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Abstract. Auto-encoders are among the most popular neural network
architecture for dimension reduction. They are composed of two parts:
the encoder which maps the model distribution to a latent manifold and
the decoder which maps the latent manifold to a reconstructed distribu-
tion. However, auto-encoders are known to provoke chaotically scattered
data distribution in the latent manifold resulting in an incomplete re-
constructed distribution. Current distance measures fail to detect this
problem because they are not able to acknowledge the shape of the data
manifolds, i.e. their topological features, and the scale at which the man-
ifolds should be analyzed. We propose Persistent Homology for Wasser-
stein Auto-Encoders, called PHom-WAE, a new methodology to assess
and measure the data distribution of a generative model. PHom-WAE
minimizes the Wasserstein distance between the true distribution and
the reconstructed distribution and uses persistent homology, the study
of the topological features of a space at different spatial resolutions, to
compare the nature of the latent manifold and the reconstructed distribu-
tion. Our experiments underline the potential of persistent homology for
Wasserstein Auto-Encoders in comparison to Variational Auto-Encoders,
another type of generative model. The experiments are conducted on a
real-world data set particularly challenging for traditional distance mea-
sures and auto-encoders. PHom-WAE is the first methodology to propose
a topological distance measure, the bottleneck distance, for Wasserstein
Auto-Encoders used to compare decoded samples of high quality in the
context of credit card transactions.
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1 Motivation

Dimension reduction techniques were initially driven by linear algebra with sec-
ond order matrix decompositions such as the Singular Value Decomposition
(SVD) [1] and, ultimately, with tensor decompositions [2,3], a higher order ana-
logue of the matrix decompositions. Although SVD is fast enough to be applied
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on large data sets, it is limited to second order because it relies on matrices.
While tensors are suitable for third-order experiments and above, the complex-
ity of the decomposition and the time required for the computations become
a limitation as soon as the size of the data set grows [4, 5]. Hence, in recent
years, several architectures for dimension reductions based on neural networks
have been proposed. Dense Auto-Encoders (AE) [6, 7] are one of the most well
established approach. More recently, the Variational Auto-Encoders (VAE) pre-
sented by Kingma et al. in [8] constitute a well-known approach but they might
generate poor target distribution because of the KL divergence.

We recall an AE is a neural network trained to copy its input manifold to its
output manifold through a hidden layer. The encoder function sends the in-
put space to the hidden space and the decoder function brings back the hidden
space to the input space. As explained in [9], the points of the hidden space are
chaotically scattered for most of the encoders, including the popular VAE. Even
after proper training, groups of points of various sizes gather and cluster by
themselves randomly in the hidden layer. Therefore, some features are missing
in the reconstructed distribution G(Z), Z ∈ Z. The description of the scattered
points is very complex using traditional distance measures, such as the Euclidean
distance, because they are not able to acknowledge the shapes of the data man-
ifolds. However, persistent homology is specifically designed to highlight the
topological features of the data [10]. Therefore, building upon persistent homol-
ogy, Wasserstein distance [11] and Wasserstein Auto-Encoders (WAE) [12], our
main contribution is to propose qualitative and quantitative ways to evaluate
the scattered hidden space and the overall performance of AE.

In this work we describe the persistent homology features of the encoded and
decoded model distribution while minimizing the Optimal Transport (OT) func-
tion Wc(PX , PG) for a squared cost c(x, y) = ||x − y||22 where PX is the model
distribution of the data, and PG the latent variable model specified by the prior
distribution PZ of latent manifold Z ∈ Z and the generative model PG(X|Z) of
the initial distribution X ∈ X given Z. The method is highlighted in figure 1.
Our contributions are summarized below:

– A persistent homology procedure for WAE which we call PHom-WAE to
highlight the topological properties of the encoded and decoded distribution
of the data for different spatial resolutions. The objective is twofold: a persis-
tent homology description of the encoded latent space Qz := EPX

[Q(Z|X)],
and a persistent homology description of the decoded latent space following
the generative model PG(X|Z).

– A distance measure for persistence diagrams, the bottleneck distance, ap-
plied to WAE to compare quantitatively the true and the target distributions
on any data set. We measure the shortest distance for which there exists a
perfect matching between the points of the two persistence diagrams. A per-
sistence diagram is a stable summary representation of topological features
of simplicial complex, a collection of vertices, associated to the data set.
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– A persistent homology procedure to highlight the scattered latent distribu-
tion provoked by Variational Auto-Encoders (VAE) in comparison to WAE
on a real-word data set. We use the concepts introduced for PHom-WAE to
define PHom-VAE, Persistent Homology for VAE. We highlight the VAE’s
hidden layer scattered distribution using persistent homology, confirming the
original statement of VAE’s scattered distribution introduced in [13].

– Finally, we propose the first application of algebraic topology and WAE on a
public data set containing credit card transactions, particularly challenging
for traditional distance measures and auto-encoders.

The paper is structured as follows. We discuss related works in section 2. In
section 3, we review the WAE formulation using OT derived by Tolstikhin et
al. in [12]. By using persistence homology, we are able to compare the topolog-
ical properties of the distributions PX , PZ and PG, illustrated in figure 1. We
highlight the experimental results in section 4 and we conclude in section 5 by
addressing promising directions for future work.
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Fig. 1. In PHom-WAE, the function Wc(PX , PG) between the true data distribution
PX and the latent variable model PG of the manifold X is minimized. PG is speci-
fied by the prior distribution PZ of the latent manifold Z and the generative model
PG(X|Z) with X ∈ X , Z ∈ Z. Then, the samples X,Z of each distribution PX , PZ
and PG are transformed independently in a metric data set to obtain filtered simpli-
cial complex. It leads to the construction of the persistence diagram, summarized by
the barcodes, to compute the bottleneck distance used to compare homologically the
respective distribution PX , PZ and PG.
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2 Related Work

Literature on Persistence Homology and Topology A major trend in mod-
ern data analysis is to consider that the data has a shape, and more precisely,
a topological structure. Topological Data Analysis (TDA) is a set of tools rely-
ing on computational algebraic topology allowing to obtain precise information
about the data structure. Two of the most important techniques are persistence
homology and the mapper algorithm [10].

Data sets are usually represented as points cloud of Euclidean spaces. Hence, the
shape of a data set depends of the scale at which it is observed. Instead of trying
to find an optimal scale, persistence homology, a method of TDA, studies the
changes of the topological features (number of connected components, number of
holes, ...) of a data set depending of the scale. The foundations of persistence ho-
mology have been established in the early 2000s in [14], [15], [16] and [17]. They
provide a computable algebraic invariant of filtered topological spaces (nested
sequences of topological spaces which encode how the scale changes) called per-
sistence module. This module can be decomposed into a family of intervals called
persistence diagram or barcodes. This family records how the topology of the
space is changing when going through the filtration [18]. The space of barcodes
is measurable through the bottleneck distance. Moreover, the space of persis-
tence module is also endowed with a metric and under a mild assumptions these
two spaces are isometric [19]. Additionally, the Mapper algorithm first appeared
in [20]. It is a visualization algorithm which aims at produce a low dimensional
representation of high-dimensional data sets in form of a graph, therefore, cap-
turing the topological features of the points cloud.

Meanwhile, efficient and fast algorithms have emerged to compute persistence
homology [15], [17] as well as to construct filtered topological spaces using, for in-
stance, the Vietoris-Rips complex [21]. Therefore, it has already found numerous
successful applications. For instance, Nicolau et al. in [22] detected subgroups
of cancers with unique mutational profile. In [23], it has been shown that com-
putational topology could be used in medicine, social sciences or sport analysis.
More recently, Bendich et al. improved statistical analyses of brain arteries of a
population [24] while Xia et al. were capable of extracting molecular topological
fingerprints for proteins in biological science [25].

Literature on Auto-Encoders and Optimal Transport A large variety of
AE have appeared in the last few years [13]. Although promising results were
achieved, most of the solutions did not address the representation of the samples
of the encoded and decoded manifolds. As outlined by Bengio et al. in [9], the
points in the encoded manifold Z for the majority of the encoders are chaotically
scattered. Therefore, some features are missing in the reconstructed distribution
G(Z), Z ∈ Z. Thus, sampling data points for the reconstruction with traditional
AE is difficult. The added constraint of Variational Auto-Encoder (VAE) in [8]
by the mean of a KL divergence, composed of a reconstruction cost and a regu-
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larization term, provides a finer solution to generate adversarial data by reducing
the impact of the chaotic scattered distribution PZ of Z.

Concurrently to the emergence of AE, Goodfellow et al. introduced the Genera-
tive Adversarial Network (GAN) model in [26] in 2014. Although the GAN did
not have an encoder, it consists of two parts, a generator to generate adversarial
samples and a discriminator to fit the generated data points to the true data dis-
tribution. However, the GAN suffers from a mode collapse between the generator
and the discriminator [13]. As a solution, optimal transport [27] was applied to
GAN in [28] with the Wasserstein distance, and therefore, introducing Wasser-
stein GAN (WGAN). By adding a gradient penalty to the Wasserstein distance,
Gulrajani et al. in [29] introduced a new training for GANs while avoiding the
mode collapse. As described in [30, 31] in the context of unbalanced optimal
transport, Tolstikhin et al. applied these concepts to AE in [12]. They proposed
to add one extra divergence to the objective minimization function in the con-
text of generative modeling leading to Wasserstein Auto-Encoders (WAE).

In this paper, using persistent homology and the bottleneck distance, we propose
qualitative and quantitative ways to evaluate the performance of the compres-
sion of AE. We build upon the work of WAE and unbalanced OT with persistent
homology. We show that that the barcodes, inherited from the persistence di-
agrams, are capable of representing the encoded manifold Z generated by the
WAE. Furthermore, we show that the bottleneck distance allows to compare
quantitatively the topological features between the samples Z ∈ Z of the recon-
structed distribution G(Z) and the samples X ∈ X of the true distribution.

3 Proposed Method

Our method computes the persistent homology of both the latent manifold Z ∈
Z and the reconstructed manifold following the generative model PG(X|Z) based
on the minimization of the optimal transport cost Wc(PX , PG). In the resulting
topological problem, the points of the manifolds are transformed to a metric
space set for which a Vietoris-Rips simplicial complex filtration is applied (see
definition 2). PHom-WAE achieves simultaneously two main goals: it computes
the lifespan of the persistent homological features while measuring the bottleneck
distance between the persistence diagrams of the WAE’s manifolds.

3.1 Preliminaries and Notations

We follow the notations used by Tolstikhin et al. in [12]. Sets are denoted by
calligraphic letters such as X , random variables by capital letters X, and their
values by lower case letters x. Probability distributions are denoted by capital
letters P (X) and their corresponding densities by lower case letters p(x).
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3.2 Optimal Transport and Dual Formulation

Following the description of the optimal transport problem [27] and relying on
the Kantorovich-Rubinstein duality, the Wasserstein distance is computed as

Wc(PX , PG) = sup
f∈FL

EX∼PX
[f(X)]− EY∼PG

[f(Y )] (1)

where (X , d) is a metric space, P(X ∼ PX , Y ∼ PG) is a set of all joint distribu-
tions (X,Y ) with marginals PX and PG respectively and FL is the class of all
bounded 1-Lipschitz functions on (X , d).

3.3 Wasserstein Auto-Encoders

As described in [12], the WAE objective function is expressed such that

DWAE(PX , PG) := inf
Q(Z|X)∈Q

EPX
EQ(Z|X)[c(X,G(Z))] + λDZ(QZ , PZ) (2)

where c(X,G(Z)) : X ×X → R+ is any measurable cost function. In our experi-
ments, we use a square cost function c(x, y) = ||x−y||22 for data points x, y ∈ X .
G(Z) denotes the sending of Z to X for a given map G : Z → X . Q, and G, are
any nonparametric set of probabilistic encoders, and decoders respectively.

We use the Maximum Mean Discrepancy (MMD) for the penalty DZ(QZ , PZ)
for a positive-definite reproducing kernel k : Z × Z → R

DZ(PZ , QZ) :=MMDk(PZ , QZ)

=||
∫
Z
k(z, .)dPZ(z)−

∫
Z
k(z, .)dQZ(z)||Hk

(3)

where Hk is the reproducing kernel Hilbert space of real-valued functions map-
ping on Z. For details on the MMD implementation, we refer to [12].

3.4 Vietoris-Rips Complex, Persistence Diagram and Barcodes

We explain the construction of the persistence module associated to a sample
of a fixed distribution on a space. First, two manifold distributions are sampled
from the WAE’s training. Then, we construct the persistence modules associated
to each sample of the points manifolds. We refer to the first subsection of section
2 for pointed reference on persistent homology.

We associate to our points manifold C ⊂ Rn, considered as a finite metric space, a
sequence of simplicial complexes. For that aim, we use the Vietoris-Rips complex.
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Definition 1 Let V = {1, · · · , |V |} be a set of vertices. A simplex σ is a sub-
set of vertices σ ⊆ V . A simplicial complex K on V is a collection of simplices
{σ} , σ ⊆ V , such that τ ⊆ σ ∈ K ⇒ τ ∈ K. The dimension n = |σ| − 1 of σ is
its number of elements minus 1. Simplicial complexes examples are represented
in figure 2.

Definition 2 Let (X, d) be a metric space. The Vietoris-Rips complex at scale
ε associated to X, denoted by VR(X, ε), is the abstract simplicial complex
whose vertex set is X, and where {x0, x1, ..., xk} is a k-simplex if and only if
d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k.

We obtain an increasing sequence of Vietoris-Rips complex by considering the
VR(C, ε) for an increasing sequence (εi)1≤i≤N of value of the scale parameter ε

K1
ι
↪−→ K2

ι
↪−→ K3

ι
↪−→ ...

ι
↪−→ KN−1

ι
↪−→ KN . (4)

Applying the k-th singular homology functor Hk(−, F ) with coefficient in the
field F [32] to (4), we obtain a sequence of F -vector spaces, called the k-th
persistence module of (Ki)1≤i≤N

Hk(K1, F )
t1−→ Hk(K2, F )

t2−→ · · · tN−2−−−→ Hk(KN−1, F )
tN−1−−−→ Hk(KN , F ). (5)

Definition 3 ∀ i < j, the (i,j)-persistent k-homology group with coefficient in
F of K = (Ki)1≤i≤N denoted HP i→jk (K, F ) is defined to be the image of the
homomorphism tj−1 ◦ . . . ◦ ti : Hk(Ki, F )→ Hk(Kj , F ).

Using the interval decomposition theorem [33] , we extract a finite family of
intervals of R+ called persistence diagram. Each interval can be considered as
a point in the set D =

{
(x, y) ∈ R2

+|x ≤ y
}

. Hence, we obtain a finite subset
of the set D. This space of finite subsets is endowed with a matching distance
called the bottleneck distance and defined as follow

db(A,B) = inf
φ:A′→B′

sup
x∈A′

‖x− φ(x)‖

where A′ = A∪∆, B′ = B ∪∆, ∆ = {(x, y) ∈ R2
+|x = y} and the inf is over all

the bijections from A′ to B′.

Application We illustrate the construction of the barcodes and persistence dia-
gram with the filtration parameter ε in figure 3, according to the previous defini-
tions. For every data point, the size of the points is continuously and artificially
increased using a filtration parameter ε. The points are, therefore, transformed
to geometrical disks as the filtration parameter keeps growing. When two disks
intersect, a line is drawn between the two corresponding original data points,
creating a connected component defined as 1-simplex, while a barcode is drawn
in a separate diagram. The barcodes highlight the birth-death cycles of each ho-
mological groups, H0 for the connected components and H1 for the loops. At the
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end of the filtration procedure, a persistence diagram is drawn to recapitulate
the birth-death events observed with the barcodes, as shown in figure 4. The
persistence diagram is used to describe the topological properties of the original
data points cloud using quantitative measures, such as the bottleneck distance.

Fig. 2. A simplical complex is a collection of numerous “simplex” or simplices, where
a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle and a
3-simplex is a tetrahedron.

1
2ε

H0

H1

ε

1
2ε

H0

H1

ε

1
2ε

H0

H1

ε

Fig. 3. To describe the persistent homological features of a data set, a filtration pa-
rameter ε grows around each data point, leading to geometrical disks. When two disks
intersect, a line is drawn between the two original data points, creating a 1-simplex. The
corresponding barcode is drawn to mark the birth-death cycle of the event according to
the filtration parameter and the homological group observed. The 0-dimensional group
H0 denotes the connected components and the 1-dimensional group H1 the loops.
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Fig. 4. The filtration procedure leads to the construction of the barcodes of the homo-
logical groups H0 and H1, a stable summary representation of the persistence diagrams.

3.5 PHom-WAE, Persistent Homology for Wasserstein
Auto-Encoder

Bridging the gap between topology and neural networks, PHom-WAE uses a
two-steps procedure. First, the minimization problem of WAE is solved for the
encoder Q and the decoder G. We use Adam optimizer [34] for the optimization
procedure. Then, the samples of the encoded and decoded distributions, PZ and
PG, are mapped to persistence homology to describe their respective manifold.

We highlight the topological features of the WAE’s manifolds based on their
respective distributions with persistent homology. First, the points contained in
the manifold Z inherited from PZ , the manifold X from PX and PG(X|Z) are
randomly selected into respective batches. Two samples, Y1 from X following PX
and Y2 from X following PG(X|Z), are selected to differentiate the topological
features of the manifold X before and after the encoding-decoding. Similarly,
two other samples Y1, Y2 are randomly selected from Z following PZ to detect
the scattered distribution of the manifold Z after the encoding. The samples Y1
and Y2 are contained in the spaces Y1 and Y2, respectively. Then, the spaces
Y1 and Y2 are transformed to metric space sets Ŷ1 and Ŷ2 for computational
purposes. Then, we filter the metric space sets Ŷ1 and Ŷ2 using the Vietoris-Rips
simplicial complex filtration. Given a line segment of length ε, vertices between
data points are created for data points respectively separated from a smaller
distance than ε. It leads to the construction of a collection of simplices resulting
in Vietoris-Rips simplicial complex VR(C, ε) filtration. In our case, we decide to
use the Vietoris-Rips simplicial complex as it offers the best compromise between
the filtration accuracy and the memory requirement [10]. Subsequently, the per-
sistence diagrams, dgmY1

and dgmY2
, are constructed. We recall a persistence

diagram is a stable summary representation of topological features of simplicial
complex. The persistence diagrams allow the computation of the bottleneck dis-
tance db(dgmY1

,dgmY2
). The barcodes represent the lifespan of the homological

features detected by the persistence diagrams, for instance the holes. The bar-
codes are a collection of the interval modules. Furthermore, the lifespan of a
homological feature is defined by the boundaries of its interval module, respec-
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tively the birth time and the death time. Therefore, the barcodes illustrate in a
simple way the birth-death of the pairing generators of the iterated inclusions.
PHom-WAE is described in Algorithm 1.

4 Experiments

In this section, we empirically evaluate the proposed methodology PHom-WAE.
We assess on a challenging data set for auto-encoders whether PHom-WAE can
simultaneously achieve (i) accurate topological reconstruction of the data points
and (ii) appropriate persistent homology mapping of the latent manifold.

Data Availability and Data Description We train PHom-WAE on one
real-world open data set: the credit card transactions data set from the Kaggle
database 4 containing 284 807 transactions including 492 frauds. This data set
is particularly interesting because it underlines the chaotically scattered points
of the encoded manifold that are found during the AE training. Furthermore,
this data set is challenging because of the strong imbalance between normal and
fraudulent transactions while being of high interest for the banking industry. To
preserve transactions confidentiality, each transaction is composed of 28 compo-
nents obtained with PCA without any description and two additional features

4 The data set is available at https://www.kaggle.com/mlg-ulb/creditcardfraud.

Algorithm 1: Persistent Homology for Wasserstein Auto-Encoder

Data: training and validation sets, hyperparameter λ, encoder Qφ, decoder Gθ

Result: persistent homology description of WAE’s manifolds

1 begin

2 /*Step 1: WAE Resolution*/

3 Select samples {x1, ..., xn} from training set

4 Select samples {z1, ..., zn} from validation set

5 Optimize until convergence Qφ and Gθ using equation 2 and Adam gradient

descent update (lr = 0.001, β1 = 0.9, β2 = 0.999)

6 /*Step 2: Persistence Diagram and Bottleneck Distance on WAE’s

manifolds*/

7 Random selection of samples Y1 ∈ Y1, Y2 ∈ Y2 from PZ or PX and PG(X|Z)

8 Transform Y1 and Y2 spaces into a metric space sets

9 Filter the metric space set with a Vietoris-Rips simplicial complex VR(C, ε)
10 Compute the persistence diagrams dgmY1

and dgmY2

11 Evaluate the bottleneck distance db(dgmY1
, dgmY2

)

12 Build the barcodes with respect to Y1 and Y2

13 return
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Time and Amount that remained unchanged. Each transaction is labeled as
fraudulent or normal in a feature called Class which takes a value of 1 in the
case of fraud or 0 otherwise.

Experimental Setup and Code Availability In our experiments, we use the
Euclidean latent space Z = R2 and the square cost function c previously defined
as c(x, y) = ||x − y||22 for the data points x, y ∈ X . The dimensions of the true
data set is R29. We kept the 28 components obtained with PCA and the amount
resulting in a space of dimension 29. For the error minimization process, we used
Adam gradient descent [34] with the parameters lr = 0.001, β1 = 0.9, β2 = 0.999
and a batch size of 64. Different values of λ for Wasserstein penalty have been
tested, we empirically obtained the lowest error reconstruction with λ = 15. The
coefficients of persistence homology are evaluated within the field Z/2Z. We only
consider homology groups H0 and H1 who represent the connected components
and the loops, respectively. Higher dimensional homology groups did not notice-
ably improve the results quality while leading to longer computational time. The
simulations were performed on a computer with 16GB of RAM, Intel i7 CPU
and a Tesla K80 GPU accelerator. To ensure the reproducibility of the experi-
ments, the code is available at the following address5.

Results and Discussions on PHom-WAE against PHom-VAE We test
PHom-WAE against PHom-VAE, Persistent Homology for Variational Auto-
Encoder. We recall a Variational Auto-Encoder [8] uses a KL divergence, de-
noted by DKL(PX , PG), composed of a reconstruction cost and a regularization
term instead of an OT cost function. We use the same concepts introduced for
PHom-WAE to define PHom-VAE. We compare the performance of PHom-WAE
and PHom-VAE on two specificities: the latent manifold Z and the reconstructed
data distribution G(Z) following the generative model distribution PG for the
samples Z ∈ Z.

As pictured in figures 5 and 6, both the persistence diagram and the bar-
codes between the original and the reconstructed distributions, respectively PX
and PG(X|Z), of the manifold X are more widely distributed for PHom-WAE
than for PHom-VAE. Additionally, the persistence diagram and the barcodes of
PHom-WAE are qualitatively closer to those associated with the original data
manifold X . It means the topological features are better preserved for PHom-
WAE than for PHom-VAE. It highlights a better encoding-decoding process
thanks to the use of an optimal transport cost function. Furthermore, in figure
7, a topological representation of the original and the reconstructed distribu-
tions is highlighted. We observe the iterated inclusion chains are more similar
for PHom-WAE than for PHom-VAE. For PHom-VAE, the inclusions of the
reconstructed distribution are randomly scattered through the space without
connected vertices.

5 The code is available at https://github.com/dagrate/PHom-WAE.
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Fig. 5. PHom-WAE and PHom-VAE’s rotated persistence diagrams in comparison
to the persistence diagram of the original sample show the birth-death of the pairing
generators of the iterated inclusions. Black points represent the 0-dimensional homology
groups H0 that is the connected components of the complex. Red triangles represent
the 1-dimensional homology group H1 that is the 1-dimensional features, the cycles.

In order to quantitatively assess the quality of the encoding-decoding process,
we use the bottleneck distance between the persistent diagram of X and the per-
sistent diagram of G(Z) of the reconstructed data points. We recall the strength
of the bottleneck distance is to measure quantitatively the topological changes
in the data, either the true or the reconstructed data, while being insensitive
to the scale of the analysis. Traditional distance measures fail to acknowledge
this as they do not rely on persistent homology and, therefore, can only reflect
a measurement of the nearness relations of the data points without considering
the overall shape of the data distribution. In table 1, we notice the smallest bot-
tleneck distance, and therefore, the best result, is obtained with PHom-WAE.
It means PHom-WAE is capable to better preserve the topological features of
the original data distribution than PHom-VAE including the nearness measure-
ments and the overall shape.

Last but not least, persistent homology and the bottleneck distance are used
to highlight the scarcity of the distribution PZ of the latent manifold Z. Us-
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Fig. 6. PHom-WAE and PHom-VAE’s barcode diagrams in comparison to the barcode
diagram of the original sample based on the persistence diagrams of figure 5. The
barcodes diagrams are a simple way to represent the persistence diagrams. We refer
to [10] for further details on their generation.

ing the bootstrapping technique of [35], we successively randomly select data
samples Zi contained in the manifold Z. The total number of selected samples
Zi is at least 50% of the total number of points contained in the manifold Z
to ensure a reliable statistical representation. Assuming the data is not scat-
tered, the bottleneck distance between the persistence diagrams of the samples
Zi is small. On the opposite, if the data is chaotically scattered in Z, then the
topological features between the samples Zi are significantly different, and con-
sequently, the bottleneck distance is large. In table 2, the bottleneck distance

Table 1. Bottleneck distance (smaller is better) for PHom-WAE and PHom-VAE
between the samples X of the original manifold X and the reconstructed manifold
G(Z|X) for Z ∈ Z. Because of OT, PHom-WAE achieves better performance.

PHom-WAE PHom-VAE Difference (%)

0.0788 0.0878 10.25
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Fig. 7. Topological representation of the transaction samples, both fraudulent and
normal, in black and gray respectively, of the reconstructed data distribution following
PG(X|Z) for PHom-WAE and PHom-VAE. PHom-WAE does not alter the topological
features of the manifold X through the encoding-decoding process.

is significantly lower for PHom-WAE than for PHom-VAE. Therefore, the level
of scattered chaos for PHom-WAE is lower than for PHom-VAE. It also means
the distribution PZ of the latent manifold Z is better topologically preserved for
PHom-WAE than for PHom-VAE. The reconstructed distribution PG(X|Z) of
X is, thus, less altered for PHom-WAE.

5 Conclusion

Building upon WAE and VAE, we introduce PHom-WAE and PHom-VAE, a
new characterization of the manifolds of the WAE and VAE, respectively, that
uses topology and persistence homology to highlight the manifold properties and
the scattered points of the hidden space. We discussed their relations with other
AE modeling techniques. Furthermore, relying on persistence homology, the bot-
tleneck distance has been introduced to estimate quantitatively the alteration
of the topological features occurring during the encoding-decoding process, a
specificity that current traditional distance measures fail to acknowledge. We
conducted experiments showing the performance of PHom-WAE in comparison
to PHom-VAE using a challenging imbalanced real-world open data set con-
taining credit card transactions, particularly suitable for the banking industry.
We showed the superior performance of PHom-WAE in comparison to PHom-
VAE. Future work will include further exploration of the topological features
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Table 2. Bottleneck distance (smaller is better) for PHom-WAE and PHom-VAE
between the samples Zi of the latent manifold Z following PZ to detect scattered
distribution. PHom-WAE better preserves the topological features during the encoding
than PHom-VAE resulting in a manifold Z less chaotically scattered, highlighted by
the smaller bottleneck distance.

PHom-WAE PHom-VAE Difference (%)

0.0984 0.1372 28.28

such as the influence of the simplicial complex and the possibility to integrate a
topological optimization function as a regularization term.
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