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Abstract
In this paper, we propose a smoothed stable extended finite element method (S2XFEM)
by combining the strain smoothing with the stable extended finite element method
(SXFEM) to efficiently treat inclusions and/or voids in hyperelastic matrix materials.
The interface geometries are implicitly represented through level sets and a geometry
based error indicator is used to resolve the geometry. For the unknown fields, the
mesh is refined based on a recovery based error indicator combined with a quadtree de-
composition guarantee the method’s accuracy with respect to the computational costs.
Elements with hanging nodes (due to the quadtree meshes) are treated as polygonal
elements with mean value coordinates as the basis functions. The accuracy and the
convergence properties are compared to similar approaches for several numerical ex-
amples. The examples indicate that S2XFEM is computationally the most efficient
without compromising the accuracy.
Keywords: Adaptive meshing, Hyperelastic material, Mean-value shape functions,
Numerical integration, Quadtree mesh, Smoothed finite element method, Stable
extended finite element method.

1. Introduction

The solutions of many real world problems in engineering and other physical fields
vary spatially. However, the solutions to many problems are non-smooth. Problems
governed by Helmholtz and Laplace equations are globally non-smooth for instance,
whereas problems involving material interfaces, cracks, shear bands, to name a few,
are locally non-smooth. The conventional FEM has difficulties to treat non-smooth
solutions due to (a) its polynomial interpolation functions which cannot capture steep
gradients in the solution, (b) the requirement of spatially conforming interpolations, and
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(c) the requirement of substantially fine interpolations if the solution changes spatially
over time.

To circumvent these challenges, meshless methods [1–4] have emerged as an alter-
native to the FEM. Partition of unity methods (PUMs) [5–9] on the other hand are
enhancements of the conventional FEM, which incorporate non-smooth interpolations
of the spatial solution. PUMs have consequently attracted much attention, which may
for instance be recognised by the fact that the eXtended FEM (XFEM) has found its
place in the commercial FE software Abaqus.

The salient feature of the PUMs is that the geometric morphology and the under-
lying FE discretization can be independent of each other. Consequently, the compu-
tational burden is substantially reduced. The basic idea of the PUMs is to extend the
classical approximate solution basis by a set of additional functions that carry infor-
mation about the character of the solution. The price to pay for this flexibility is the
increased complexity to numerically integrate the additional functions and an enlarged
system of equations to solve.Recently, PUMs have been combined with local mesh re-
finement to treat problems with weak and strong discontinuities both in two and three
dimensions [10–13].

On another front, based on the seminal work of Chen et al. [14], Liu et al. [15] for-
mulated a series of methods, called the smoothed finite element method (SFEM). The
SFEM is aimed at improving the performance of conventional finite elements, viz., tri-
angles, quadrilaterals, tetrahedra, hexahedra and in general, arbitrary polytopes. Since
its inception, the different variants of the SFEM (such as the edge based SFEM, node
based SFEM, cell based SFEM), have been applied to wide variety of problems, such
as to fracture mechanics [16–20], incompressible elasticity [21, 22], visco-elastoplastic
analysis [23–25] and impact problems [26], amongst others. The cell based and the edge
based SFEM were combined with the XFEM in [17, 27–29]. This greatly simplified the
numerical integration of the terms in the bilinear form, especially, the enriched part.
It alleviated the need to sub-triangulate the elements intersected by the discontinuity
for the purpose of numerical integration. Amrita et al. [30] and Surendran et al. [31]
improved the performance of cell-based SFEM over arbitrary polytopes by modifying
the smoothing function. For a comprehensive overview, interested readers are referred
to the recent review of Zeng et al. [32]. The above work has been restricted to small
deformation problems. To the best of authors’ knowledge, the SFEM is scarcely used
to treat nonlinear problems. We know about the work of Duong in which the face
based SFEM is employed to model nonlinear soft tissue growth [33]. Lee et al. [34]
employed the node based SFEM and edge based SFEM for compressible and nearly
incompressible hyperelastic materials on the other hand. These studies were restricted
to single phase material however.

In this paper, we propose the smoothed stable extended finite element method
(S2XFEM) by combining the strain smoothing with the stable extended finite element
method (SXFEM) to solve interface problems in hyperelastic materials. It is noted that
the stable XFEM employed here is similar to the ridge enrichment function [35]. The
salient features of this work are:
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• The strain smoothing does not require an explicit form of the interpolation func-
tions to compute the contributions of the quadrature points to the stiffness ma-
trices and internal force columns. It therefore requires less computational efforts.
Moreover, strain smoothing requires simple integration schemes.

• The adaptive refinement of the interpolation discretisation reduces the compu-
tational efforts by local remeshing. Interpolation elements with hanging nodes
are treated as polygonal elements, thereby ensuring compatibility between the
elements.

The accuracy and the convergence properties are demonstrated with two numerical
examples in two dimensions. It is inferred that the S2XFEM employs fewer integration
points to compute the terms in the bilinear form and yields comparable results when
compared to the SXFEM.

The paper is organized as follows: Section 2 presents the governing equations for
a hyperelastic body, the weak formulation of the problem and a description of the
stable extended finite method. The smoothed variant of the stable extended finite
element method is presented in Section 3. A simple a-posteriori error indicator and an
adaptive meshing procedure is discussed in Section 4. The accuracy, robustness and
the convergence behaviour of the proposed approach is detailed in Section 5, followed
by the main conclusions in the last section.

2. Governing equations and weak form
Consider a hyperelastic body with an internal discontinuity Γ d

0 as shown in Figure 1.
Ω0 ⊂ R2 bounded by Γ ∈ R, with Γ u

0 ∩ Γ t
0 = ∅. The boundary is uniquely decomposed

into Γ = Γ u
0 ∪Γt, where Dirichlet and Neumann boundary conditions are applied on Γu

and Γt, respectively. Let χ be the motion function that maps the reference coordinate

Figure 1: Domain description of the problem

X ∈ Ω0 onto the current coordinate x ∈ Ω, given by:
x = χ(X). (1)
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The deformation gradient tensor can then be written as:

F =
∂χ

∂X
, (2)

and the Lagrangian strain tensor as:

E =
1

2

(
FTF− I

)
. (3)

The governing equations and the boundary conditions in the reference configuration (in
the absence of inertia and body forces) are given by:

∇ ·P = 0 in Ω0

u = u on Γ u
0

P · nΓ t
0
= t0 on Γ t

0JP · nΓ d
0
K = 0 on Γ d

0 (4)

where P denotes the first Piola Kirchhoff stress, t0 the externally applied traction on
boundary Γ t

0, u the prescribed displacement on boundary Γ u
0 , nΓ t

0
the unit normal on

boundary Γ t
0 and nΓ d

0
the unit normal on boundary Γ d

0 .
In this paper, compressible hyperelastic models are formulated to treat large de-

formations. To achieve this, the constitutive relations are nonlinear in terms of the
deformation gradient tensor. In this study, the Neo-Hookean material is employed,
which has the following stored energy function:

W =
κ

2
(detF− 1)2 +

µ

2
(TrC− 3) (5)

where
C = (detF)−

2
3C and C = FT · F.

Here, Tr(·) denotes the trace of a tensor and κ and µ denote the bulk modulus and
the shear modulus, respectively. Due to the presence of material and geometric non-
linearities, the resulting boundary value problem is nonlinear and consequently, needs
to be solved by the nonlinear finite element method. In this study, the Total La-
grangian formulation is employed. The domain occupied by the body is partitioned
into non-overlapping elements Ωh and the functions that span at least the linear space
are employed as the trial (Na) and the test functions (Nb) as: uh =

∑
a

Naua and

vh =
∑
b

Nbvb, respectively. Following the standard Galerkin procedure, the weak form

is given by: Find uh ∈ U h, such that,∫
Ω0

δETSdΩ0 −
∫
Γ0

δuTt0 dΓ0 = 0, (6)

where
U h ⊂ U =

{
u(x) ∈ H1(Ω),u = ū on Γ u

0

}
(7a)
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V h ⊂ V =
{
v(x) ∈ H1

0(Ω),v = 0 on Γ u
0

}
(7b)

and S = F−1P denotes the second Piola Kirchhoff stress, related to stored energy
function W by:

S =
∂W

∂E
= 2

∂W

∂C
(8)

Equation (6) is a nonlinear equation and the unknown fields are computed by adopting
the Newton-Raphson method, which leads to the following system of algebraic equa-
tions:

KT∆d = fext − fint (9)
Here, KT is the tangent stiffness matrix, which is a sum of the material tangent stiffness
matrix KM and the geometric tangent stiffness matrix KG, given by:

KM =
∑
e

Kh
M =

∑
e

∫
Ω0

BT
L D BL dΩ0 (10a)

KG =
∑
e

Kh
G =

∑
e

∫
Ω0

BT
NL S BNL dΩ0 (10b)

where the following matrix forms are implied:

S =


Sxx Sxy 0 0
Syx Syy 0 0
0 0 Sxx Sxy

0 0 Syx Syy

 D =

Dxx Dxy 0
Dyx Dyy 0
0 0 Dzz


with the tensor form of D to be computed following:

D =
∂2W

∂E∂E
= 4

∂2W

∂C∂C
.

The linear and the nonlinear strain-displacement matrices in Equation (10) are given
by:

BL1(I) =

N I,X
0

0 N
I,Y

N
I,Y

N
I,X

 (11a)

BL2(I) =

 N
I,X
u
X,X

N
I,X
u
Y,X

N
I,Y
u
X,Y

N
I,Y
u
Y,Y

N
I,Y
u
X,X

+N
I,X
u
X,Y

N
I,X
u
Y,Y

+N
I,Y
u
Y,X

 (11b)

BNL(I) =


N

I,X
0

N
I,Y

0

0 N
I,X

0 N
I,X

 (11c)
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The right-hand side of Equation (9) is the residual due to lack of strict fulfillment of
equilibrium condition. It is the difference between internal force fint and the external
force fext vector, given by:

fint =
∑
e

fhint =
∑
h

∫
Ω0

BT
L Sv dΩ0 (12a)

fext =
∑
e

fhext =
∑
e

∫
Γ0

NTt0 dΓ0 (12b)

where Sv in column form reads:

Sv =
{
Sxx Syy Sxy

}T
.

3. Smoothed stable extended finite element method

3.1. Stable extended finite element method
The trial and the test functions used to derive the weak form in the previous section

are continuous and hence cannot capture the internal discontinuity, unless a conforming
discretization is used. In this work, the internal discontinuity is represented independent
of the underlying discretization using level sets. The local behaviour is captured within
the framework of the extended finite element method [6, 8]. The basic idea is to augment
the FE function space with ‘additional functions’ that capture the local behavior. Of
the different variants of the XFEM available in the literature, we adopt the Stable
eXtended Finite Element (SXFEM) [36]. This is because, the SXFEM: (a) alleviates
the blending problem; (b) reduces the conditioning number of the resulting system and
(c) does not require extra layer of enrichment (which results in additional dofs) like the
corrected XFEM [37]. Within this framework, the augmented (also referred to as the
enriched) displacement field is given by:

u(X) =
n∑

I=1

NI(X)uI︸ ︷︷ ︸
ustd

+
m∑

J=1

NJ(X) [ψ(X)− Ihψ(X)] aJ︸ ︷︷ ︸
uenr

(13)

where

• n,m are the set of all the nodes in the domain and the set of all enriched nodes,
respectively.

• uI and aJ are the standard and the enriched displacement unknowns.

• NI(X) are the standard finite element shape functions and ψ(X) is the enrichment
function.

• Ihψ(X) =
∑

I NI(X)ψ(XI) is a piecewise linear interpolant of ψ(X).
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Enriched Element

Blending Element

Standard Element

Enriched Node

Standard Node

Figure 2: Types of elements in the XFEM: the weak discontinuity is presented by the red line.

Figure 2 shows an interface represented independent of the underlying FE mesh and
the corresponding standard and enriched nodes. Two types of enrichment functions are
generally used to model weak discontinuity. The first function is based on the absolute
value of the level set function [38] and the second is a ridge function centered on the
interface [35]. In this study, we use the absolute value of the level function as the
enrichment function. The level set function required is given by the following signed
distance function:

ψ(X) = min∥X−X∗∥ sign((X−X∗) · n) (14)
where X∗ denotes the point on the interface boundary closest to point X, and n denotes
the unit normal vector to the interface at a point X. The level set function is stored
at the nodes and interpolated using the conventional FE basis functions. With the
displacement given by Equation (13), the strain-displacement matrix for the augmented
approximation can be expressed as follows:

BL =
[
Bstd

L Benr
L
]

BNL =
[
Bstd

NL Benr
NL
]
. (15)

The standard part (for both linear and nonlinear) of the strain-displacement matrix is
given by Equation (11), whereas the enriched part reads:

Benr
L1(I) =


N

enr

I,X
0

0 N
enr

I,Y

N
enr

I,Y
N

enr

I,X

 Benr
L2(I) =


N

enr

I,X
u
X,X

N
enr

I,X
u
Y,X

N
enr

I,Y
u
X,Y

N
enr

I,Y
u
Y,Y

N
enr

I,Y
u
X,X

+N
enr

I,X
u
X,Y

N
enr

I,X
u
Y,Y

+N
enr

I,Y
u
Y,X

 .
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Benr
NL(I) =


N

enr

I,X
0

N
enr

I,Y
0

0 N
enr

I,X

0 N
enr

I,X

 .
The addition of custom tailored functions to capture the local behaviour poses a chal-
lenge in computing the stiffness matrix and the residual force vector. Standard Gauss
quadrature can, after all, not be employed, as the discontinuity cuts the elements
arbitrarily. This has attracted considerable attentions. Some of the key contribu-
tions are: the use of higher order Gauss quadrature [39, 40], equivalent polynomial
approach [41, 42], conformal mapping [43], strain smoothing technique [28, 30, 31],
moment fitting [44, 45] and Euler’s homogeneous function approach [46].

3.2. Overview of the smoothed finite element method
To alleviate the difficulty associated with the numerical integration of the stiffness

matrix and the force vector, in this study, we propose to use the cell based smoothed
finite element method (CSFEM). Here, only the key equations of the method are sum-
marized. For a detailed derivation and the fundamental concepts of this method, the
reader is referred to the open literature [15, 28] and the references therein.

The SFEM relies on computing a modified strain field, which is a weighted average
of the standard compatible strain field ε. In the present study however, the deformation
gradient tensor is modified instead:

F̃ij(Xc) =

∫
Ωh

C

Fij(X)f(X) dV

δij + ũi,j(Xc) =

∫
Ωh

C

[
δij + ui,j(X)

]
f(X) dV (16)

where f(X) denotes the smoothing function which satisfies f(X) ≥ 0 and
∫

Ωh
C

f(X) dV =

1. Our expression for f(X) reads:

f(X) =


1

Ac

if X ∈ Ωh
C

0 otherwise.
(17)

Substitution of Equation (17) in Equation (16) and by the use of the divergence theorem
then yields:

ũi,j(Xc) =
1

Ac

∫
Γh
C

ui(X)nj(X) dV. (18)

This integral can be evaluated using a one dimensional numerical integration rule, as:

ũi,j(Xc) =
1

Ac

nb∑
k=1

ngptk∑
g=1

ui(
kXg)

knj
kwg. (19)
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where Xc denotes the internal Gauss point of the smoothing cell, Ac the area of the
smoothing cell, nb the number of edges of a particular smoothing cell, ngptk the number
of Gauss points for the kth edge, knj the jth component of the unit normal of the kth
edge, and kXg and kwg the coordinate vector and weight of the gth Gauss point of the
kth edge, respectively. Figure 3 shows a schematic of the location of the interior Gauss
points, for a standard element and an element intersected by a discontinuity. In case of

(a) (b)

(c) (d)

Figure 3: Schematic representation of location of Gauss points: (a-b) standard and enriched element in
SXFEM and (c-d) standard and enriched element in S2XFEM. The red line represents the discontinuity,
the black circle represents the internal Gauss points and the ‘dotted’ line represents the sub-division.
Note that the sub-division is solely for the purpose of numerical integration and does not introduce
any additional dofs.

the augmented displacement field, the above procedure is applied to both the standard
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and the enriched part as:

ũstdi,j (Xc) =
1

Ac

nb∑
k=1

ngptk∑
g=1

ustdi (kXg)
knj

kwg

ũenri,j (Xc) =
1

Ac

nb∑
k=1

ngptk∑
g=1

uenri (kXg)
knj

kwg (20)

With these definitions, the modified strain-displacement matrix yields:

B̃std
L1(I) =


Ñ

std

I,X
0

0 Ñ
std

I,Y

Ñ
std

I,Y
Ñ

std

I,X

 B̃std
L2(I) =


Ñ

std

I,X
ũ
X,X

Ñ
std

I,X
ũ
Y,X

Ñ
std

I,Y
ũ
X,Y

Ñ
std

I,Y
ũ
Y,Y

Ñ
std

I,Y
ũ
X,X

+ Ñ
std

I,X
ũ
X,Y

Ñ
std

I,X
ũ
Y,Y

+ Ñ
std

I,Y
ũ
Y,X



B̃enr
L1(I) =

Ñ
enr

I,X
0

0 Ñ
enr

I,Y

Ñ
enr

I,Y
Ñ

enr

I,X

 B̃enr
L2(I) =

 Ñ
enr

I,X
ũ
X,X

Ñ
enr

I,X
ũ
Y,X

Ñ
enr

I,Y
ũ
X,Y

Ñ
enr

I,Y
ũ
Y,Y

Ñ
enr

I,Y
ũ
X,X

+ Ñ
enr

I,X
ũ
X,Y

Ñ
enr

I,X
ũ
Y,Y

+ Ñ
enr

I,Y
ũ
Y,X



B̃std
NL(I) =


Ñ

std

I,X
0

Ñ
std

I,Y
0

0 Ñ
std

I,X

0 Ñ
std

I,X

 B̃enr
NL(I) =


Ñ

enr

I,X
0

Ñ
enr

I,Y
0

0 Ñ
enr

I,X

0 Ñ
enr

I,X

 .
and the following smoothed elemental stiffness matrix and the smoothed elemental
internal force vector:

K̃e
M =

nc∑
C=1

(
ngp∑
q=1

B̃T
L(

qXC)D̃(qXC)B̃L(
qXC)

qwC

)

K̃e
G =

nc∑
C=1

(
ngp∑
q=1

B̃T
NL(

qXC)S̃m(
qXC)B̃NL(

qXC)
qwC

)

f̃hint =
nc∑

C=1

(
ngp∑
q=1

B̃T
L(

qXC)S̃v(
qXC)

qwC

)
. (21)

where nc is the number of smoothing cells and ngp is the number of Gauss points
within the smoothing cell. Note that in evaluating the smoothed strain-displacement
matrices and the corresponding stiffness matrix, no explicit form of the shape functions
is required and it eliminates the need for an isoparametric mapping.

10



4. Recovery based error indicator and quadtree decomposition

4.1. Recovery based error indicator
The recovery based error indicator proposed by Bordas and Duflot [47, 48] is em-

ployed to assess the error and list the elements for refinement. In this method, the
enhanced strain field is computed using the standard nodal solution through the eX-
tended Moving Least Square (XMLS) derivative recovery process. The Moving Least
Square (MLS) shape functions of the nx points whose domain of influence contain points
x is given by:

ΦT (x) = pT (x)A−1(x)B(x) (22)
where p(x) =

[
1 x y

]
denotes the reproducing polynomial and

A(x) =
nx∑
I=1

wI(x)p(xI)p
T (xI)

B(x) =
[
w1(x)p(x1) w2(x)p(x2) ... wnx(x)p(xnx)

]
.

Here, the weight function of a node is calculated by the diffraction method with a
circular domain of influence for node xk. In this work, a fourth order spline is taken as
the weighting function:

wk(s) =

{
1− 6s2 + 8s3 − 3s4 if |s| ≤ 1

0 if |s| > 1
. (23)

where s = ∥x−xk∥
dk

and dk denotes the support domain of node xk. The function takes 0
value when the parameter s takes value less than 1, which means nodes whose domain
of influence does not contain the point x will not contribute to the recovery process.
Since the strain is discontinuous across the discontinuity, nodes hidden behind the
discontinuity are also neglected. The enhanced derivative of the shape functions are
computed by finding the derivatives of the MLS shape functions (see Equation (22)).
Using the enhanced derivatives, the enhanced deformation gradient Fs and the enhanced
Lagrangian strain Es can be found. The error between the enhanced strain field and
the standard strain field is considered as the error. The tolerance is considered based
on the bulk error criteria, where the fixed fraction of the total error creating elements
are refined in the next level. The elements selected for the refinement are chosen by
the descending order of their individual elemental error.

4.2. Quadtree decomposition
In this meshing technique, one specific criterion named as the stopping criterion

is chosen to decide which element requires to be further refined. If the given element
does not satisfy the stopping criterion within the user specified tolerance limit, it will
be divided into four child elements. A quadtree structure and a mesh with element
numbering are shown in Figure 4. This criterion can be a geometry based factor or
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(a) Quadtree mesh (b) Tree structure for the mesh

Figure 4: Quadtree decomposition: (a) representative quadtree mesh and (b) tree structure employed
to store the mesh details.

Pi
Pi+1

P

Pi−1
αi

αi−1

Figure 5: Schematic representation of an element with hanging node and the construction of mean
value coordinates.
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any error indicator. The above decomposition, leads to elements with hanging nodes
and the conventional FE approach cannot handle such elements without additional
work. This is because of lack of compatibility. In this work, the elements with hanging
nodes are considered as the polygons (see Figure 5) and the mean-value coordinates [49]
are used to approximate the unknown fields, that are compatible across the element
boundaries. The mean-value coordinates for an arbitrary polygon is given by:

Ni(x) =
Wi(x)∑n
j=1Wi(x)

, i = 1, · · · , n

Wi(x) =
tan(αi−1/2) + tan(αi/2)

∥x− xi∥
(24)

where n is the number of nodes in an element, xi is the coordinate of point Pi and αi’s
are the internal angle.

5. Numerical Examples

In this section, two 2-dimensional examples of a plane strain nature are solved to
demonstrate the accuracy and the robustness of the proposed method. Here, the results
of the proposed framework, i.e. Smoothed SXFEM (S2XFEM), are compared with those
of the stable XFEM (SXFEM) in terms of error norms and computational time. All the
computations were performed on a i7-7700K CPU@4.2GHZ and 32GB RAM worksta-
tion. As analytical solutions are not available for the problems due to the nonlinearity
of the constitutive law, the standard FEM solution using an overkill discretisation from
Abaqus is used as the reference solution. Note that the overkill FE solution uses a
conforming mesh. For both SXFEM and S2XFEM, the adaptive refinement combined
with the quadtree decomposition is used. We measure the accuracy by determining the
L2-norms of the displacements and the Cauchy stress as follows:

||u||L2 =

∫
Ω0

(u− uh) · (u− uh) dV∫
Ω0

u · u dV

||σ||L2 =

∫
Ω0

(σ − σh) · (σ − σh) dV∫
Ω0

σ · σ dV

(25)

where u and σ denote the reference displacement and stress values, respectively, and
uh and σh denote the computed displacement and stress values, respectively. An out-
line of the nonlinear XFEM implementation with the adaptive refinement is shown in
Algorithm 1. For the purpose of numerical integration, the elements that are inter-
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Algorithm 1: Pseudo-code for adaptive smoothed stable XFEM
Input : Material parameters, boundary conditions, inclusion information
Output: Displacement field
while level <= maxLevel or number of slave elements > 0 do

update the mesh by refining the elements ;
find enrichment function at the nodes of the new mesh ;
initialize parameters for Newton iteration: err, count, d ;
for steps← 1 to numsteps do

count = 1; convergence = 1; factor = step/numsteps; ;
compute external force fext (at d) ;
while err > tolerance do

find stiffness matrix KT and internal force fint (at d) ;
find the residual R = fext − fint ;
solve for incremental displacement: ∆d = K−1

T R ;
update d = d+∆d ;
find err = ||∆d/d|| ;
update internal boundary conditions;

estimate the enhanced Lagrangian strain and compute the error in the FE
solution ;

find the elements with error greater than the user defined tolerance ;

14



sected by the discontinuity are sub-divided into triangles and higher order quadrature
is employed in case of SXFEM, whilst the modified derivative is computed at the center
of the triangle in case of S2XFEM, as mentioned in Section 3.2. Note that the purpose
of the subdivision is for numerical integration and does not introduce additional dofs.
Table 1 presents the quadrature rule employed for the SXFEM and S2XFEM.

Table 1: Number of quadrature points (per element) employed to compute the terms in the stiffness
matrix and the residual force vector for standard and enriched elements for SXFEM and S2XFEM.

Type of element SXFEM S2XFEM

Standard elements 4 4
Split enriched elements (per triangle) 3 1
Blending elements 4 4

5.1. Square plate with a circular inclusion
The first example considers a stiff circular inclusion in the center of a square plate

(see Figure 6). The radius of the inclusion is taken as 0.21 mm and each side of the plate
has a length of 1 mm. Both the matrix and the inclusion are considered as compressible
Neo-Hookean materials given by the stored energy function, see Equation (5). Table 2
lists the material properties of the matrix and the inclusion. The vertical displacements
at the bottom surface are restrained and a vertical displacement of 0.15mm is applied at
the top surface in the negative y−direction. This loading is applied in five increments
and each increment is stopped when the absolute residual < 1×10−11. As mentioned

Table 2: Square plate with a rigid circular inclusion: material properties for the matrix and the
inclusion

Method Shear modulus (MPa) Bulk modulus (MPa)
µ κ

Matrix 2.5 12.5
Inclusion 2.5 × 102 12.5 × 102

earlier, the geometry of the inclusion is implicitly defined and a coarse discretization is
adopted. Based on the error indicator, the elements with an error larger than a user
specified tolerance (70% for the current study) are listed in its ascending order. By
maintaining a 2:1 ratio, the elements in the list are divided into four ‘child’ elements.
Figure 7 shows the mesh obtained after the third level of refinement and the corre-
sponding error distribution; the mesh at the fourth level is also shown for comparison.
Based on this, five levels of refinements is found to be adequate. Table 3 compares
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Table 3: Comparison of the degrees of freedom, relative error in L2 norm between the SXFEM and
the S2XFEM for different levels of refinement. The total dofs of the conventional FEM is also given,
the solution of which is used as the reference solution.

Method Number Number Total Number Relative Relative
of of dofs of error in error in

standard enriched Gauss displacement Cauchy stress
nodes nodes points L2 norm L2 norm

S2XFEM
Level 1: 121 36 314 440 1.4736×10−2 5.7303×10−1

Level 2: 341 72 826 1,292 5.6756×10−3 3.9826× 10−1

Level 3: 853 136 1,978 3,280 1.9793×10−3 2.4261×10−1

Level 4: 1,877 264 4,282 7,368 1.0397 ×10−3 1.2765 ×10−1

Level 5: 4,977 536 11,026 10,256 3.8898 ×10−4 4.7072 × 10−2

SXFEM
Level 1: 121 36 314 1,160 1.7910×10−2 1.9109×100

Level 2: 341 72 826 3,476 5.6402×10−3 6.7000×10−1

Level 3: 881 136 2,034 8,588 1.9492×10−3 3.4003×10−1

Level 4: 2,283 264 5,094 19,928 8.0782×10−4 1.4061×10−1

Level 5: 6,195 536 13,462 46,252 3.1209×10−4 6.7708 ×10−2

FEM 138,683 277,366 552,064
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Figure 6: Domain description of the problem

the total number of dofs, number of Gauss points required to evaluate the bilinear and
linear form and the relative error in the L2 norm of the displacement and the Cauchy
stress for SXFEM and S2XFEM. An overkill FE solution is used as reference solution
and the error in the L2 norm is obtained by projection of meshes. It can be seen that
with adaptive refinement, both the methods converge asymptotically with optimal con-
vergence rate as shown in Figure 8. From Table 3, it is opined that the total dofs for
SXFEM and S2XFEM are almost similar, however, S2XFEM requires fewer number of
Gauss points (roughly 4 times less) than the SXFEM without compromising the accu-
racy of the solution. Figures 9-10 show the displacement and Cauchy stress comparison
between the proposed framework, the SXFEM and the conventional FEM. It is seen
that a good comparison is obtained. A detailed comparison of computational time is
presented in the next example.
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(a) 3rd level refined mesh (b) Error distribution for the 3rd level mesh

(c) 4th level refinement

Figure 7: Refinement from 3rd level mesh to 4th level mesh using the error distribution given by the
error indicator: (a) shows the mesh at level 3 and the corresponding error plot and (b) the mesh at
level 4.
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Figure 8: Square plate with a single inclusion: convergence of the relative error in the L2 norm of (a)
the displacement and (b) Cauchy stress with mesh refinement for SXFEM and S2XFEM.

(a) ux (S2XFEM) (b) ux (SXFEM) (c) ux (Abaqus)

(d) uy(S2XFEM) (e) uy (SXFEM) (f) uy (Abaqus)

Figure 9: Comparison of displacement contours along x and y direction between S2XFEM, SXFEM
and Abaqus.
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(a) σxx (S2XFEM) (b) σxx (SXFEM) (c) σxx (Abaqus)

(d) σyy(S2XFEM) (e) σyy (SXFEM) (f) σyy (Abaqus)

(g) σxy(S2XFEM) (h) σxy (SXFEM) (i) σxy (Abaqus)

Figure 10: Cauchy stress distribution in the matrix for a single inclusion: a comparison between the
S2XFEM, SXFEM and Abaqus.
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5.2. Square domain with multiple random inclusions - Dirichlet Boundary Condition

x

y

1
m
m

u

1mm

A

A

(a) Domain description (b) Final deformed configura-
tion

Figure 11: Square domain with multiple random inclusions. Note that along section A-A, the results
will discussed.

The second example considers 8 stiff inclusions of different sizes, randomly placed
in a matrix material (Figure 11). The radius of the smallest inclusion is approximately
0.041 mm and that of the largest inclusion is approximately 0.1458 mm. The random
inclusions are generated using a random sequential adsorption algorithm [50]. The
domain is fixed on the bottom edge and top edge is given a displacement of 1 mm
in the positive y direction as shown Figure 11. Table 4 lists the material properties
of the matrix and the inclusions. The reference solution is again obtained using a

Table 4: Material properties for the matrix and the inclusion

Material Shear modulus (MPa) Bulk modulus (MPa)

µ κ

Matrix 7/9× 105 7/3× 105

Inclusion 7/9× 109 7/3× 109
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Figure 12: Square plate with multiple inclusions: convergence of relative error in (a) displacement and
(b) Cauchy stress.

conforming mesh in Abaqus, this time with 133,965 nodes. The final mesh employed
for SXFEM and S2XFEM consists of 12,464 standard nodes (+ 2780 enriched nodes)
and 13,209 standard nodes (+ 2780 enriched nodes), respectively and the final deformed
configuration is shown in Figure 11(b). Figure 12 shows the convergence of the relative
error in the L2 norm of the displacement and Cauchy stress with mesh refinement and
it is seen that both the methods converge asymptotically with mesh refinement. Table
5 shows the time taken by the error indicator procedure at different levels of refinement
for SXFEM and S2XFEM, respectively and it is seen that the time taken is slightly
higher for SXFEM than the S2XFEM, although the SXFEM has fewer DOFs. This is
because, SXFEM requires ‘more’ integration points to evaluate the terms in the bilinear
and linear form. Next, the relative error in Cauchy stress along the section A-A and

Table 5: Error indicator computation time for SXFEM and S2XFEM

Level DOFs CPU time (sec)

S2XFEM SXFEM S2XFEM SXFEM

Level 1 2,612 2,612 11.976 48.627

Level 2 5,588 5,464 31.050 126.240

Level 3 13,272 12,822 121.95 383.727

the corresponding DOFs for different levels of refinement is shown for SXFEM and
S2XFEM in Table 6. For comparison, the DOFs and the relative error in case of FEM
is also given. In case of FEM, the built-in error indicator (based on Mises equivalent
stress) with adaptive refinement available in Abaqus with default setting is employed.
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Table 6: Relative error in Cauchy Stress and DOFs at different levels of refinement for FEM, SXFEM
and S2XFEM along the section AA

Method Level DOFs Relative

Stress Error

FEM Level 1 2,924 7.9043×10−2

Level 2 8,514 5.8445×10−2

Level 3 29,930 1.1230×10−2

SXFEM Level 1 2,612 3.1239×100

Level 2 5,464 1.4728×100

Level 3 12,822 3.2782×10−1

Level 4 30,488 9.5557×10−2

S2XFEM Level 1 2,612 4.4418×100

Level 2 5,588 4.2432×10−1

Level 3 13,272 2.3028×10−1

Level 4 31,978 5.1661×10−2
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Figure 13 shows the mesh adopted at level 3 in case of FEM and level 4 in case of
SXFEM and S2XFEM. It is seen that the SXFEM and S2XFEM yields similar order of
accuracy, with the advantage that the geometry can be independent of the underlying
discretization.

(a) FEM: Level 3, Dofs=29,930

(b) SXFEM: Level 4, Dofs=30,488 (c) S2XFEM: Level 4, Dofs=31,978

Figure 13: Mesh details for FEM (level 3) and for SXFEM and S2XFEM (level 4). The ‘red’ line
denotes the interface.
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Figure 14: Scaled conditioning number as a function of mesh size for the S2XFEM, SXFEM and the
FEM.

The scaled conditioning number κ of the transformed matrix K̃ = PTKP with
increasing total DOFs is shown in Figure 14, where P =

√
diag(K)−1 is the pre-

conditioner, chosen such that the conditioning number of the transformed matrix K̃ is
smaller than the original matrix. It is inferred from Figure 14 that the scaled condition-
ing number from the proposed method increases at the same rate as the SXFEM and
the conventional FEM with increasing DOFs. Figure 15 shows the computational effort
required for SXFEM and the S2XFEM for evaluating the stiffness matrix and the subse-
quent solution of linear systems. The subscript ‘s’ refers to the proposed framework. It
is evident from Figure 15 that the proposed framework requires less computational time
when compared to SXFEM. The Cauchy stress along the section AA (see Figure 11)
is calculated. The results obtained from SXFEM and S2XFEM are compared with the
results obtained from Abaqus (FEM) in Figure 16. It is opined that both SXFEM and
S2XFEM yields accurate results.

6. Conclusions

This paper proposes to combine the stable XFEM with strain smoothing. A recovery
based error indicator together with a quadtree decomposition ensures an effective mesh
refinement. The elements with hanging nodes are treated as polygonal elements, which
ensures compatibility between elements and the mean value coordinates as the basis
functions. The results from the proposed framework are compared with those of the
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Figure 15: CPU time comparison between SXFEM and S2XFEM in terms of (a) total time and mean
iteration time (b) IIET (Initial Information Evaluation Time), KMET (Stiffness Matrix Evaluation
Time) and LSST (Linear System Solving Time) (where, Ln = SXFEM Level n , Lns= S2XFEM Level
n

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

4

6
·105

Normalized distance along section AA

σ
xx

(M
Pa

)

SXFEM S2XFEM
Abaqus FEM Ref. Sol

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

·105

Normalized distance along section AA

σ
yy

(M
Pa

)

SXFEM S2XFEM
Abaqus FEM Ref. Sol

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

·105

Normalized distance along section AA

σ
xy

(M
Pa

)

SXFEM S2XFEM
Abaqus FEM Ref. Sol

Figure 16: Cauchy stress along the section AA. Note that the Abquas FEM is based on adaptive
refinement and the Ref. Solution is obtained using an uniformly FE refined mesh (conforming mesh).
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stable XFEM and those of a conventional FEM with a substantially fine discretisation.
It is seen that the S2XFEM yields comparable results. Moreover, the proposed method
does not require the derivative of the shape functions, hence, the isoparametric mapping
is alleviated and requires fewer integration points to achieve similar level of accuracy
as that of the stable XFEM.

Acknowledgements

Krishna Kannan and Sundararajan Natarajan would like to thank MHRD and
MoRTH, Government of India, for the financial support under the IMPRINT India
initiative (Pr.No. MEE/1617/357 /MIMP/KRIA), and the industrial partner MRF.

28



Reference

[1] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 1977.

[2] T. Belytschko, Y. Y. Lu, and L. Gu. Element‐free Galerkin methods. International
Journal for Numerical Methods in Engineering, 1994.

[3] Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. Reproducing kernel particle meth-
ods. International Journal for Numerical Methods in Fluids, 20(8‐9):1081–1106,
1995.

[4] C. Armando Duarte and J. Tinsley Oden. H-p clouds: an h-p meshless method.
Numerical Methods for Partial Differential Equations, 12(6):673–705, 1996.

[5] J. M. Melenk and I. Babuška. Partition of unity finite element method: basic
theory and applications. Computer Methods in Applied Mechanics and Engineering,
139(1-4):289–314, 1996.

[6] I. Babuška and J. M. Melenk. The partition of unity method. International Journal
for Numerical Methods in Engineering, 40(4):727–758, 1997.

[7] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering,
46(1):131–150, 1999.

[8] T. Belytschko and T. Black. Elastic crack growth in finite elements with min-
imal remeshing. International Journal for Numerical Methods in Engineering,
45(5):601–620, 1999.

[9] Zuoyi Kang, Tinh Quoc Bui, Du Dinh Nguyen, Takahiro Saitoh, and Sohichi Hi-
rose. An extended consecutive-interpolation quadrilateral element (XCQ4) applied
to linear elastic fracture mechanics. Acta Mechanica, 2015.

[10] Zhen Wang, Tiantang Yu, Tinh Quoc Bui, Ngoc Anh Trinh, Nguyen Thi Hien
Luong, Nguyen Dinh Duc, and Duc Hong Doan. Numerical modeling of 3-D in-
clusions and voids by a novel adaptive XFEM. Advances in Engineering Software,
2016.

[11] Tiantang Yu and Tinh Quoc Bui. Numerical simulation of 2-D weak and strong
discontinuities by a novel approach based on XFEM with local mesh refinement.
Computers and Structures, 2018.

[12] Jiming Gu, Tiantang Yu, Le Van Lich, Thanh Tung Nguyen, and Tinh Quoc
Bui. Adaptive multi-patch isogeometric analysis based on locally refined B-splines.
Computer Methods in Applied Mechanics and Engineering, 2018.

29



[13] Jiming Gu, Tiantang Yu, Le Van Lich, Thanh Tung Nguyen, Satoyuki Tanaka,
and Tinh Quoc Bui. Multi-inclusions modeling by adaptive XIGA based on LR
B-splines and multiple level sets. Finite Elements in Analysis and Design, 2018.

[14] Chen, Jiun-Shyan and Wu, Cheng-Tang and Yoon, Sangpil and You, Yang. A sta-
bilized conforming nodal integration for galerkin mesh-free methods. International
Journal for Numerical Methods in Engineering, 50(2):435–466, 2001.

[15] G. R. Liu, K. Y. Dai, and T. T. Nguyen. A smoothed finite element method for
mechanics problems. Computational Mechanics, 39(6):859–877, 2007.

[16] P. Liu, T. Q. Bui, Ch Zhang, T. T. Yu, G. R. Liu, and M. V. Golub. The singular
edge-based smoothed finite element method for stationary dynamic crack problems
in 2D elastic solids. Computer Methods in Applied Mechanics and Engineering,
2012.

[17] L. Wu, P. Liu, C. Shi, Z. Zhang, Tinh Quoc Bui, and D. Jiao. Edge-based smoothed
extended finite element method for dynamic fracture analysis. Applied Mathemat-
ical Modelling, 2016.

[18] Zuoyi Kang, Tinh Quoc Bui, Takahiro Saitoh, and Sohichi Hirose. Quasi-static
crack propagation simulation by an enhanced nodal gradient finite element with
different enrichments. Theoretical and Applied Fracture Mechanics, 2017.

[19] Zuoyi Kang, Tinh Quoc Bui, Du Dinh Nguyen, and Sohichi Hirose. Dynamic
stationary crack analysis of isotropic solids and anisotropic composites by enhanced
local enriched consecutive-interpolation elements. Composite Structures, 2017.

[20] Minh Ngoc Nguyen, Tinh Quoc Bui, Nha Thanh Nguyen, Thien Tich Truong, and
Le Van Lich. Simulation of dynamic and static thermoelastic fracture problems
by extended nodal gradient finite elements. International Journal of Mechanical
Sciences, 2017.

[21] H. Nguyen-Xuan and G. R. Liu. An edge-based smoothed finite element method
softened with a bubble function (bES-FEM) for solid mechanics problems. Com-
puters and Structures, 2013.

[22] Thanh Hai Ong, Claire E. Heaney, Chang Kye Lee, G. R. Liu, and H. Nguyen-
Xuan. On stability, convergence and accuracy of bES-FEM and bFS-FEM for
nearly incompressible elasticity. Computer Methods in Applied Mechanics and
Engineering, 2015.

[23] T. Nguyen-Thoi, G. R. Liu, H. C. Vu-Do, and H. Nguyen-Xuan. An edge-based
smoothed finite element method for visco-elastoplastic analyses of 2D solids using
triangular mesh. Computational Mechanics, 2009.

30



[24] T. Nguyen-Thoi, G.R. Liu, H.C. Vu-Do, and H. Nguyen-Xuan. A face-based
smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D
solids using tetrahedral mesh. Computer Methods in Applied Mechanics and En-
gineering, 198(41):3479 – 3498, 2009.

[25] T. Nguyen-Thoi, H. C. Vu-Do, T. Rabczuk, and H. Nguyen-Xuan. A node-based
smoothed finite element method (NS-FEM) for upper bound solution to visco-
elastoplastic analyses of solids using triangular and tetrahedral meshes. Computer
Methods in Applied Mechanics and Engineering, 2010.

[26] C. Thai-Hoang, N. Nguyen-Thanh, H. Nguyen-Xuan, and T. Rabczuk. An alter-
native alpha finite element method with discrete shear gap technique for analysis
of laminated composite plates. Applied Mathematics and Computation, 2011.

[27] Stéphane P. A. Bordas, Timon Rabczuk, Nguyen Xuan Hung, Vinh Phu Nguyen,
Sundararajan Natarajan, Tino Bog, Do Minh Quan, and Nguyen Vinh Hiep. Strain
smoothing in FEM and XFEM. Computers and Structures, 88(23-24):1419–1443,
2010.

[28] Stéphane P. A. Bordas, Sundararajan Natarajan, Pierre Kerfriden, Charles Ed-
ward Augarde, D. Roy Mahapatra, Timon Rabczuk, and Stefano Dal Pont. On
the performance of strain smoothing for quadratic and enriched finite element
approximations (XFEM/GFEM/PUFEM). International Journal for Numerical
Methods in Engineering, 86(4-5):637–666, 2011.

[29] Y. Jiang, T. E. Tay, L. Chen, and X. S. Sun. An edge-based smoothed XFEM for
fracture in composite materials. International Journal of Fracture, 2013.

[30] Amrita Francis, Alejandro Ortiz-Bernardin, Stéphane P. A. Bordas, and Sun-
dararajan Natarajan. Linear smoothed polygonal and polyhedral finite elements.
International Journal for Numerical Methods in Engineering, 109(9):1263–1288,
2017. nme.5324.

[31] M. Surendran, Sundararajan Natarajan, Stéphane P. A. Bordas, and G. S. Palani.
Linear smoothed extended finite element method. International Journal for Nu-
merical Methods in Engineering, 112(12):1733–1749, 2017.

[32] W. Zeng and G. R. Liu. Smoothed Finite Element Methods (S-FEM): An Overview
and Recent Developments. Archives of Computational Methods in Engineering,
25(2):397–435, 2018.

[33] M. T. Duong. Hyperelastic Modeling and Soft-Tissue Growth Integrated with the
Smoothed Finite Element Method-SFEM. PhD Thesis,RWTH Aachen University,
Germany, 2014.

31



[34] Chang Kye Lee, L. Angela Mihai, Jack S. Hale, Pierre Kerfriden, and Stéphane
P. A. Bordas. Strain smoothing for compressible and nearly-incompressible finite
elasticity. Computers and Structures, 182:540–555, 2017.

[35] N. Moës, M. Cloirec, P. Cartraud, and J. F. Remacle. A computational approach
to handle complex microstructure geometries. Computer Methods in Applied Me-
chanics and Engineering, 192:3163–3177, 2003.

[36] I. Babuška and U. Banerjee. Stable Generalized Finite Element Method (SGFEM).
Computer Methods in Applied Mechanics and Engineering, 201-204:91–111, 2012.

[37] Thomas Peter Fries. A corrected XFEM approximation without problems in
blending elements. International Journal for Numerical Methods in Engineering,
75(5):503–532, 2008.

[38] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko. Modeling holes and
inclusions by level sets in the extended finite-element method. Computer Methods
in Applied Mechanics and Engineering, 2001.

[39] Éric Béchet, Hans Minnebo, Nicolas Moës, and B Burgardt. Improved imple-
mentation and robustness study of the X-FEM for stress analysis around cracks.
International Journal for Numerical Methods in Engineering, 64(8):1033–1056,
2005.

[40] Patrick Laborde, Julien Pommier, Yves Renard, and Michel Salaün. High-order
extended finite element method for cracked domains. International Journal for
Numerical Methods in Engineering, 64(3):354–381, 2005.

[41] Giulio Ventura. On the elimination of quadrature subcells for discontinuous func-
tions in the eXtended Finite-Element Method. International Journal for Numerical
Methods in Engineering, 66(5):761–795, 2006.

[42] Giulio Ventura, Robert Gracie, and Ted Belytschko. Fast integration and weight
function blending in the extended finite element method. International journal for
numerical methods in engineering, 77(1):1–29, 2009.

[43] Sundararajan Natarajan, Stéphane Bordas, and D Roy Mahapatra. Numerical
integration over arbitrary polygonal domains based on Schwarz–Christoffel con-
formal mapping. International Journal for Numerical Methods in Engineering,
80(1):103–134, 2009.

[44] S. E. Mousavi and N. Sukumar. Numerical integration of polynomials and discon-
tinuous functions on irregular convex polygons and polyhedrons. Computational
Mechanics, 47(5):535–554, 2011.

32



[45] Y. Sudhakar and Wolfgang A. Wall. Quadrature schemes for arbitrary con-
vex/concave volumes and integration of weak form in enriched partition of unity
methods. Computer Methods in Applied Mechanics and Engineering, 258:39 – 54,
2013.

[46] E. B. Chin, J. B. Lasserre, and N. Sukumar. Modeling crack discontinuities without
element‐partitioning in the extended finite element method. International Journal
for Numerical Methods in Engineering, 110(11):1021–1048, 2016.

[47] Stéphane Bordas and Marc Duflot. Derivative recovery and a posteriori error
estimate for extended finite elements. Computer Methods in Applied Mechanics
and Engineering, 196(35-36):3381–3399, 2007.

[48] Stéphane P. A. Bordas, Marc Duflot, and Phong Le. A simple error estimator for
extended finite elements. Communications in Numerical Methods in Engineering,
24(11):961–971, 2008.

[49] Michael S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–27, 2003.

[50] Joaquín Moraleda, Javier Segurado, and Javier LLorca. Finite deformation of
incompressible fiber-reinforced elastomers: A computational micromechanics ap-
proach. Journal of the Mechanics and Physics of Solids, 57(9):1596 – 1613, 2009.

33


	Introduction
	Governing equations and weak form
	Smoothed stable extended finite element method
	Stable extended finite element method
	Overview of the smoothed finite element method

	Recovery based error indicator and quadtree decomposition
	Recovery based error indicator
	Quadtree decomposition

	Numerical Examples
	Square plate with a circular inclusion
	Square domain with multiple random inclusions - Dirichlet Boundary Condition

	Conclusions

