, they proposed an algorithm
that can find all existing control paths between two states
within a limited number of either permanent or temporary
perturbations [9]. However, these methods do not scale well
for large networks.1 This is mainly due to the fact that
they need to encode all possible control strategies into the
transition system of the BN in order to identify the desired
reprogramming paths [9]. As a consequence, the size of the
resulting perturbed transition graph grows exponentially with
the number of allowed perturbations, which renders their
algorithms inefficient.

The identified limitations of these existing approaches
motivate us to develop a new approach towards the con-
trol of non-linear Boolean networks which is modular and
exploits both their structural and dynamic properties. Gates
et al. [16] showed that such an approach is inevitable for
the identification of the correct parameters and control
strategies, in that, focussing only on a single property (either
structural or dynamic) might not be sufficient.

1. We learnt through private communication that the current imple-
mentation of their methods does not scale efficiently to BNs having
more than 20 nodes
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Note that there is the related and extensively studied
framework of Boolean control networks (BCNs) in the liter-
ature which is used to investigate the controllability and
stability of Boolean networks using external inputs [17],
[18], [19], [20]. These inputs are applied to a fixed subset
of variables of the given BN for a finite sequence of steps.
The controllability of the BN then boils down to computing
sequences of values for these inputs for the required number
of steps to drive the BN to a desired state. Although the
control method we study in this work can be cast into
the setting of BCNs, we do not explore that direction here
and shall henceforth refrain from the use or mention of
BCNs. Nevertheless, we would definitely like to explore the
connection between BCNs and our methods of control in the
near future.

3 PRELIMINARIES

3.1 Boolean networks
A Boolean network (BN) describes elements of a dynamical
system with binary-valued nodes and interactions between
elements with Boolean functions. It is formally defined as:
Definition 1 (Boolean networks). A Boolean network is a

tuple BN = (x, f) where x = (x1, x2, . . . , xn) such
that each xi, 1 ≤ i ≤ n is a Boolean variable and
f = (f1, f2, . . . , fn) is a tuple of Boolean functions over
x. |x| = n denotes the number of variables.

In what follows, i will always range between 1 and n,
unless stated otherwise. A Boolean network BN = (x, f)
may be viewed as a directed graph GBN = (V,E) where
V = {v1, v2 . . . , vn} is the set of vertices or nodes and for
every 1 ≤ i, j ≤ n, there is a directed edge from vj to vi
if and only if fi depends on xj . An edge from vj to vi will
be often denoted as vj → vi. A path from a vertex v to
a vertex v′ is a (possibly empty) sequence of edges from
v to v′ in GBN. For any vertex v ∈ V we define its set of
parents as par(v) = {v′ ∈ V | v′ → v}. For the rest of the
exposition, we assume that an arbitrary but fixed network
BN of n variables is given to us and GBN = (V,E) is its
associated directed graph.

A state s of BN is an element in {0, 1}n. Let S be the set
of states of BN. For any state s = (s1, s2, . . . , sn), and for
every i, the value of si, often denoted as s[i], represents the
value that the variable xi takes when the BN ‘is in state s’.
For some i, suppose fi depends on xi1 , xi2 , . . . , xik . Then
fi(s) will denote the value fi(s[i1], s[i2], . . . , s[ik]). For two
states s, s′ ∈ S, the Hamming distance between s and s′ will
be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ {1, 2, . . . , n}
will denote the set of indices in which s and s′ differ. For
a state s and a subset S′ ⊆ S, the Hamming distance
between s and S′ is defined as the minimum of the Ham-
ming distances between s and all the states in S′. That is,
hd(s,S′) = mins′∈S′ hd(s, s

′). We let arg(hd(s,S′)) denote
the set of subsets of {1, 2, . . . , n} such that I ∈ arg(hd(s,S′))
if and only if I is a set of indices of the variables that realise
this Hamming distance.

3.2 Dynamics of Boolean networks
We assume that the Boolean network evolves in discrete
time steps. It starts initially in a state s0 and its state changes

in every time step according to the update functions f .
The updating may happen in various ways. Every such
way of updating gives rise to a different dynamics for the
network. In this work, we shall be interested primarily in
the asynchronous updating scheme.
Definition 2 (Asynchronous dynamics of Boolean net-

works). Suppose s0 ∈ S is an initial state of BN. The
asynchronous evolution of BN is a function ξ : N→ ℘(S)
such that ξ(0) = s0 and for every j ≥ 0, if s ∈ ξ(j) then
s′ ∈ ξ(j + 1) is a possible next state if and only if either
hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′))
or hd(s, s′) = 0 and there exists i such that s′[i] = fi(s).

Note that the asynchronous dynamics is non-
deterministic – the value of exactly one variable is updated
in a single time-step. The index of the variable that is
updated is not known in advance. Henceforth, when we talk
about the dynamics of BN, we shall mean the asynchronous
dynamics as defined above.

The dynamics of a Boolean network can be represented
as a state transition graph or a transition system (TS).
Definition 3 (Transition system of BN). The transition sys-

tem of BN, denoted by the generic notation TS is a tuple
(S,→) where the vertices are the set of states S and for
any two states s and s′ there is a directed edge from s to
s′, denoted s→ s′ iff s′ is a possible next state according
to the asynchronous evolution function ξ of BN.

3.3 Attractors and basins of attraction

A path from a state s to a state s′ is a (possibly empty)
sequence of transitions from s to s′ in TS. A path from a
state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. For any state s ∈ S, let preTS(s) = {s′ ∈ S | s′ → s}
and let postTS(s) = {s′ ∈ S | s → s′}. preTS(s) contains all
the states that can reach s by performing a single transition
in TS and postTS(s) contains all the states that can be
reached from s by a single transition in TS. preTS(s) and
postTS(s) are often called the set of predecessors and succes-
sors of s. Note that, by definition, hd(s, preTS(s)) ≤ 1 and
hd(s, postTS(s)) ≤ 1. preTS and postTS can be lifted to a sub-
set S′ of S as: preTS(S

′) =
⋃

s∈S′ preTS(s) and postTS(S
′) =⋃

s∈S′ postTS(s). We define prei+1
TS (S′) = preTS(pre

i
TS(S

′))
and posti+1

TS (S′) = postTS(post
i
TS(S

′)) where pre0TS(S
′) =

post0TS(S
′) = S′. For a state s ∈ S, reachTS(s) denotes the set

of states s′ such that there is a path from s to s′ in TS and can
be defined as the fixpoint of the successor operation which
is often denoted as post∗TS. Thus, reachTS(s) = post∗TS(s).
Definition 4 (Attractor). An attractor A of TS (or of BN)

is a minimal subset of states of S such that for every
s ∈ A, reachTS(s) = A.

Any state which is not part of an attractor is a transient
state. An attractor A of TS is said to be reachable from
a state s if reachTS(s) ∩ A 6= ∅. Attractors represent the
stable behaviour of the BN according to the dynamics. The
network starting at any initial state s0 ∈ S will eventually
end up in one of the attractors of TS and remain there
forever unless perturbed.
Observation 1. Any attractor of TS is a bottom strongly

connected component of TS.
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Fig. 1: The graph of BN and its transition system.

For an attractor A of TS, we define subsets of states of
S called the weak and strong basins of attractions of A,
denoted as basWTS(A) and basSTS(A), respectively, as follows.
Definition 5 (Basin). Let A be an attractor of TS.
• Weak basin: The weak basin of attraction of A with

respect to TS, is defined as basWTS(A) = {s ∈
S | reachTS(s) ∩ A 6= ∅} which equals the fixpoint of
the predecessor opration on A and is often denoted as
pre∗TS. Thus, basWTS(A) = pre∗TS(A).

• Strong basin: The strong basin of attraction of A with
respect to TS, is defined as basSTS(A) = basWTS(A) \
(
⋃

A′ bas
W
TS(A

′)) where the union is over all attractors
A′ of TS such that A′ 6= A.

Thus the weak basin of attraction of A is the set of all
states s from which there is a path to A. It is possible that
there are paths from s to some other attractor A′ 6= A. How-
ever, the notion of a strong basin does not allow this. Thus,
if s ∈ basSTS(A) then s /∈ basWTS(A

′) for any other attractor
A′. We need the notion of strong basin to ensure reachability
to the target attractor after applying perturbations.
Example 1. Consider the three-node network BN = (x, f)

where x = (x1, x2, x3) and f = (f1, f2, f3) where
f1 = ¬x2 ∨ (x1 ∧ x2), f2 = x1 ∧ x2 and f3 = (¬x1 ∧
x2) ∨ (¬x2 ∧ x3). The graph of the network GBN and its
associated transition system TS is given in Fig. 1. TS has
three attractors {(100)}, {(110)} and {(101)} shown by
dark grey rectangles. Their corresponding strong basins
of attractions are shown by enclosing grey regions of
a lighter shade. Note that, there is a path from the
state (010) to both the attractors {(100)} and {(101)}.
Hence (010) is not in the strong basin of either of these
attractors but is in the weak basins of both of them.

Henceforth, to avoid clutter, we shall drop the subscript TS
when the transition system is clear from the context. Also,
we shall often drop the superscript S when dealing with
strong basins.

3.4 The control problem
As described in the introduction, the attractors of a Boolean
network represent the cellular phenotypes, the expressions
of the genes etc. Some of these attractors may be diseased,
weak or undesirable while others are healthy and desirable.
Curing a disease is thus, in effect, moving the dynamics of
the network from an undesired ‘source’ attractor to a desired
‘target’ attractor.

One of the ways to achieve the above is by controlling
the various ‘parameters’ of the network, for eg. the values

of the variables, or the Boolean functions themselves. In
this exposition, we shall be interested in the former kind
of control, that is, perturbing the values of the variables of
the network. Such a perturbation may be (i) permanent –
the value(s) of one or more variables are fixed forever, for
all the following time steps or (ii) temporary – the values of
(some of) the variables are fixed for a finite number (one or
more) of time steps and then the control is removed to let
the system evolve on its own. Moreover, the variables can
be either perturbed (a) simultaneously – the perturbation is
applied to all the variables at once or (b) sequentially – the
perturbation is applied over a sequence of steps.

In this work we shall be interested in the control of type
(ii) and (a). Moreover, for us, the perturbations are applied
only for a single time step. Thus we can formally define
source-target control as follows.

Definition 6 (Simultaneous control). A simultaneous control
C is a (possibly empty) subset of {1, 2, . . . , n}. For a state
s ∈ S, the application of C to s, denoted C(s) is defined
as the state s′ ∈ S such that s′[i] = (1 − s[i]) if i ∈ C
and s′[i] = s[i] otherwise. Given a control C, the set of
vertices {vi | i ∈ C} of GBN will be called the driver nodes
for C.

Our aim is to make the control as less invasive to the
system as possible. Thus not only are the perturbations
applied for just a single time step, they are also applied
to as few of the nodes of the Boolean network as possible.
The minimal simultaneous single-step source-target control
problem for Boolean networks that we are thus interested in
can be formally stated as follows.

Minimal simultaneous source-target control: Given a
Boolean network BN, a ‘source state’ s ∈ S and a ‘target
attractor’ At of TS, compute a simultaneous control C such
that after the application of C to s, BN eventually reaches
At and C is a minimal such subset of {1, 2, . . . , n}. We shall
call such a control a minimal source-target control (STC) from
s to At. The set of all minimal control from s to At will be
denoted as Cs→At

min .

Note that the requirement of minimality is crucial, with-
out which the problem is rendered trivial - simply pick some
state s′ ∈ At and move to it. Our goal is to provide an
efficient algorithm for the above question. That is, to devise
an algorithm that takes as input only the Boolean functions
f of BN, a source state s and a target attractor At of TS and
outputs the indices of a minimal subset of nodes of s that
need to be toggled (the driver nodes) so that after applying
the toggle, the dynamics eventually and surely reaches At.
It is known that in general the problem is computationally
difficult – PSPACE-hard [8] and unless certain open con-
jectures in computational complexity are false, solving it
would require time exponential in the size of the Boolean
network. That is intuitively because of the infamous state-
space explosion phenomenon – the number of states of the
transition system is exponential in the network-size.

Observation 2. It is important to note that if the BN is
in some state s ∈ bas(A) in some time step t, that
is if ξ(t) = s, and assuming that every variable is
updated infinitely often (faireness assumption), then by
the definition of bas(A), it will eventually and surely
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reach a state s′ ∈ A. That is, there exists a time step
t′ > t such that ξ(t′) = s′. Hence given a source state s
and a target attractor At, Cs→At

min can easily be seen to be
equal to arg(hd(s, bas(At))). In other words

Proposition 1. A control C from s to At is minimal if and
only if C(s) ∈ bas(At) and C ∈ arg(hd(s, bas(A))).

Proof. If C(s) /∈ bas(At) then either (a) C(s) /∈ basWTS(At) or
(b) C(s) ∈ basWTS(At). If (a) holds, then there is no path
from C(s) to At and if (b) holds, then there is a path from
C(s) to some other attractor A 6= At. In either case BN
is not guaranteed to reach a state in At after the control
C is applied to s. And, if C /∈ arg(hd(s, bas(A))), then C
cannot be minimal (by definition of Hamming distance),
and conversely. �

Thus, solving the minimal simultaneous target-control
problem efficiently, boils down to how efficiently we can
compute the strong basin of the target attractor.

Example 2. Continuing with Example 1, suppose we are
in source state s = (101) (which is also an attractor)
and we want to apply (minimal simultaneous) STC to s
so that the system eventually and surely moves to the
target attractor At = {(110)}. We could flip s[2] and s[3]
to move directly to At which would require a control
C = {2, 3}. However, if we note that the state (111) is in
bas(At), we can simply apply the STC C′ = {2} and the
dynamics of the BN will ensure that it eventually reaches
At. Indeed, C′ is also the minimal STC in this case.

3.5 A global approach
In the rest of this section, we first describe a procedure for
computing the (strong) basin of an attractor based on the
computation of fixed point. We then use this procedure to
design a simple global algorithm for solving the minimal
STC problem based on a global computation of the basin
of the target attractor At. A slightly modified version of
the same algorithm will act as a reference for comparing
the decomposition-based algorithm which we shall later
develop.

3.5.1 Computation of basins
We first introduce procedures COMP WB and COMP SB,
described in Algorithm 1, for the computation of the weak
basin and strong basin of an attractor A based on fixpoint
approaches. Procedure COMP WB computes the weak basin
of A by computing the fixpoint pre∗TS(A) (as per Definition
5). The most important step of COMP SB is line 13, which is
repeated till the set SB settles down to a fixed point, which
is the strong basin of A. Initially WB is equal to the weak
basin of A (Line 2). In each iteration of line 13, we take
the current set WB, which is a subset of the weak basin of
A, and remove from it all the states that have transitions
to any state outside the current WB. These are the states
from which there are paths to some other attractor A′ 6= A
and hence they cannot be in the strong basin of A. Finally,
when WB stabilises, we are left with the strong basin of A.
Below, we give a formal proof of the correctness of Algo-
rithm 1. We shall use the procedure COMP SB for the global
minimal control algorithm and later, a minor modification

Algorithm 1 Computation of weak and strong basins

1: procedure COMP WB((f , A))// Compute the weak basin
2: Initialise WB’ = ∅, WB = A;
3: while WB 6= WB’ do
4: WB’= WB
5: WB = pre(WB’)
6: end while
7: return WB;
8: end procedure
9: procedure COMP SB(f ,A) // Compute the strong basin

10: WB := COMP WB(f , A);
11: Initialise SB = ∅;
12: while SB 6= WB do
13: If SB6= ∅ do WB := SB;
14: SB:=WB\(pre(post(WB) \WB)∩WB);
15: end while
16: return SB;
17: end procedure

of the procedure, which we call COMP SB REL, for the
decomposition-based algorithm.

3.5.2 Correctness of Algorithm 1
The correctness of the procedure COMP WB is straight-
foward and follows from the fact that basW (A) = pre∗(A)
(Definition 5). Below we show the correctness of the proce-
dure COMP SB. Based on line 13 of Algorithm 1, we define
an operator F on S as follows. For any subset T of state:

F (T) = T \ (pre(post(T) \T) ∩T)

It is easy to see that F is monotonically decreasing and
hence its greatest fixed point, F∞, exists. Thus, to prove the
correctness of Algorithm 1, it is enough to show that for
any attractor A of TS, F∞(basW (A)) = basS(A). That is, to
compute the strong basin of A once can start with its weak
basin and apply the operator F repeatedly till a fixed point
is reached which gives its strong basin. The operation has to
be repeated m times where m is the index of F∞(basW (A)).
We start by proving the following lemmas.

Lemma 1. For any state s ∈ S, if s /∈ basS(A) then s /∈
F∞(basW (A)).

Proof. Suppose for some s ∈ S, s /∈ basS(A). Then either
(i) there is no path from s to A or (ii) there is a path from
s to another attractor A′ 6= A of TS. If (i) holds then s /∈
basW (A) either and hence s /∈ F∞(basW (A)). So suppose
(ii) holds and there is a path from s to another attractor
A′ 6= A. Consider the shortest such path s0 → s1 → . . . →
sn, where s0 = s and sn ∈ A′ and let si → s(i+1), 0 ≤ i <
n be the first transition along this path that moves out of
basW (A). That is, si ∈ basW (A) but s(i+1) /∈ basW (A). We
claim that s /∈ F j(basW (A)) for all j ≥ (i + 1). That is, s is
removed in the (i + 1)th step in the inductive construction
of F∞(basW (A)). We prove this by induction on i.

Suppose i = 0. Then there is already a transition from s
out of basW (A) and hence s ∈ (pre(post(basW (A)) \ A) ∩
basW (A)). Thus s /∈ F (basW (A)). Next, suppose i > 0 and
the premise holds for all j : 0 ≤ j < i. Then by induc-
tion hypothesis we have s1 /∈ F i(basW (A)). Hence s ∈
(pre(post(F i(basW (A))) \ F i(basW (A))) ∩ F i(basW (A))).
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and will be removed in the (i + 1)th step of the inductive
construction. �

For the converse direction, first, we easily observe from
the definition of weak and strong basins that:

Lemma 2. Let A be an attractor of TS. Then

• basS(A) ⊆ basW (A),
• for any state s ∈ S, s ∈ basS(A) iff, for all transitions
s→ s′, we have s′ ∈ basS(A).

We thus have

Lemma 3. For any state s ∈ S, if s /∈ F∞(basW (A)) then
s /∈ basS(A).

Proof. For some state s ∈ S, if s /∈ F∞(basW (A)) then
either s /∈ basW (A), in which case s /∈ basS(A) [by Lemma
2] or s ∈ basW (A) but gets removed from F∞(basW (A)) at
the ith step of the inductive construction for some i ≥ 1. We
do an induction on i to show that in that case s /∈ basS(A).
Suppose i = 1. Then by definition s ∈ (pre(post(basW (A))\
basW (A)) ∩ basW (A)) which means there is a transition
from s to some s′ /∈ basW (A). Thus s /∈ basS(A) [by
Lemma 2]. Next suppose i > 1 and the premise holds for
all j : 1 ≤ j < i. Then, s ∈ (pre(post(F (i−1)(basW (A))) \
F (i−1)(basW (A))) ∩ F (i−1)(basW (A))). This means there is
a state s′ ∈ F (i−1)(basW (A)) such that there is a transition
from s to s′. But since by induction hypothesis s′ /∈ basS(A)
we must have that s /∈ basS(A) [by Lemma 2]. �

Combining Lemmas 1 and 3 we have

Theorem 1 (Correctness of Algorithm 1). For any attractor A
of TS we have, basS(A) = F∞(basW (A)).

3.5.3 The global algorithm

We now use the algorithm COMP SB to give a global
algorithm, Algorithm 2, for the minimal simultaneous STC
problem. Note that Algorithm 2 is worst-case exponential
in the size of the input (the description of BN). Indeed,
since the basin of attraction of At might well be equal to
all the states of the entire transition system TS which is
exponential in the description of BN. Our global solution
for the minimal control problem, Algorithm 2, is generic, in
that, we can plug into it any other algorithm for computing
the basin of the target attractor and it would still work. Its
performance, however, directly depends on the performance
of the particular algorithm used to compute this basin.

Now, although an efficient algorithm for this problem is
highly unlikely, it is possible that when the network has a
certain well-behaved structure, one can do better than this
global approach. Most of the previous attempts at providing
such an algorithm for such well-behaved networks either
exploited exclusively the structure of the network or failed
to minimise the number of driver nodes. Here we show
that, when we take both the structure and the dynamics
into account, we can have an algorithm which, for certain
networks, is much more efficient than the global approach.

Algorithm 2 Global minimal simultaneous target control

1: procedure GLOBAL MINIMAL CONTROL(f , s, At)
2: SB := COMP SB(f , At);
3: return arg(hd(s,SB));
4: end procedure

4 A DECOMPOSITION-BASED APPROACH

In this section, we demonstrate an approach to compute the
strong basin of attraction of At based on the decomposition
of the BN into structural components called blocks. This
will then be used to solve the minimal STC problem. The
approach is based on that of [21] for computing the attrac-
tors of asynchronous Boolean networks. The overall idea
is as follows. The network is divided into blocks based on
its strongly connected components (SCCs). The blocks are
then sorted topologically resulting in a dependency graph
of the blocks which is a directed acyclic graph (DAG). The
transition systems of the blocks are computed inductively
in the sorted order and the target attractor At is then
projected to these blocks. The local strong basins for each
of these projections are computed in the transition system
of the particular block. These local strong basins are then
combined to compute the global strong basin bas(At).

4.1 Blocks
Let SCC denote the set of maximal SCCs of GBN.2 Let W
be an SCC of GBN. The set of parents of W is defined as
par(W ) = (

⋃
v∈W par(v)) \W .

Definition 7 (Basic Block). A basic block B is a subset of V
such that B =W ∪ par(W ) for some W ∈ SCC.

Let B be the set of basic blocks of GBN. Since every vertex
of GBN is part of an SCC, we have

⋃
B = V . The union of

two or more basic blocks of B will also be called a block. For
any block B, |B| will denote the number of vertices in B.
Using the set of basic blocks B as vertices, we can form a
directed graph GB = (B, EB), which we shall call the block
graph of BN. The vertices of GB are the basic blocks and
for any pair of basic blocks B′, B ∈ B, B′ 6= B, there is a
directed edge from B′ to B if and only if B′ ∩ B 6= ∅ and
for every v ∈ (B′ ∩ B), par(v) ∩ B = ∅. In such a case, B′

is called a parent block of B and v is called a control node
for B. Let par(B) and ctr(B) denote the set of parent blocks
and the set of control nodes of B, respectively. It is easy to
observe that
Observation 3. GB is a directed acyclic graph (DAG).

A block B (basic or non-basic) is called elementary if
par(v) ⊆ B for every v ∈ B.B is called non-elementary other-
wise. We shall henceforth assume that BN has k basic blocks
and they are topologically sorted as {B1, B2, . . . , Bk}. Note
that for every j : 1 ≤ j ≤ k, (

⋃j
`=1B`) is an elementary

block. We shall denote it as Bj .
For two basic blocks B and B′ where B is non-

elementary, B′ is said to be an ancestor of B if there is a
path from B′ to B in the block graph GB. The ancestor-
closure of a basic block B (elementary or non-elementary),
denoted ac(B) is defined as the union of all the ancestors

2. By convention, we assume that a single vertex (with or without a
self loop) is always an SCC, although it may not be maximal.



1545-5963 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2915081, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

of B. Note that ac(B) is an elementary block and so is
{ac(B′) | B′ ∈ par(B)}, which we denote as ac(B)−.

4.2 Projection of states and the cross operation

We shall assume that the vertices {v1, v2, . . . , vn} of GBN
inherit the ordering of the variables x of BN. Let B be a
block of BN. Since B is a subset of V its state space is
{0, 1}|B| and is denoted as SB . For any state s ∈ S, where
s = (s1, s2, . . . , sn), the projection of s to B, denoted s|B
is the tuple obtained from s by suppressing the values of
the variables not in B. Thus if B = {vi1 , vi2 , . . . , vik} then
s|B = (si1 , si2 , . . . , sik). Clearly s|B ∈ SB . For a subset S′

of S, S′|B is defined as {s|B | s ∈ S′}.
Definition 8 (Cross Operation). Let B1 and B2 be two

blocks of BN and let s1 and s2 be states of B1 and
B2, respectively. s1 ⊗ s2 is defined (called crossable) if
there exists a state s ∈ SB1∪B2 such that s|B1 = s1 and
s|B2 = s2. s1 ⊗ s2 is then defined to be this unique state
s. For any subsets S1 of SB1 and S2 of SB2 , S1 ⊗ S2 is a
subset of SB1∪B2 and is defined as:

S1⊗S2 = {s1⊗s2 | s1, s2 are crossable, s1 ∈ S1, s2 ∈ S2}

Note that S1 ⊗ S2 can be the empty set. The cross
operation is easily seen to be associative. Hence for more
than two states s1, s2, . . . , sk, s1⊗ s2⊗ . . . sk can be defined
as (((s1 ⊗ s2) ⊗ . . .) ⊗ sk). We have a similar definition for
the cross operation on more than two sets of states.

Example 3. Let BN = (x, f) be a Boolean network where
x = (x1, x2, . . . , x5). Suppose BN has 2 blocks B1 and
B2 with B1 = {x1, x3, x4} and B2 = {x2, x3, x4, x5}.
Let s = (10011) be a state of BN. Then s|B1

= (101), i.e.
the 1st, 3rd and 4th components of s and s|B2

= (0011),
i.e. the 2nd, 3rd, 4th and 5th components of s. Now, let
s1 = (001) be a state of B1 and s2 = (1010) be a state
of B2 then s1 ⊗ s2 = (01010) since this is the unique
state of BN whose projections to B1 and B2 are s1 and
s2, respectively.

4.3 Transition system of the blocks

The next step is to describe how to construct the ‘local’
transition systems of each of the blocks. These transition
systems will be inductively defined starting from the el-
ementary blocks and moving to the blocks further down
the topological order. For an elementary block B (basic
or non-basic), its transition system TSB is given exactly
as Definition 3 with the vertices being SB . This is well-
defined since by the definition of an elementary block, the
update functions of the vertices of B do not depend on
the value of any vertex outside B. On the other hand, the
transition system of a non-elementary block B depends on
the transitions of its parent blocks (or its control nodes in its
parent blocks). The transition system of such a block thus
has to be defined based on (some or all of) the transitions of
its parent blocks.

Towards that, let B be a non-elementary basic block of
BN and let A be an attractor of the transition system of the
elementary block ac(B)− and let bas(A) be its (strong) basin
of attraction. Then

Definition 9 (TS of non-elementary blocks). The transition
system of B realised by bas(A) is defined as a tuple
TSB = (S,→) where the set of states S of TSB is a
subset of Sac(B) such that s ∈ S if and only if s|ac(B)− ∈
bas(A) and for any two states s, s′ ∈ Sac(B) there is a
transition s → s′ if and only if either hd(s, s′) = 1 and
s′[i] = fi(s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and
there exists i such that s′[i] = fi(s).

4.4 The main results
In this section, we state and prove the key results of
the above constructions which will form the basis of the
decomposition-based control algorithm that we shall de-
velop in the next section. This section can be skipped on
a quick-read without affecting the continuity of the article.

We first show that the attractors of (the TS of) BN are
preserved across the TSs of the blocks. We prove this by
proving a series of lemmas which will form the basis of the
final inductive argument. Let us start with the case where
our given Boolean network BN has two basic blocks B1 and
B2. We shall later generalise the results to the case where
BN has more than two basic blocks by inductive arguments.

Note that either one or both the blocks B1 and B2 are
elementary. If only one of the blocks is elementary, we
shall, without loss in generality, assume that it is B1. Let
TS,TS1 and TS2 be the transition systems of BN, B1 and
B2 respectively where, if B2 is non elementary, we shall
assume that TS2 is the transition system of B2 realised by
the basin of an attractorA1 of TS1 as defined in Definition 9.

The states of a transition system will be denoted by s
or t with appropriate subscripts and/or superscripts. For
any state s ∈ TS (resp. t ∈ TS), we shall denote s|B1

(resp. t|B1 ) by s1 (resp. t1) and s|B2 (resp. t|B2 ) by s2 (resp.
t2). Similarly, for a set of states T of TS, T1 and T2 will
denote the set of projections of the states in T to B1 and B2

respectively.
Let B−1 = B1 \ (B1 ∩B2) and B−2 = B2 \ (B1 ∩B2). We

shall denote any transition s −→ s′ in TS by s
B−→ s′ if the

variable whose value changes in the transition is in the set
B.
Lemma 4. For an elementary block Bi of BN and for

every si, s
′
i of TSi, if there is a path from si to s′i in

TSi, then there is a path from s to s′ in TS such that
s|Bi = si, s

′|Bi = s′i and s|B−j = s′|B−j , j 6= i.

Proof. Let Bi be elementary and suppose s0i
B1−→ s1i

B1−→
. . .

B1−→ smi , where s0i = si and smi = s′i, be a path from
si to s′i in TSi. Let s|B−j = s′|B−j = s−j . It is clear that

(s0i ⊗ s−j )
B1−→ (s1i ⊗ s−j )

B1−→ . . .
B1−→ (smi ⊗ s−j ) is a path

from s to s′ in TS where s = (s0i ⊗ s−j ), s
′ = (smi ⊗ s−j ) and

s and s′ have the required properties. Indeed, since Bi is
elementary and values of the nodes in B−j are not modified
along the path. �

Lemma 5. For every s, s′ of TS if there is a path from s to s′

in TS then there is a path from si to s′i in TSi for every
elementary block Bi.

Proof. Suppose ρ = s0 → s1 → . . . sm, where s0 = s and
sm = s′ be a path from s to s′ in TS. LetBi be an elementary
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block of BN. We inductively construct a path ρi from si to s′i
in TSi using ρ. ρji , 0 ≤ j < m, will denote the prefix of ρi
constructed in the jth step of the induction. Initially ρ0i = s0i .
Suppose ρji has been already constructed and consider the
next transition sj → sj+1 in ρ. If this transition is labeled
with Bi then we let ρj+1

i = ρji
Bi−→ sj+1

i . Otherwise if this
transition is labeled with B−j , j 6= i, then we let ρj+1

i =

ρji . Since by induction hypothesis ρji is a path in TSi and
we add to this a transition from ρ only if a node of the
elementary block Bi is modified in this transition, such a
transition exists in TSi. Hence, ρj+1

i is also a path in TSi.
Continuing in this manner, we shall have a path from si to
s′i in TSi at the last step when j + 1 = m. �

Lemma 6. Suppose B1 and B2 are both elementary blocks
and B1 ∩ B2 = ∅. Then for every s, s′ ∈ TS, there is a
path from s to s′ in TS if and only if there is a path from
si to s′i in every TSi.

Proof. Follows directly from Lemma 4 and Lemma 5. �

Lemma 7. Let B1 and B2 be two elementary blocks of BN,
B1 ∩ B2 = ∅. Then we have that A is an attractor of of
TS if and only if there are attractors A1 and A2 of TS1
and TS2 resp. such that A = A1 ⊗A2.

Proof. Follows directly from Lemma 6. �

Lemma 8. Let BN have two blocks B1 and B2 where B2 is
non-elementary, B1 is elementary and is the parent of
B2. Then we have A is an attractor of TS if and only if
A1 is an attractor of TS1 and A is also an attractor of TS2
where TS2 is realized by bas(A1).

Proof. SupposeA is an attractor of TS and for contradiction
suppose A1 is not an attractor of TS1. Then either there exist
s, s′ ∈ A such that there is no path from s1 to s′1 in TS1. But
that is not possible by Lemma 5. Or there exist s1 ∈ A1 and
s′1 /∈ A1 such that there is a transition from s1 to s′1. But
then by Lemma 4, there is a transition from s ∈ A to s′ /∈ A
in TS where s|B1

= s1 and s′|B2
= s′2. This contradicts the

assumption that A is an attractor of A. Next suppose A is
not an attractor of TS2. Then there is a transition in TS2
from s ∈ A to s′ /∈ A. But we have, by the construction of
TS2 (Definition 9), that this is also a transition in TS which
again contradicts the assumption that A is an attractor of
TS.

For the converse direction, suppose for contradiction
that A is an attractor of TS2 and A1 is an attractor of
TS1 but A is not an attractor of TS. We must then have
that there is a transition in TS from s ∈ A to s′ /∈ A. If
this transition is labelled with B1 then we must have, by
Lemma 5, that there is a transition in TS1 from s1 to s′1.
But since s′1 /∈ A1 this contradicts the assumption that A1

is an attractor of TS1. Next, suppose that this transition is
labelled with B−2 . We must then have that s1 = s′1 ∈ A1.
Hence, by the construction of TS2 (Definition 9) it must be
the case that s′ ∈ TS2 and this transition from s to s′ is also
present in TS2. But this contradicts the assumption that A is
an attractor of TS2. �

Now suppose BN has k blocks that are topologically
sorted as {B1, B2, . . . , Bk}. Note that for every i such that

1 ≤ i ≤ k, (
⋃

j≤iBj) is an elementary block of BN and we
denote its transition system by TSi.

Theorem 2 (Preservation of attractors). Suppose for every
attractor A of TS and for every i : 1 ≤ i < k, if Bi+1 is
non-elementary then TSi+1 is realised by bas(⊗j∈IAj),
its basin w.r.t. the transition system for (

⋃
j∈I Bj), where

I is the set of indices of the basic blocks in ac(Bi+1)
−.

We then have, for every i : 1 ≤ i < k,Ai+1 is an attractor
of TSi+1, (⊗j∈IAj ⊗ Ai+1) is an attractor of the transi-
tion system for the elementary block (

⋃
j∈I Bj ∪ Bi+1),

(⊗i+1
j=1Aj) is an attractor of the transition system TSi+1

of Bi+1 and A is an attractor of TSk.

Proof. The proof is by induction on i. The base case is when
i = 2 and BN has two blocks B1 and B2. If B1 and B2 are
both elementary then the result follows from Lemma 7. IfB1

is elementary and is the parent of B2 then the result follows
from Lemma 8.

For the inductive case suppose the result holds for some
i where 2 ≤ i < k. Now both (

⋃
j∈I Bj), where I is the set

of indices of the basic blocks in ac(Bi+1)
−, and (

⋃
j≤iBj)

are elementary. Now, if Bi+1 is elementary then the result
follows from Lemma 7. If Bi+1 is non-elementary then
(
⋃

j∈I Bj) is the parent of Bi+1 and the result follows from
Lemma 8. �

Next, we show that the basins of attractions of the
attractors of (the TS of) BN are preserved across the TSs
of the blocks as well. We again do this by proving a series of
lemmas leading up to the final inductive argument. Let us
come back to the case where BN has two blocks B1 and B2.

Lemma 9. Suppose B1 ∩ B2 = ∅ and both B1 and B2 are
elementary blocks of BN. Let A,A1 and A2 be attractors
of TS,TS1 and TS2 respectively where A = A1 ⊗ A2.
Then basTS(A) = basTS1

(A1)⊗ basTS2
(A2).

Proof. Follows easily from Lemma 6. �

Lemma 10. Let A,A1 and A2 be the attractors of TS,TS1
and TS2 respectively where B1 and B1 are elemen-
tary and non-elementary blocks respectively of BN
with B1 being the parent of B2 and TS2 being real-
ized by basTS1

(A1) and A = A2. Then basTS1
(A1) ⊗

basTS2
(A2) = basTS2

(A2) = basTS(A).

Proof. Since TS2 is realized by basTS1
(A1), by its construc-

tion (Definition 9) we have, for every state s ∈ TS2, s1 ∈
basTS1

(A1). Hence basTS1
(A1)⊗ basTS2

(A2) = basTS(A2).
We next show that basTS2

(A2) = basTS(A). Suppose s ∈
basTS2

(A2). To show that s ∈ basTS(A), it is enough to show
that: (i) There is a path from s to some sA ∈ A in TS and (ii)
there is no path from s to t ∈ A′ for some attractor A′ 6= A
of TS.

(i) Since s ∈ basTS2
(A2), and A2 = A, there is a path

ρ from s to sA ∈ A in TS2. It is easy to see from the
construction of TS2 (Definition 9) that ρ is also a path in
TS from s to sA.

(ii) Suppose for contradiction that there is a path ρ′ in
TS from s to t ∈ A′ for some attractor A′ 6= A of TS. Since
A′ 6= Awe must have that either (a)A1 6= A′1 or (b)A1 = A′1
but A2 6= A′2.
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(a) In this case, by Lemma 5, there must be a path from
s1 to t1 ∈ A′1 which is a contradiction to the fact that s1 ∈
bas(A1).

(b) We have by Theorem 2 thatA′2 = A′. Once again from
the construction of TS2 (Definition 9) it is easy to see that ρ′

is also a path in TS2 from s to t ∈ A′. But this contradicts
the fact that s ∈ basTS2

(A2).
For the converse direction suppose that s ∈ basTS(A).

To show that s ∈ basTS2
(A2), it is enough to show that: (iii)

There is a path from s to some sA2 ∈ A2 and (iv) there is no
path from s to t ∈ A′2 for some attractor A′2 6= A2 of TS2.

(iii) Since s ∈ basTS(A), there is a path ρ in TS from
s to some sA ∈ A. By the fact that A2 = A and by the
construction of TS2 (Definition 9) it is clear that ρ is also a
path in TS2 from s to sA ∈ A2.

(iv) Suppose for contradiction that there is a path ρ′ in
TS2 from s to t ∈ A′2 for some attractor A′2 6= A2 of TS2. By
Theorem 2, A′2 is equal to an attractor A′ of TS and A′ 6= A.
It is then easy to see again from the construction of TS2
(Definition 9) that ρ′ is also a path in TS from s to t ∈ A′.
But this contradicts the assumption that s ∈ basTS(A). �

Let us, for the final time, come back to the case where BN
has k > 2 blocks and these blocks are topologically sorted
as {B1, B2, . . . , Bk}. Let i range over {1, 2, . . . , k}. By the
theorem on attractor preservation, Theorem 2, we have that
(⊗j≤iAj) is an attractor of TSi.
Lemma 11. Suppose BN has k basic blocks that are topolog-

ically sorted as {B1, B2, . . . , Bk}. Suppose for every at-
tractorA of TS and for every i : 1 ≤ i < k, ifBi+1 is non-
elementary then TSi+1 is realised by bas(⊗j∈IAj), its
basin w.r.t. the TS for (

⋃
j∈I Bj), where I is the set of in-

dices of the basic blocks in ac(Bi+1)
− [where (⊗j∈IAj),

by Theorem 2, is an attractor of the TS for (
⋃

j∈I Bj)].
Then for every i, (⊗j≤ibasTSj

(Aj)) = bas(⊗j≤iAi)
where bas(⊗j≤iAj) is the basin of attraction of (⊗j≤iAj)
with respect to transition system TSi of (

⋃
j≤iBj).

Proof. The proof is by induction on i. The base case is
when i = 2. Then either B1 and B2 are both elementary
and disjoint in which case the proof follows from Lemma 9.
Or, B1 is elementary and B2 is non-elementary and B1 is
the parent block of B2. In this case the proof follows from
Lemma 10.

For the inductive case, suppose that the conclusion of
the theorem holds for some i : 2 ≤ i < k. Now, consider
(⊗j≤(i+1)basTSj (Aj)). By the induction hypothesis, we have
that (⊗j≤ibasTSj (Aj)) = bas(⊗j≤iAj) where (⊗j≤iAj) is
an attractor of the transition system TSi of the elementary
block (

⋃
j≤iBj) and bas(⊗j≤iAj) is its basin. Now, either

Bi+1 is elementary in which case we use Lemma 9 or Bi+1

is non-elementary and (
⋃

j∈I Bj) is its parent in which case
we use Lemma 10.

In either case, we have (⊗j≤(i+1)basTSj
(Aj)) =

bas(⊗j≤(i+1)Aj), where bas(⊗j≤(i+1)Aj) is the basin of
attraction of the attractor (⊗j≤(i+1)Aj) of TSi+1. �

Theorem 3 (Preservation of basins). Given the hy-
pothesis and the notations of Theorem 2, we have
(⊗i≤kbasTSi(Ai)) = basTS(A) where basTS(A) is the
basin of attraction of the attractor A = (A1 ⊗A2 ⊗ . . .⊗
Ak) of TS.

B1

B2

v1 v2 v3

Fig. 2: The blocks of BN.

00 01

10 11

(a) The TS of B1,
its attractors and
basins.

000 010 011

100 101 001

(b) The TS of B2 generated by
the basin of the attractor {(10)}
of B1.

Fig. 3: The transition systems of the blocks B1 and B2.

Proof. Follows directly by setting i = k in Lemma 11. �

Example 4. Continuing with Example 1 and 2, we note that
BN has two maximal SCCs {v1, v2} and {v3}. These give
rise to two blocks B1 = {v1, v2} and B2 = {v1, v2, v3}
shown in Fig. 2. B1 is elementary whereas B2 is non-
elementary where B1 is its parent and it has control
nodes v1 and v2.
The transition system of block B1 is shown in Fig. 3(a). It
has two attractors {(10)} and {(11)} shown in dark grey
rectangles with their corresponding strong basins shown
in grey regions of a lighter shade. The transition system
of the block B2 generated by the basin of the attractor
{(10)} of the block B1 is shown in Fig. 3(b). It has two
attractors {(100)} and {(101)} shown again in dark grey
rectangles with their corresponding basins of attractions
shown in lighter grey. Note that, indeed, according to
Theorem 2 we have that {(10)}⊗{(100)} = {(100)} and
{(10)} ⊗ {(101)} = {(101)} are attractors of the global
transition system of BN. Also note that taking the cross
of the local basins of attractions does indeed result in the
global basins.

4.5 The decomposition-based algorithm
Equipped with the results in Theorems 2 and 3, we can
describe our procedure for computing the strong basin of
the target attractor based on decomposing the BN into
smaller blocks. We shall then use this procedure to give
an algorithm for the minimal control problem. Theorem 3
tells us that in order to compute bas(At) it is sufficient to
compute the local basins of the projection of At to each
block Bi (which by Theorem 2 is an attractor of Bi) and
finally merge these local basins using the cross operation.

Now, as per the results in Section 4.4 for every non-
elementary block Bi, its TS, TSi, is realised by the basin
of attraction bas(⊗j∈IAj) of its ancestor blocks, having the
index set I . Now since, by the structure of the block graph
GBN, for every j, j < i and j /∈ I , Bj is not an ancestor of
Bi, we can, without loss of generality, assume that TSi is
realised by the basin of attraction bas(⊗j<iAj) of all the
blocks that precede Bi in the topological ordering of B.
The local basin of attraction of Ai is computed w.r.t. the
transitions in TSi, which, as we just saw, is in turn realised
by bas(⊗j<iAj). Hence we slightly modify the original
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Algorithm 1b Relativised computation of strong basin

1: procedure COMP SB REL(f , A, Z)
2: WB := COMP WB REL(f , A, Z );
3: Initialise SB := ∅;
4: while SB 6= WB do
5: If SB 6= ∅ do WB := SB;
6: SB:=WB\(pre((post(WB) ∩Z) \WB)∩WB);
7: end while
8: return SB;
9: end procedure

procedure COMP SB, for computing the strong basin of
an attractor, by making it compute the basin relative to a
given subset of states Z (say). This procedure is called
COMP SB REL and is given in Algorithm 1b. It now takes as
input not only the functions of the BN and an attractorA but
also a subset of states Z . It calls a fixpoint procedure for the
computation of the weak basin of A which is also relativised
to the set Z , which is called COMP WB REL. The difference
of the procedure in Algorithm 1b to that in Algorithm 1 is
that states that are added to the final SB are also in the input
set Z . This check is carried out in line 6.

Algorithm 3 finally implements the decomposition-
based idea in pseudo-code. It takes as input the graph GBN
and the update functions f of a given Boolean network, and
an attractor A and returns the strong basin of attraction
of A. Line 2 decomposes GBN into the blocks B (resulting
in k blocks) using the procedure FORM BLOCK from [21]
and line 3 topologically sorts the blocks by constructing
the block graph GB. Lines 5-14 then cycle through the
blocks of B in topological order and for each block Bi,
line 6 decomposes the attractor A into its projection to Bi,
denoted as Ai. If Bi is elementary then it computes the local
strong basin SBi of Ai independently, using the procedure
COMP SB of Algorithm 1 (line 8). If Bi is non-elementary, it
computes its local strong basin SBi relative to the basin of
(A1⊗A2⊗. . .⊗Ai−1) using the procedure COMP SB REL of
Algorithm 1b (line 11). Thus by Theorem 2, at every iteration
i of the for-loop, the invariant that Ai is an attractor of TSi
is maintained. Line 13 extends the global strong basin SB
computed so far by crossing it with the local basin computed
at each step. At the end of the for-loop SB will thus be equal
to the global basin (by Theorem 3). It then easily follows that

Proposition 2. Algorithm 3 correctly computes the strong
basin of the attractor A.

We now plug the procedure COMP SB DECOMP of Al-
gorithm 3 into Algorithm 2 to derive our decomposition-
based minimal target control algorithm, Algorithm 4, from
source state s to target attractor At.

Once again, it is worthwhile to note that our
decomposition-based algorithm, Algorithm 4, can still be
exponential in the size of the input BN, in the worst case.
Indeed, since the weak basin of an attractor A of BN might
be the entire TS. In such a case Algorithms 3 and 1b combine
to end up computing the entire weak basin of A. This
is no surprise as the problem in general is PSPACE-hard.
However, in practice, such cases are rare, esp. for biological
networks which, in addition, have highly modular struc-
tures, and our algorithm does provide considerable gains

Algorithm 3 A decomposition-based procedure for the com-
putation of strong basin

1: procedure COMP SB DECOMP(GBN,f ,A)
2: B := FORM BLOCK(GBN);
3: B := TOP SORT(B);
4: k := size of B;
5: for i := 1 to k do
6: Ai :=DECOMPOSE(A,Bi); //Decompose the target

attractor into block Bi

7: if Bi is an elementary block then
8: SBi :=COMP SB(f |Bi

, Ai);
9: else

10: Z :=CROSS (SB, {0, 1}|Bi|);
11: SBi :=COMP SB REL(f |Bi

, (⊗j≤iAj), Z);
12: end if
13: SB :=CROSS (SB,SBi);
14: end for
15: return SB;
16: end procedure

Algorithm 4 Decomposition-based minimal simultaneous
target control

1: procedure DECOMP MINIMAL CONTROL(GBN, f , s, At)
2: SB := COMP SB DECOMP(GBN, f , At);
3: return arg(hd(s,SB));
4: end procedure

for such networks. This will be shown later in Section 5 in
the case studies.

4.6 An optimisation of the algorithm
Looking back at our decomposition-based algorithm for the
computation of the strong basin of a given attractor A,
Algorithm 3, note that it does not take into consideration
any information about the source state s of our STC prob-
lem. However it turns out that we can indeed use s to
optimise our decomposition-based algorithm further. This
optimisation proceeds as follows. For every block Bi, we
check if the projection of s to Bi is in fact equal to the
projection of our target attractor A to Bi. If that is the case,
intuitively, we do not need to perturb the indices of s in Bi

in the final control C that we compute for the STC problem.
The procedure OPT COMP SB DECOMP of Algorithm 5

implements this idea in pseudo-code where it now takes
as input also the source state s of the STC problem. The
only difference with the procedure COMP SB DECOMP of
Algorithm 3 is that inside the for-loop of lines 5-14, for every
block Bi, the algorithm first computes the projection of the
source state s in block Bi, denoted si, at line 2. Then, it
checks whether {si} = Ai, if so, there is no need to compute
the entire local basin of Ai for Bi. It then simply sets SBi as
the cross of SB and Ai, where SB is the (subset of the) basin
computed thus far. If {si} is not equal to Ai, it computes the
basin of Ai as in Algorithm 3 (lines 7-12). To save space, in
the description of the procedure OPT COMP SB DECOMP
in Algorithm 5, we have only shown the additional lines
that need to be added to the original COMP SB DECOMP
procedure of Algorithm 3. Finally, in the algorithm for com-
puting the STC, the procedure OPT COMP SB DECOMP is
used instead of COMP SB DECOMP in Algorithm 4.
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Algorithm 5 Optimised computation of strong basin

1: procedure OPT COMP SB DECOMP(GBN,f ,s,A)
2: {si} := DECOMPOSE({s}, Bi);
3: if {si} = Ai then
4: SBi :=CROSS(SB, Ai);
5: end if
6: end procedure

5 CASE STUDIES

To demonstrate the correctness and efficiency of our con-
trol framework, we evaluate the performance of the global
approach, the decomposition-based approach, and the opti-
mised decomposition-based approach on several networks.
The approaches described by Algorithm 2, Algorithm 4, and
Algorithm 5 are implemented in the software tool ASSA-
PBN [22], which is based on the model checker [23] to
encode BNs into the efficient data structure, binary decision
diagrams (BDDs). All the experiments are performed on a
computer (MacBook Pro), which contains a CPU of Intel
Core i7 @3.1 GHz and 8 GB of DDR3 RAM.

We apply three approaches on six real-life biological
networks [24], [25], [26], [27], [28], [29] and three randomly
generated networks (BN-100, 120, 180). For every pair of
source and target attractors of the networks, we compute a
minimal control C that can realise the minimal simultaneous
single-step target control as explained in Section 3.4. An
overview of the networks and their evaluation results is
given in Table 13.

(a) speedups = Tg/Td

(b) speedups = Td/To

Fig. 4: Speedups of the PC12 cell network.

3. The symbol ∗ denotes that the algorithm fails to return any results
within one hour.

Exact minimal control set. According to Proposition 1 and 2,
our decomposition-based approach and the global approach
compute an exact minimal control C with respect to a source
state and a target attractor. The numbers of driver nodes
computed by these approaches are identical, demonstrat-
ing the correctness of our decomposition-based approaches.
Moreover, the number of driver nodes is relatively small
compared to the size of the network.

Table 2 summaries the Hamming distances (HD) be-
tween attractors and the number of driver nodes (#D) for
all pairs of source and target attractors for the PC12 cell
network. The attractors are labelled with numbers. The
numbers in the first column and the first row represent the
source and target attractors, respectively. Compared to the
size of the network and the Hamming distance between the
source and target attractors, the minimal set of driver nodes
required is quite small. In particular, to drive the network
from any other attractor to the attractor ‘cell differentiation’,
only one node ‘NGF’ is required, which is consistent with
the conclusion in [25].

Efficiency and scalability. In Table 1, Tg, Td and To rep-
resent the total time costs of computing a minimal con-
trol for all pairs of source and target attractors with the
global approach, the decomposition-based approach and
the optimised decomposition-based approach, respectively.
The key of the control approaches lies in computation of
the basin of the target attractor. Benefited from the fixpoint
computation of strong basin, as described in Algorithm 1,
all the approaches are efficient. Compared with the global
approach, our decomposition-based approach has an ad-
vantage in terms of efficiency (see the speedups in column
Tg/Td) for structurally well-behaved networks, thanks to its
‘divide and conquer’ strategy. And the efficiency of the
decomposition-based approach is further improved by the
optimisation (see the speedups in column Td/To), since the
optimisation compares the source and the target attractors
to avoid unnecessary computation of the local strong basins
of the target attractor in some blocks.

Fig. 4a and Fig. 4b show the heatmaps of speedups
gained by the decomposition-based approach over the
global approach (Tg/Td) and speedups gained by the op-
timisation (Td/To) for every pair of source and target attrac-
tors of the PC12 cell network. The indices of the columns
and rows are consistent with Table 2. In Fig. 4a, the speedups
gained by the decomposition-based approach is highly rel-
evant to the target attractor, as most of the computation
time is spent on the computation of its strong basin. The
speedups gained by the optimisation is determined by both
the source and the target attractors. If the Hamming distance
between the source and the target attractor is small, the
optimisation can skip local strong basin computation in
many blocks and gain a high speedup. For instance, the
dark gray entities in Fig. 4b indicate high speedups and
the Hamming distances between their associated source and
target attractors (see Table 2) are relatively small.

Finally, our decomposition-based approaches have better
scalability than the global approach, the global approach
fails to compute the results for large networks (BN-120 and
BN-180 with 120 and 180 nodes, resp.) as it deals with the
entire networks at once.
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time (seconds) speedupsnetworks #
nodes

#
blocks

#
attractors Tg Td To Tg/Td Td/To

tumour 32 13 9 2.34 1.87 1.48 1.25 1.26
PC12 32 19 7 0.45 0.26 0.20 1.70 1.34
hematopoiesis 33 11 5 1.99 1.25 0.77 1.60 1.61
HGF 66 26 18 236.64 132.33 66.90 1.79 1.98
bortezomib 67 28 5 208.92 35.97 13.16 5.81 2.73
T-diff 68 34 12 48.16 21.21 10.70 2.27 1.98
BN-100 100 36 9 2491.47 22.24 5.47 112.05 4.07
BN-120 120 27 4 ∗ 61.83 31.18 ∗ 1.98
BN-180 180 62 2 ∗ 25.94 1.40 ∗ 18.52

TABLE 1: An overview of the networks and their evaluation results.

attractors 1 2 3 4 5 6 7
HD #D HD #D HD #D HD #D HD #D HD #D HD #D

1 − − 2 1 21 7 22 8 22 8 23 9 7 1
2 2 1 − − 23 8 22 7 24 9 23 8 9 1
3 21 10 23 11 − − 1 1 1 1 2 2 28 1
4 22 11 22 10 1 1 − − 2 2 1 1 29 1
5 22 10 24 11 1 1 2 2 − − 1 1 29 1
6 23 11 23 10 2 2 1 1 1 1 − − 30 1
7 7 1 9 3 28 9 29 10 29 10 30 11 − −

TABLE 2: The Hamming distance between attractors and the number of driver nodes of the PC12 cell network.

6 CONCLUSION AND FUTURE WORK

In this work, we have described a decomposition-based
approach towards the computation of a minimal set of
nodes of a Boolean network that needs to be simultaneously
controlled in order to drive its dynamics from a source state
to a target attractor. Our approach is generic and can be
applied based on any algorithm for computing the strong
basin of attraction of an attractor. For certain modular real-
life networks, the approach results in a significant increase
in efficiency compared with a global approach and its gen-
erality means that the improvement in efficiency can be at-
tained irrespective of the exact algorithm used for the com-
putation of the strong basins. In this section, we conclude
by looking back critically at our approaches, summarising
various extensions and discussing future directions.

As mentioned in Section 1, the problem of minimal
control is PSPACE-hard and efficient algorithms are unlikely
for the general cases. Yet, one might ask in retrospect, what
is the inherent characteristic of our decomposition-based
approaches that makes it so efficient compared with the
global approach for the real-life networks that we studied.
We put forward a couple of heuristics which we believe
explains and crucially determines the success of our ap-
proach. One such heuristic is that the basins of attraction
computed at each step are small compared with the size of
the transition system. This reduces the state space that needs
to be considered in every subsequent step thus improving
efficiency.

Another heuristic, which depends on the structure of the
network, is that the number of blocks in the network cannot
be too few. Otherwise, our decomposition-based approaches
comes close to the global approach in terms of efficiency.
Note that if the entire network is one single giant block,
then the decomposition-based approach is the same as the
global approach (given that the same procedure is used
for the computation of the strong basins) and there is no
gain in efficiency. On the other hand, if a network has too
many blocks, computing local strong basins for all the blocks
may hamper the efficiency of the decomposition-based ap-

proach. For such kind of networks, our optimisation of the
decomposition-based approach, proposed in Algorithm 5
provides a solution by avoiding the expensive computation
of the local strong basins of the blocks in which the source
state and the target attractor do not differ. Another way to
reduce the number of ‘small’ blocks might be to combine
multiple basic blocks into larger blocks. While constructing
the local transition systems, such merged blocks are treated
as single basic blocks and their dynamics, attractors and
basins are computed in one-go. In [30], we have proposed
a method for the near-optimal decomposition of BNs and
we are working further on it to find an optimal ‘block-to-
node ratio’, given which, our decomposition-based control
approaches fare the best. We believe there are many real-life
networks which might benefit from the optimal decomposi-
tion techniques before the computation of the control.

As mentioned in the section on related work, the control
approaches based on computation of the feedback vertex
set [10], [11], [15] and the stable motifs [12] are promising
approximate control algorithms for nonlinear dynamical
networks. In the near future, we would like to compare
our approaches with these two in terms of efficiency and
the number of driver nodes. We also plan to investigate if
and how the concept of simultaneous single-step control
that we study here can be cast into the framework of
Boolean control networks (BCNs) [17], [18], [19], [20]. We
can then analyse if we can compute control strategies by
appropriately modyfing the techniques already available
in the literature for BCNs. Conversely, the decomposition-
based approach that we developed here might in turn be
useful in improving some of the control techniques on
BCNs esp. on large networks. Finally, we would like to
extend our decomposition-based approach to the control of
probabilistic Boolean networks [31], [32].
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