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Motivation for pathway analyses

• How do the changes in omics data relate to known cellular 

functions?

• Are there specific cellular pathways / molecular networks which 

display an over-representation of changes in my data?
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Motivation (2): Complex diseases as pathway perturbations

Alterations in different biomolecules of a cellular pathway or

network can cause similar disruptions downstream

Example: Colorectal carcinoma

• Mutation deactivating APC has the same 

overall effect as mutations preventing degra-

dation of β-catenin (Segditsas et al., 2006)

� Strategy: Analyze alterations at the

level of molecular networks and

pathways to complement single

gene/protein level analyses
Wnt/β-catenin signaling pathway

(         = affected by disease-related

mutations)
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Motivation (3): The “curse of dimensionality“

When analyzing increasing

numbers of genes (features):

• the space spanned by these

features grows exponentially

(no. of features = no. of dimensions)

� the available data tends to

become sparse

� discrimination between

different sample groups

(e.g. patients vs. controls)

becomes more difficult

� Strategy: Use pathway activity

representations of the data

to reduce the number of

dimensions
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Pathway / gene set resources

• Many public databases on functional gene sets and pathways available

• Both generic, multi-organism pathway collections and specialized 

collections (e.g. disease pathways such as the PD map)

• Format standardization efforts underway (BioPax, SBGN/SBML)
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Representations of pathways / functional gene groups

Mitochondrion

P53 signaling

Gene.1
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Gene.3

Gene.2

Gene.4

Gene.5

� Find gene sets whose 

members are enriched    

among the differentially 

expressed genes

� pure statistical scoring

GENE SETS NETWORKS

� Identify network regions

enriched in expression

alterations

� scoring topological +

expression criteria

� Score pathways with 

regulatory consistent 

expression alterations

� scoring topology + 

expression changes + 

consistency criteria

DIAGRAMS
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Inconsistencies between pathway definitions

• Pathways are usually manually curated

� subjective decisions on members & 

boundaries

• A pathway defined for the same cellular 

process may look entirely different in two 

separate databases, e.g. “p53 signaling“:

BioCarta (p53 signaling) KEGG (p53 signaling)

Invitrogen iPath (p53 signaling)
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Improving pathway definitions using networks

• Questions: Can we make pathway definitions more objective? Can we 

improve existing pathways according to quantitative criteria (compactness, 

connectivity, density)? 

• Strategy: Use genome-scale networks to redefine pathways:

- protein-protein interactions

- genetic interactions

- gene co-expression relations

� large-scale, higher coverage, less biased

� can also reveal communication between

pathways (“cross-talk“)
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PathExpand: Network-based pathway extension

• Idea: Extend pathways by adding genes that are ”strongly connected“ to the 

pathway-nodes and increase the pathway-“compactness“ in a network.

Pathway extension criteria: Add a node v to set P if:

• v has a pathway-neighbour and degree(v) > 1; and

• #pathway-links(v,p) / #outside-links(v,p) > T1; or

• #triangle-links(v,p) / #possible_triangles(v,p) > T2; or

• #pathway-links(v,p) / #pathway-nodes(p) > T3; and

• avg. shortest path distance in {P,v} smaller than in P

black = pathway-nodes
red blue green = nodes added based on different criteria

...

...

...
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PathExpand: Example

Known cancer pathway: “BTG family proteins

and cell cycle regulation“ (BioCarta)

original pathway

added nodes

� Disconnected nodes  

become connected

� increased pathway-

compactness

Added known 
cancer gene
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PathExpand: Cross-validation

Question: Can randomly deleted genes in the original pathways be 

recovered by the expansion?

� 3-step cross-validation procedure:

1. Randomly remove 10% of the pathway members (among

proteins with at least one partner in the pathway)

2. Apply the proposed extension procedure as well as 100

random extensions (random sampling among candidates)

3. Estimate p-value-like significance scores:
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PathExpand: Semantic similarity analysis

• Goal: Quantify pairwise 

similarities between 

protein annotations

Method: Jiang & 

Conrath‘s semantic GO 

term similarity measure

• Compute avg. GO-term 

similarity between 

pathway-proteins and 

added proteins

� compare to random  

extension model
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Biological applications (1): Alzheimer‘s disease

• More than 20 proteins

annotated in our

PPI network

• 5 proteins added by the 

extension process (circled)

• 3 known to be associated

with the disease

• 2 novel candidates:

METTL2B, TMED10*

(*putative early-onset AD mutations reported)

KEGG Alzheimer disease pathway mapped 
on human PPI-network
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Biological applications (2): Interleukin signaling

• Complex system of

intracellular signaling 

cascades

• New putative pathway 

regulators identified 

• New “cross-talk proteins”

identified (associated

with multiple pathways) Two functions: pathway-regulation & pathway-
communication?
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Biological applications (3): Enrichment analysis

Classical approach: Test enrichment of experimentally derived gene 

sets in cellular pathway members (one-sided Fisher exact test)

� Idea: replace original pathways by extended versions

Example: Enrichment analysis for pancreatic cancer mutated genes:
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Biological applications (4): Pancreatic cancer

• “Cell cycle G1/S check 

point process” - extension 

procedure adds 7 proteins

• 6 of the added proteins are 

involved in cell cycle regulation

• the 7th (TGIF2) is known to be

mutated in pancreatic cancer

• points to functional role

of added proteins
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PathExpand: Conclusion & Summary

• The method integrates two sources of information, extending 

canonical pathways using large-scale protein interaction data

• Three evaluated methods: cross-validation, GO-term semantic 

similarity and enrichment analysis

• Extended pathways are more compact and provide insights on 

on pathway regulators, the cross-talk between pathways and gene 

set functional enrichment
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