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Abstract. Since the appearance of ransomware in the cyber crime scene,
researchers and anti-malware companies have been offering solutions
to mitigate the threat. Anti-malware solutions differ on the specific
strategy they implement, and all have pros and cons. However, three
requirements concern them all: their implementation must be secure,
be effective, and be efficient. Recently, Genç et al. proposed to stop a
specific class of ransomware, the cryptographically strong one, by blocking
unauthorized calls to cryptographically secure pseudo-random number
generators, which are required to build strong encryption keys. Here, in
adherence to the requirements, we discuss an implementation of that
solution that is more secure (with components that are not vulnerable to
known attacks), more effective (with less false negatives in the class of
ransomware addressed) and more efficient (with minimal false positive
rate and negligible overhead) than the original, bringing its security and
technological readiness to a higher level.
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1 Introduction

Cryptographic ransomware reached the peak of its fame after WannaCry’s worldwide
attack, in May 2017. On victim’s machine, it encrypts files, asking for a ransom
(hence the name) to release the cryptographic key the victim needs to decrypt the
files and re-access them. Unsurprisingly, according to a recent survey [6], 50.6%
of the victims did not get any key in return, after the payment, irremediably
losing the data and money.

Encryption is a strong instrument in the hands of criminals. If properly
implemented, its impact is irreversible: without knowing the decryption key,
recovering the contents of an encrypted file is computationally unfeasible, a very
disruptive fact for the victims. However, implementing cryptography flawlessly is
a difficult task, and coders of ransomware are challenged by the same issues that
have been troubling security engineers in charge of implementing cryptographic
applications. One of the most relevant is to generate (cryptographically secure)
encryption keys and keep them safe. Failing in this makes the encryption weak



in the sense that it becomes likely to reproduce or retrieve the decryption keys,
which would jeopardize the ransomware business model. In this issue, there is
hope as same defence and some anti-ransomware solutions (see §6) indeed offer to
recover files counting on ransomware engineering’s being naïve in implementing
strong cryptography.

Unfortunately, modern ransomware programs are coded more professionally
than those in the past. Such professional variants (and attack relying on them
are increasing and demanding higher ransom, contrarily the general trend that
sees the number of ransomware attacks dropping, see [7]) are quite sophisticated,
well designed, and properly implemented. Among them, there are variants of
WannaCry, and variants of other ransomware families such as Petya, NotPetya,
and GoldenEye, CryptoLocker, Crysis, Cerber, and RAA. They all pose serious
threats. Bajpai et al. [2], who propose for ransomware a scale similar to the the
Saffir-Simpson for hurricanes, classify them as having severity categories 5 and 6.

Are then they unstoppable? Genç et al. discuss a strategy in [10], called
UShallNotPass. The core idea is to impede them to call cryptographically
secure pseudo-random number generators (CSPRNGs). These functions offered
by the operating system return the essential ingredients required to build crypto-
graphically secure encryption keys: “good” pseudo-random numbers. The solution
described in [10] has a sufficiently accurate detection rate (i.e., 94%), but it is
not yet an effective and efficient solution. What it needs is an access control
system that guarantees at least three important requirements: (1) to rely on
architectural components that are not vulnerable against known or arguable
targeted attacks; (2) to have lower false positive rate; (3) to impose a negligible
performance overhead.

Contribution. We discuss improvements to the solution proposed in [10] that
satisfies requirements (1)–(3). It meets (1) by avoiding interprocess communication
(IPC), a choice that is potentially vulnerable to named pipes hijacking (§4.1). It
meets (2) by bootstrapping and maintaining a Whitelist DB of honest applications
that also call CSPRNG (§4.2). It meets (3) by showing that, when run in
respect to vanilla system, our implementation has a negligible overhead (§5)
over applications that use CSPRNGs, with a relative improvement of roughly
two orders of magnitude with respect the prototype presented in [10]. We also
re-test the implementation against 747 active real-world ransomware samples,
and measure the false negative rate.

To appreciate fully this paper’s contribution, we recall UShallNotPass’s
in §2, security model and assumptions in §3, and the state of the art in anti-
ransomware in §6. We discuss and test our implementation in §4 and in §5, arguing
that our version of UShallNotPass, which we call NoCry, in antithesis to the
infamous WannaCry, has potential to become the best defense against ransomware
at the time of writing (June 2019).
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2 Recalling UShallNotPass: No Random, No Ransom

UShallNotPass [10] has been proposed as a solution to stop cryptographically
strong ransomware attacks. It intercepts calls made to application programming
interfaces (APIs) of cryptographically secure pseudo-random number generators
(CSPRNGs) and allows only authorized applications to get through, blocking
and terminating all the others.

On modern operating systems (OSs), CSPRNG APIs are the only reliable
source of cryptographically secure pseudo-random numbers that are necessary
to build (cryptographically strong) encryption keys, which are the instruments
that a crypto-ransomware needs to be certain that it is unfeasible for a victim to
reverse the damage without paying the ransom.

Genç et al. showed that a proof-of-concept implementation, proving they are
able to neutralize even NotPetya, and collect evidence that the concept works
against a very large class of about five hundreds real-word active cryptographically
strong ransomware samples including WannaCry, and other ransomware families
such as Petya and GoldenEye, CryptoLocker, Crysis, Cerber, and RAA.

The goal of [10] is to prove that by controlling access to CSPRNG, ransomware
can be blocked before any damage occurs. However, how the authorization is
decided has not been detailed, but claimed relying on a Whitelist database (DB)
accessible only with admin privileges and upon an undefined security policy. It
suggests however two optional mechanisms for authorization: (i) digitally signed
executables can call CSPRNG; and (ii) not digitally signed executables can also
call CSPRNG, if the administrator decides so at run time.

The architecture of UShallNotPass and the workflow is depicted in Fig. 1.
It has two separate components: Interceptor, and Controller. Interceptor captures
the calls made to CryptGenRandom API (a CSPRNG offered by Windows OS)
and dispatches the process ID to the Controller, which searches the Whitelist DB
to decide whether to allow or deny access. No parameters or outputs are logged.
The overhead which the proof-of-concept prototype of UShallNotPass brings
to the clean system is significant. Details and benchmarks can be found in [10].

3 Security Assumptions

UShallNotPass [10] works under two assumptions, which remain valid in
our implementation of the concept, NoCry: (i) at the moment in which the
anti-ransomware is installed on a target system and before it becomes active
and operational, the system is non-compromised; (ii) the host machine can run
anti-virus software to detect, stop and neutralize common malicious actions such
as keystroke logging, process injection, etc.

We also stress one key point once more. The original concept, and thus
NoCry, has been conceived to work against cryptographically strong ransomware
only. At least in the ransomware samples that we have analyzed, those are the
ransomware programs that access secure random number sources. NoCry does
not stop ransomware that does not follow secure development standards and, for
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Fig. 1. Architectural view of UShallNotPass [10]. When CryptGenRandom API is
called, Interceptor identifies the caller and dispatches the process ID to Controller. If the
application is authorized, the call is executed and the result is returned to the caller.
Otherwise, the call is blocked and the caller process is terminated.

instance, derives keys from a non-cryptographic pseudo-random number generators
(PRNGs), like rand function in C runtime library or System.Random class provided
by .NET framework. In §5.3, we argue that such ransomware variants are weak,
cannot achieve success in the long term, or can be stopped otherwise. Therefore,
NoCry is not all-in-one defence but meant to work side-by-side with (or even,
integrated into) traditional anti-malware solutions or in combination with other
anti-ransomware systems.

4 NoCry: Requirements, Design and Implementation

We believe that an anti-ransomware application should be effective and non-
invasive in at least the following meanings:

Robust Architecture. The execution and operation of the defense system
should rely on architectural choices that minimize the attack surface and have
no vulnerabilities against known and arguable targeted attacks. In our case, the
authorization mechanism be robust against targeted attacks.
Low False Positive Rate and Minimal User Intervention. While provid-
ing the security, the defense system must also ensure (arguably and measurably)
a low rate of false positive. The challenge regards our Whitelist DB. The list
needs to be safely bootstrapped, and software updates should be reflected in the
Whitelist DB with no interruption, inconsistency, or possibility of intrusions.
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Optimized Decision Procedure. The performance impact of running an anti-
ransomware should be negligible and must be imperceptible by the user. In
NoCry, the overhead is due to the interception of calls to CSPRNG APIs and
the time required by the access control decision procedure.

We discuss the NoCry in the reminder of the section. We refer to Windows
systems, as they have been the target of most of the ransomware attacks known
at today. What we discuss applies to other platforms as well.

4.1 Robust Architecture

As described in §2, UShallNotPass consists of two components: Interceptor
detects the calls made to CSPRNG APIs and Controller makes authorization
decisions for the caller processes. This architecture needs an active communication
channel between Interceptor and Controller components. In order to fulfill this
need, UShallNotPass employs named pipes.

A named pipe is an interprocess communication (IPC) mechanism which
enables processes to communicate to each other using a client-server architec-
ture [17]. In this model, the pipe server is the application which creates the named
pipe. Once the pipe is created, pipe clients – the applications that connects to
the pipe server – can start sending/receiving messages to/from the pipe server.
In the access control system of UShallNotPass, Interceptor creates two simplex
named pipes, one for dispatching the process ID to Controller and another for
getting the authorization result.

That said, named pipes in Windows platform are infamous with their security
issues [3]. Among them, one particular issue constitutes a critical vulnerability
for UShallNotPass. Namely, a malicious application can attempt to create a
named pipe before the legitimate application does, and act like the pipe server.
The pipe name of UShallNotPass is static and therefore a ransomware can
hijack the pipe by creating the pipe instance more quickly than Controller of
UShallNotPass. This would make the attacker owner of the named pipe object,
allowing the ransomware to impersonate the Controller and authorize itself.

Observing this vulnerability, NoCry is designed to be IPC-free. In this new
architecture, Interceptor and Controller are moved into Unified Agent, a single
module which intercepts and controls CSPRNG calls. The architectural view of
NoCry is illustrated in Fig. 2. The capability of direct data exchange between
Interceptor and Controller renders NoCry immune to the potential targeted
attacks. Consequently, we conclude that NoCry is a more robust protection
system.

4.2 Low False Positive Rate and Minimal User Intervention

We introduce two methods that NoCry offers in order to increase the usability.
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Fig. 2. Architectural view of NoCry. Interceptor and Controller reside in the same
module, Unified Agent. This new construction enables robust and efficient information
exchange between Interceptor and Controller for making an authorization decision.

Bootstrapping Whitelist DB UShallNotPass does not come with a pre-
determined whitelist of benign applications. The list, presumably, is initially
empty and if access control over CSPRNG APIs were applied immediately
after UShallNotPass is installed, every cryptographic application invoking
these functions would be stopped: this is surely not what the authors mean to
happen. Thus, benign cryptographic applications should be whitelisted before
UShallNotPass is launched. To make this task as much automatic as possible
we suggest in NoCry a Training Mode. It starts immediately after installation:
the Interceptor listens the calls made to CSPRNG APIs without blocking any.
Under our assumptions (§3), all access requests to CSPRNG APIs should come
from honest processes. The hash of the binary executables are added to the
Whitelist DB. Training Mode can only be activated once and just after the setup.

What if, against our assumption, Training Mode is run on a system that is
infected by some strains of silent ransomware [13]? Some strains in fact infect
computers but stay inactive until being activated by command and conquer (C&C)
servers or simply await until a certain time has passed. This way, ransomware
attempts to look like a benign application and evade behavioral analysis-based
detection systems. It is unlikely that such ransomware bypass NoCry: the
ransomware executable would not call CSPRNG APIs in the sleeping phase and
therefore they will not be whitelisted, unless the training phase coincides with
the awakening of ransomware. This may be a remote possibility, but raises our
assumption of making mandatory running our Training Mode in a clean system
a must, as it is usually the case for any anti-malware.

Handling Software Updates Whitelist DB can change. Programs that access
CSPRNG APIs but are installed after the Training Mode has ended, must have
their hashes be added to it. OS components are updated for various reasons,
including patching security vulnerabilities, fixing bugs and adding new functional-
ities and since the update process involves replacing the existing executables with
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new ones, their hash values in the Whitelist DB have to be updated consequently.
User applications also regularly check for new updates and install them in the
background. The hashes of these updated executables should also be reflected to
the Whitelist DB.

In environments where this could potentially lead to delays, e.g., due to slow
human reaction, we suggest that NoCry can be configured to defer access control
to keep the system stable and workflow uninterrupted. We call this Deferred
Mode.

When working in Deferred Mode, NoCry does not immediately block calls
to CSPRNG APIs coming from unknown processes. Instead, the parameters and
outputs of these calls are securely logged in a protected location until adminis-
trator takes an action. Here, administrator can find the software benign, thus
add the hash of the executable to Whitelist DB and dispose the logs associated
with that process. Otherwise, the process is suspended and, if necessary, recovery
procedure is initiated. The logging, and when necessary, recovery procedures
are similar to the approach of PayBreak [14] which we discuss in §6. However,
there are two notable differences in NoCry:

(i) logging is applied per unidentified process, not system-wide; and
(ii) once the administrator makes a positive decision, the logs are disposed.

The rationale of the variations above is to reduce the potential impact of
logging the outputs of CSPRNG. In our approach, random numbers obtained
by whitelisted processes are not logged. This eliminates the security risks which
could arise due to the persistence of the generated random numbers which are
potentially used for cryptographic purposes.

4.3 Optimized Decision Procedure

In UShallNotPass, the access control over CSPRNG APIs requires to make
an authorization decision which cause a significant delay. Mainly, the delay is
due to two factors: (i) time spent for establishing IPC; and (ii) time spent by
Controller for authorization.

As discussed in [10], the IPC is the main bottleneck of the authorization
procedure and causes an overhead on CSPRNG APIs calls with a factor ranging
from 62 to 125. In addition to the improved the security, eliminating the IPC
from access control system is another motive which led us to unify Controller and
Interceptor in a new module Unified Agent in NoCry. This way, both interception
and authorization tasks are carried out in one place, without needing to consume
time for IPC which enables to decide and act faster.

Furthermore, in UShallNotPass, the subsequent calls from the same process
are authorized independently. While this approach would provide the highest
level of time-granularity in access control, it might be an overkill for the security
goals and a waste of resources for many systems. It is reported in [10] that the
security checks performed in Controller causes an overhead up to a factor of 5.52.
NoCry, therefore, holds an authorization to be valid for the lifetime of a process.
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It is reasonable to expect that the two optimizations above would bring a
significant performance improvement, which we assess in the next section.

5 Methods, Experiments and Results

On NoCry, we have run a series of experiments aiming at to measure the per-
formance overhead, and false positive & false negative rates. For each experiment
we describe the methodology, then we report and discuss the result.

5.1 Performance

Methodology. We measure the time that a benchmark program spends invoking
CryptGenRandom API repetitively for 100 000 times. We run the benchmark
program first on a clean system, then on a system with NoCry. We made this
experiment on Windows 7 32-bit OS, running on a VM with 2 CPU cores clocked
at 2.7 GHz. Overall, this is the same setting used in [10].

Results and Discussion. Table 1 shows the results of our measurements. It also
reports the result from [10], obtained using the exact same methodology.

Table 1. Time benchmarks of 100 000 iterative calls to CryptGenRandom API. Perfor-
mance gain is calculated as (old − new) \ old × 100. Measurements of UShallNotPass
are recalculated.

Measurement Mode Random Number Length (bits)

128 256 1024 2048

Clean System (sec) 0.13 0.14 0.18 0.24

UShallNotPass (sec) 15.59 15.80 15.84 16.91
UShallNotPass Overhead 11992% 11285% 8800% 7024%

NoCry (sec) 0.17 0.18 0.22 0.29
NoCry Overhead 30% 22% 18% 20%

Performance Gain 98.9× 98.9× 98.6× 98.3×

Our analysis shows that NoCry brings drastically lower overhead in terms
of time for getting the output of CryptGenRandom API. This improvement is due
to the unification of Interceptor and Controller components of UShallNotPass
which enables interception and control actions to be managed by a single com-
ponent, Unified Agent, and thereby removing IPC. This result is not surprising
after our improvements in §4.3 and confirms our hypothesis.

Another cause of the performance increase is the use of cache mechanism
during authorization. In UShallNotPass, iterative calls from the same process
are authorized individually, causing a significant overhead, as much as a factor

8



of 5.52 [10]. With NoCry, process authorizations are valid for the lifetime of a
process. That is, accessing to the Whitelist DB is performed once after the first
invocation of CSPRNG API. This allows eliminating the need for accessing the
Whitelist DB for authorizing subsequent calls.

Lastly, the architecture of UShallNotPass limited the maximum number
of iterative calls to CryptGenRandom API to the order of 100 000 as the system
becomes unstable beyond this point [10]. Since NoCry is IPC-free, it was able to
handle a significantly larger number of requests. This makes it a better candidate
for a protection system where CSPRNGs are heavily consumed.

5.2 Evaluation of False Positives

In the domain of NoCry, false positive describes the condition that a legitimate
process calls a CSPRNG API and is stopped by NoCry.

Methodology. We have collected the Top 20 Installed Programs according to
Avast PC Trends Report 2019 [1], and we look at whether they have digital
signatures, the criterion which NoCry can use for authorization.

Results and Discussion. Table 2 presents the results of our findings. Among the
Top 20, the only unsigned application is 7-Zip. Being 7-Zip is an open source
software, system administrators can obtain the source code, compile themselves,
and add it to the NoCry whitelist.

It is reasonable to expect that digital signatures of applications and source
code availability of open source software together help system administrators
maintain Whitelist DB and therefore lower the number of false positives. In the
lights of these circumstances, we perceive that the false positive rate of NoCry
will be at a non-invasive level.

5.3 Evaluation of False Negatives

Modern ransomware employs hybrid cryptosystems for scalability and efficiency
reasons. Consequently, managing the encryption keys in a secure manner is
critical for a successful ransomware campaign, as a flaw in the transport, usage
or storage of the keys might allow security professionals to build a decryptor. In
particular, if the victims can obtain the keys used to encrypt files, decrypting the
files without paying a ransom would be feasible. This is obviously against the
goals of ransomware authors so they try to obtain encryption keys securely. The
analyses in previous works [2,9] recognizes the following three strategies to obtain
the encryption keys: (i) using embedded keys in the binary file; (ii) generating
keys on the victim’s machine; and (iii) downloading keys from a certain network
location.

The security analyses of key generation in ransomware are found in [2,9].
Here, we resume it. If a ransomware follows (i), keys can be extracted from
the ransomware binary, and the encrypted files can be recovered. Most of the
ransomware prefer to generate the keys on victim’s machine. In this case, there
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Table 2. Top 20 Installed Programs according to [1]. All applications in the table
calls one or more CSPRNG APIs. NoCry will allow these calls automatically since the
applications are digitally signed, except for 7-Zip, which is an open source software.

Rank Program Calls
CSPRNG APIs

Digitally
Signed

Source Code
Open

1 Google Chrome 3 3

2 Acrobat Reader 3 3

3 WinRAR 3 3

4 MS Office 3 3

5 Mozilla Firefox 3 3 3

6 VLC Media Player 3 3 3

7 Skype 3 3

8 CCleaner 3 3

9 iTunes 3 3

10 TeamViewer 3 3

11 Windows Live Essentials 3 3

12 7-Zip 3 3

13 Stream 3 3

14 Dropbox 3 3

15 Opera 3 3

16 CyberLink PowerDVD 3 3

17 CyberLink PowerDirector 3 3

18 HP Photo Creations 3 3

19 CyberLink YouCam 3 3

20 CyberLink Power2Go 3 3

are two options: to use the CSPRNG, which produces high entropy random
values; or to use a non-cryptographic PRNG. The first has been largely discussed
already. The second is a weak choice: PRNGs are designed to be reproducible
thus their outputs are guessable. If the ransomware uses a non-cryptographic
PRNG, like rand function in C runtime library or System.Random class provided
by .NET framework, decryption is feasible. If ransomware fetches keys from a
remote server (iii) then blocking the malicious IPs inhibits the ransomware, which
forces ransomware developers to fallback to (i) or (ii). The only option for current
ransomware to get good encryption keys is therefore to use a CSPRNG.

In order to support our argument that CSPRNG is vital for the success of a
ransomware, we designed experiments: the first, (A1), aims at to find out how
common it is to use CSPRNG among current ransomware families. Indirectly,
we also measure the false negative rate of NoCry. The second, (A2), aims at to
check if there exists a publicly available decryptor for those samples that did not
call any CSPRNG APIs.

Methodology. Following the previous research [10], we (1) obtain malware corpus
from VirusTotal1; (2) pick potential ransomware among them; (3) rebuilt the
1 VirusTotal Threat Intelligence, https://virustotal.com.
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same test environment, using Cuckoo Sandbox2 to identify the active ransomware
samples; and, (4) classify the families using AVclass [22] tool; (5) run NoCry
against them; (6) (if any) discover the reason for false negative.

Results and Discussion. We identified 747 active samples from 56 cryptographic
ransomware families. Next, we installed NoCry on the test machines and run the
executables against NoCry. Table 3 shows the results: 97.1% of the samples have
been stopped by NoCry before any user file is damaged, i.e., encrypted by the
ransomware program. They were the samples that attempted to call CSPRNG
during the attacks, and were terminated by NoCry as they were not present in
the Whitelist DB.

Among the 2.9% of samples that cause false negative, there may be ransomware
executables that either circumvented NoCry’s access control, or ransomware
process did not call CSPRNG APIs. To discover the exact reason behind the false
negatives, we picked random samples from the families we missed, and manually
analyzed the API call tree. The missing samples from Cryptxxx and Dalexis did
call CryptGenRandom API, however, said API could not be hooked by NoCry.
We believe this is due to a problem of our implementation. The missing samples
from Carberp, Cryakl, Crysis, Gator, Neoreklami and Sigma families did not call
any CSPRNG APIs. Among them, we found decryptors for Cryakl, Crysis and
Sigma on ID Ransomware3 platform.

6 State of the Art in Ransomware Defense

There have been several proposals from the community of information security
to mitigate the cryptographic ransomware threat. NoCry falls into the access
control class, as Genç et al.’s UShallNotPass [10]. We can categorize other
defense systems, based on their main strategies, into three groups: behavioral
analysis, key escrow and deceptive protection.

Behavioral Analysis. A common anti-malware strategy is to monitor the processes
and terminate the ones with a suspicious behavior. The monitored behaviors
include file system I/O, network connections and interaction with the OS. Among
these, the fundamental characteristic of the ransomware is its aggressively encrypt-
ing victim’s data, causing an unusual file system activity. Using this fact, several
defense systems are proposed. One of them, Scaife et al.’s CryptoDrop [21]
monitors file type changes by looking file headers, compares sdhash [20] outputs
and measures the Shannon Entropy before and after file-write operations. Another
one, ShieldFS [4] by Continella et al. tracks the low-level file system operations
and collects the following features: folder listing, file-read/write/rename oper-
ations, file extension and average entropy of file-write operations. Comparing
these characteristics with that of benign applications allows the detection of
ransomware. In addition to detection, ShieldFS creates a copy for each file
2 Cuckoo Sandbox – Automated Malware Analysis, https://cuckoosandbox.org/.
3 ID Ransomware, https://id-ransomware.malwarehunterteam.com/.
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Table 3. List of active ransomware samples tested against NoCry. The notation x/y
means that x samples out of y could be successfully stopped.

Family Samples (%)

Barys 1/1 (100%)
Birele 1/1 (100%)
Bitman 152/152 (100%)
Browserio 2/2 (100%)
Bzub 1/1 (100%)
Carberp 0/1 (0%)
Cerber 60/60 (100%)
Cryakl 0/1 (0%)
Cryptxxx 0/2 (0%)
Crysis 2/3 (66%)
Dalexis 1/3 (33%)
Daws 5/5 (100%)
Delete 1/1 (100%)
Deshacop 1/1 (100%)
Dlhelper 1/1 (100%)
Enestaller 1/1 (100%)
Enestedel 1/1 (100%)
Expiro 1/1 (100%)
Gamarue 2/2 (100%)
GandCrab 1/1 (100%)
Gator 1/2 (50%)
GlobeImposter 1/1 (100%)
Godzilla 1/1 (100%)
Jaff 1/1 (100%)
Lethic 4/4 (100%)
Locky 47/47 (100%)
Midie 1/1 (100%)
Neoreklami 0/1 (0%)

Family Samples (%)

Occamy 4/4 (100%)
OpenCandy 2/2 (100%)
Petya 2/2 (100%)
QQPass 1/1 (100%)
Razy 6/6 (100%)
SageCrypt 1/1 (100%)
Saturn 1/1 (100%)
Scar 3/3 (100%)
Scatter 2/2 (100%)
Shade 2/2 (100%)
ShadowBrokers 1/1 (100%)
Shiz 17/17 (100%)
Sigma 0/1 (0%)
Sivis 3/7 (42%)
Spigot 2/2 (100%)
Spora 2/2 (100%)
Striked 0/1 (0%)
Swisyn 0/1 (0%)
Tescrypt 5/5 (100%)
TeslaCrypt 316/316 (100%)
Tpyn 1/1 (100%)
Upatre 2/7 (28%)
Ursnif 1/1 (100%)
Vobfus 1/1 (100%)
Wowlik 1/1 (100%)
Wyhymyz 1/1 (100%)
Zerber 52/52 (100%)
Zusy 7/7 (100%)

Total: 726/747 (97.1%)

before a file-write operation, eliminating the potential damage of ransomware.
Moreover, Kharraz et al. proposed Redemption [11] that also uses the similar
metrics for identifying a ransomware activity. However, in contrast to ShieldFS,
Redemption redirects file-write operations to sparse files, rather than creating a
full copy of each written file. Differently, Data Aware Defense (DaD) by Palisse
et al. [18] uses chi-square test to determine if the written data is close to random
distribution which is indicates that the file is being encrypted. DaD computes
the sliding median of this indicator on the last fifty file-write operations and
suspends the corresponding process that exceeds a predetermined threshold.

Key Escrow. Key-escrow based defense allows the ransomware to complete its
attack. This approach is based on the idea that the files encrypted by ransomware
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can be recovered if the encryption keys can be retrieved after the attack. For
this aim, logging the keys used by ransomware is first appeared in the literature
by Palisse et al. [19] and independently by Lee et al. [15]. The first public
implementation of this idea PayBreak, with extending the idea to cover the
third party crypto libraries was given by Kolondenker et al. [14]. In this system,
all known cryptographic API are hooked, cryptographic materials are extracted
and securely stored in a key vault. In the case of a ransomware attack, the
encrypted files are tried by brute-forcing to be decrypted by retrieving the
keys and other necessary parameters from the key vault. A slightly different
method, Deterministic Random Bits Generator (DRBG) is proposed by Kim et
al. [12] to retrieve the random numbers that ransomware used after an attack.
DRBG replaces the CSPRNG of the system with a back-doored PRNG. The
trapdoor is known only by the user and is preferably stored in the user’s mobile
device. After a ransomware incident, this trapdoor is retrieved and given to the
PRNG to generate the same outputs that ransomware used. Using these outputs,
ransomware’s operations are reverted and files are recovered.

Deceptive Protection In this strategy, carefully-crafted files are placed as a decoy
in the file system with the user’s files. These decoys are not supposed to be
modified/deleted by the user, so any write request to the decoy files are treated
as an indicator of ransomware activity. RWGuard, a recently proposed system
by Mehnaz et al. [16] uses this technique –in addition to behavioral analysis– to
mitigate ransomware threat in real time.

7 Critical Discussion and Conclusions

Cryptographic ransomware is a modern global crime and a large amount of
public and private institutions have been attacked already. The problem is
that encryption is a powerful tool in the hands of criminals, hard to fight. By
encrypting critical files on the victim’s machine, ransomware blocks access to
information and compromises critical services, wreaking an economical and social
havoc because, unless victims pay the demanded ransom to receive the correct
decryption key, they might not be able to recover their files if no backup is available.
Computational complexity results ensure that a properly implemented encryption
is irreversible, but to realize this theoretical result in practice, ransomware has
to use cryptographically secure encryption keys. Many variants choose weaker
alternatives: although there could be a theoretical solution to reverse their
encryption at affordable costs, such scareware succeed in persuading victims to
pay. Other variants, implement a theoretically weak but good-enough encryption
to make decryption-without-the-key sufficiently painful to convince that paying
the ransom is the lesser of two evils.

But in the restricted niche of ransomware that want their damage to be
computationally irreversible, one finds the most disruptive variants, for instance,
WannaCry, Petya, GoldenEye, CryptoLocker, Crysis, Cerber, RAA, and NotPetya.
These ransomware families need a good source of random numbers and all of
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them find it in the cryptographically secure pseudo-random number generator
(CSPRNG) available on a victim’s system. Today, such functions are indeed
reliable and de facto source of cryptographic randomness available on a computer.

To contain the threat coming from ransomware in this cryptographically
strong niche, Genç et al. proposed in [10] to control access to CSPRNG APIs.
They proved the concept by stopping a very large class of real active ransomware
from doing any damage to any file —remarkably including NotPetya, which was
till that moment believed unstoppable. But a concept, as much as promising
can be, is not yet a fully-fledged application. Discussing how to implement it
into an effective anti-ransomware defense, herein called NoCry, is what we have
done in this paper. We solved several critical security and design issues: how to
ensure that the attack surface of the architecture is reduced; how to bootstrap
the Whitelist DB, honest cryptographic applications calling CSPRNG APIs and
maintain it with a minimal user intervention, arguably resulting in a very low
false positive rate; how to reduce the overhead that the access control imposes on
the systems performance to a negligible amount. By not relying on any IPC, we
removed any know-to-be-vulnerable elements from the architecture, so addressing
the first issue; we addressed the last, by a better decision making that drastically
improves the overhead. With respect to the previous proof-of-concept, reducing
it from several thousands percent down to about 20%: quantified, the overhead
is now a few hundredth of a second.

These are quite evident improvements, but the solution we proposed to
address the second issue i.e., how to manage the Whitelist DB, needs further
discussion. In a system assumed uncorrupted, we bootstrap the list in Training
mode by feeding in honest applications that call CSPRNG. In Deferred mode we
update the list when a new version of a whitelisted application is available; we
temporarily grant it the right to call CSPRNG but retaining critical data that can
help recovering files in rare case where the upgrade hides a ransomware. Despite
looking reasonable to us, one can still challenge our choices. For instance, one can
ask why managing a Whitelist DB of applications that call CSPRNG in the first
place? In fact Windows OS already offers a protection, AppLocker, that enables to
deny non-whitelisted apps (e.g., malware) from running. Cannot be ransomware
dismissed as any other malware? First, we observe, this practice seems not have
slowed down ransomware so we conclude that it needs more time and maturity
to be widely accepted. Second, the problem with the whitelists is that they
may not be complete, generating fastidious false positives. This issue, of course,
affects also NoCry, but differently from a system which offers protection against
generic harmful apps (a term that may have different interpretation). NoCry
targets and operate against a very specific situation. If we imagine to defer to the
user the decision about whether a potential false positive is indeed so, NoCry
can precisely state that a certain application is trying to call critical functions,
potentially to create strong encryption keys and unless the application is meant
to encrypt data, it is better to let NoCry kill it. We fail to imagine instead
stating a similar precise claim to warn about a generic harmful application. The
best could be a warning message sounding like “something insecure may happen”,
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alert that users have learned to ignore [5]. A precise claim like that, enabled by
NoCry, will help users take more informed decisions, arguably reducing the
number of false positives, and we intend to test this hypothesis in a future work.

Another critic can be that by only guarding access to CSPRNG, we miss
to stop ransomware that generate encryption keys using different strategies.
If this critics were well founded, this would count as a serious deficiency for
NoCry because would lead to false negatives. To this critic we answer first by
observing that NoCry was neither designed to stop other ransomware than
those calling CSPRNG APIs nor conceived to work in isolation from other anti-
ransomware. Indeed, we think, the full potential of NoCry will emerge only in
integration with an anti-malware that provably can reverse the damage done
by ransomware that make use of the encryption keys obtained not by calling
CSPRNG. Theoretical solutions exist that have the potential ability to reduce the
cost of reversing encryption to a feasible time complexity and a few solutions are
actually implemented [23]. These seems, indirectly, to support the argument that
by not calling CSPRNG APIs, ransomware can realize only cryptographically-
weak encryption. It is then by uniting different methods that we imagine a good
anti-ransomware can reliably combat this crypto-crime. How to do it properly is
an open problem but considering the improvements that we have herein discussed,
we believe this union is possible and practical.

There is a further observation to reinforce our rebutting to the critic. We
are aware that there is no silver bullet for ransomware mitigation. Each defense
system has pros and cons, and NoCry may well find its beater in some next
generation ransomware. As discussed in [8], ransomware applications can find
other ways than calling CSPRNG to get random numbers e.g., by relying on non-
cryptographic sources of randomness, but we believe that the alternative choices
have weak points. The fact is that all the samples and variants of ransomware in
the cryptographically-hard niche that we have analyzed so far, do call CSPRNG
APIs. Thus, today, these functions are the most reliable source of randomness
for application in search to build cryptographically strong encryption keys. And
if in the future other functions will available for the same task, the fundamental
question that remains to be solved is how many of these functions are, and
whether by controlling access to these APIs, we can still implement a targeted
strategy as the one in NoCry that enables a decision making with an arguably
low false positive rate. Investigating such research questions requires time and
we leave it as future work.

Other future work still needs to be done. The argument that we have a
reduced false positive rate has to be supported by experimental evidence. This
means to run stress tests while running a generous number of various benign
cryptographic applications under different conditions. Beyond having measured
the overhead in terms of loss of performance, we still need to assess the user
experience (UX) of NoCry running on different kinds of computers, included on
battery powered mobile devices, to verify whether the overhead is imperceptible,
as we claim, by users in their daily activities.
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