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Abstract

Slender constituents are present in many structures and materials. In associated mechanical mod-
els, each slender constituent is often described with a beam. Contact between beams is essential
to incorporate in mechanical models, but associated contact frameworks are only demonstrated to
work for beams with circular cross-sections. Only two studies have shown the ability to treat con-
tact between beams with elliptical cross-sections, but those frameworks are limited to point-wise
contact, which narrows their applicability. This contribution presents initial results of a framework
for shear-deformable beams with elliptical cross-sections if contact occurs along a line or at an area
(instead of at a point). This is achieved by integrating a penalty potential over one of the beams’
surfaces. Simo-Reissner Geometrically Exact Beam (GEB) elements are employed to discretise each
beam. As the surface of an assembly of such beam elements is discontinuous, a smoothed surface
is introduced to formulate the contact kinematics. This enables the treatment of contact for large
sliding displacements and substantial deformations.
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1. Introduction

Paper materials (wood fibres [1, 2, 3, 4, 5]), fabrics (yarns [6, 7, 8, 9, 10]), and metal foams
(struts [11, 12, 13, 14, 15]|) are examples of materials with slender components in their micro-
structure. Micromechanical models of such materials often represent each slender constituent as
a beam, which yields a string of beam finite elements when discretized [16] (or springs [17, 18]).
In most cases, contact between the slender constituents is essential to be incorporated. Almost all
contact frameworks have however focused on beams with circular cross-sections. To the best of the
authors’ knowledge, only two frameworks are demonstrated to work for beams with non-circular
cross-sections ([19] and [20]), but they are limited by the fact that contact can only occur in a
point-wise manner.

In many applications however, the slender constituents do not come with circular cross-sections
and contact does not occur at a single point. This contribution therefore aims to partially fill this
gap by proposing an algorithm that treats contact between shear-deformable beams with elliptical
cross-sections. The scheme is tailored for contact to occur at an area on the beams’ surfaces, instead
of only at a pair of surface points. Consequently, it is more widely applicable and can for instance
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be applied to the cases of Fig. 1, which cannot be treated by point-wise contact schemes.

The proposed contact scheme seeds many quadrature points on the surface of beams and determines
which points penetrate the surrounding beams. A measure of penetration is established for each
penetrating surface point, which is used in a penalty potential that is incorporated in the potential
energy of the system in order to repel penetrating beams.

The scheme is applied to beam elements with two nodes based on the geometrically exact beam
(GEB) theory. As the surfaces of strings of such beam elements are only C°-continuous, and may
even be C~!-continuous, the contact scheme works on a smooth (approximated) surface. The smooth
surface is obtained by smoothing the strings’ centroid lines using Bézier curves. The kinematic
variables (i.e. the displacements and rotations) are also re-interpolated. The capabilities of the
contact scheme are demonstrated for several numerical test cases. These include the twisting of wire
ropes. We show that cross-sectional shapes may have a critical influence on the deformations. The
introduced contact framework remains to converge even when the structures in contact undergo large
sliding displacements and/or large rotations and/or large deformations. We also demonstrate that
large sliding displacements of the contacting surfaces can occur without the chattering phenomenon
[21] thanks to the artificially smoothed surface.

In the next section, we briefly discuss the kinematics of the GEB theory. Section 3 discusses the
contact framework, still in the space-continuous setting. In Section 4, we discretise beams with beam
elements with two nodes. We amongst others discuss why the surface of connected beam elements
is CY-continuous at best for this type of beam. The smooth approximations of the discretized
beams’ surfaces is discussed next and the proposed contact framework is adapted to them. Section
5 presents initial results. The contribution closes with some conclusions and an outlook.
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(a) Two parallel beams. (b) Two beams folded around each other.

Figure 1: Some examples in which the shortest distance between two surfaces is not uniquely or poorly defined, thus
preventing the application of a point-wise contact force.

2. Kinematics

The Simo-Reissner Geometrically Exact Beam (GEB) theory (|22, 23, 24, 25, 26, 27, 28|) of shear-
deformable beams with rigid cross-sections is used in this contribution. A beam is characterized
by centroid line x.(h1) : [0, Lo] — R? (constituted from the center of gravity of its sections) and
by the orientations of the sections (see Fig. 2). h; is the arc-length parameter of the centroid line
of the beam in the reference configuration and Lg its reference length.Rigid cross-sections are not
necessarily orthogonal to x, in the current (deformed) configuration if shear deformation is present.



A field of rotation tensor A(hy) : [0, Lo] — SO(3) is used to orientate the sections in the current
configuration.

Material points on the beam’s centroid line

The centroid line in the current configuration, x.(h1), is related to the centroid line in the
reference configuration, X.(h1), by:

XC(hl) :XC(hl) +u0(h1)7 (1>

where u.(h1) : [0, Lg] — R? denotes the displacement field of the centroid line.

Material points in the rest of the beam

To locate material points on the beam’s centroid line (in the reference and deformed configu-
rations), only h; is needed. To locate the remaining material points however, we need to consider
cross-sections, which are parametrised by ho and hg.

The location vector pointing towards a material point with local coordinates h = [hy, ho, h)
that is not located on the centroid line can be expressed in the reference configuration as follows:

X(h) = X.(h1) + V(h), (2)

and in the deformed configuration as:

x(h) = xc(h1) + v(h), (3)

where V and v point from the centroid line to the material point and both lie in the cross-sectional
plane associated with hy. V works in the reference configuration and v in the deformed configura-
tion. These two vectors can be written as follows:

V(h) = hzeog(hl) + h3603(h1)7 (4)

v(h) = A(h1)(haeo2(h1) + hzeos(h1)), (5)

where eg2(h1) and eg3(h;) form an orthonormal basis with egy(h1) (see Fig. 2). In Eq. (5), A €
SO(3) denotes the rotation tensor rotating the section attached to X, in the reference configuration.
In the reference configuration the (unit) normal vector to the section attached to X, ey, verifies:

0X,
€01 = Thl’ (6)

because no shear deformation is present. As mentioned above however, the normal to the section in
the current configuration is not necessarily aligned with the tangent direction to the centroid line,

which means that:
Aeyr # 0%, (7)
017 3 e



Figure 2: A surface point X in the reference configuration (black circle) obtained by adding location vector X. and
a vector V in the plane (ep2,ep3) of the section attached to X.. The same material point is represented in the
deformed configuration. The global basis {a;,a2,as} as well as the local basis {eo1, €p2, €03} attached to the X, in
the reference configuration and the local basis {e1, ez, e3} attached to the same point in the deformed configuration
are also presented. These three basis are orthonormal.

3. Contact framework

The contact framework is based on the integration of a surface-specific contact potential over

the surface of one of the beams. To this end, contact points are seeded on the surface of one of the
two beams in contact. We check for each of these surface points if it penetrates the other beam. If
a surface point is indeed penetrated, a contribution to a contact potential is added. The suggested
scheme is thus a type of master-slave approach [29] which asymmetrically treats contact, in contrast
to [19, 20, 30, 31].
The surface of both beams is explicitly taken into account. This is different from the approaches
in [32, 33, 34] in which the centroid lines are used to formulate contact due to the limitation of
circular sections. A penalty approach is adopted here to regularize unilateral contact conditions. It
allows some interpenetration between the bodies, which can be interpreted as the deformation of
the rigid cross-sections in case of contact.

3.1. Projection

In this subsection, we discuss for a single surface point how we determine if it penetrates another
beam. We start with the definition of a fixed surface point. We denote its local coordinates by hs!
which remain constant. Superscript 1 means that we refer to the 1% beam as the slave body and
superscript s means that the point refers to a material point on the surface (and not to a material
point inside the beam). In a deformed configuration, the location of this point is expressed in the
global coordinate system by x*! = x!(h®!). Similarly as for the slave body (beam 1), we denote
the location of a material point on the surface of the master body by h®? in terms of the local
coordinates of the beam and by x*? = x?(h*?) in terms of the global coordinates.



It is important to note however that if elliptical sections are used, only two independent variables
are required to locate a material point on a beam’s surface ([19]). We therefore write h*! = h*' (h')
and h*? = h*2(h?) where h denotes the column with these two independent variables. One of them
is hy € [0, L], while the second one is § € [0, 27] such that hy and hz in Eqs. (4) and (5) are given
by:

he = a cos(pB) (8)

and

hs = b sin(B) (9)

respectively, where a and b denote the dimensions of the elliptical section in the two principal
directions.

We define the projection based on Fig. 3 and state that vector x*! —x*2, must point in the same
direction as the vector x*? — x2. This is verified when the following residual is zero:

s2

E(2(h2), gn) = 1 — gy e Koy (10)
&), e ] <

where gy is an independent variable, which is negative in case of penetration and non-negative

otherwise. Thus gx will be used as a measure of penetration in the following. In Eq. (10) we used
s2_ 2

the vector as an approximation of the normal to the master body n? at surface point x*2.

lIx52 —x2]]
This choice is justified by the fact that n? changes abruptly in the regions of high curvatures of
the surface. This can cause convergence problems at the global level because of the direction of
the contact forces may change significantly from one (global) iteration to the next. We thus want
to find column ¢ = [ﬁz, gn]T for which f(g) = 0. Here and in the following, a bar over a quantity
indicates that this quantity is evaluated at the solution of Eq. (10).

We solve f(g) = 0 this by linearising f in Eq. (10) and applying Newton’s method, which we
write as follows:

f(¢°) + H(¢") Ag = 0, (11)

where ¢° denotes the previous estimate of ¢ and Aq denotes its update. Row of vectors H is given
by:

of

7@l (12)

H(¢") =



Figure 3: Penetrated slave surface point x*! (in red). The slave section on which x*! lies is presented in translucent
blue. The centroid line of the master beam (grey) is presented by a thick dashed line. The master surface point at
the solution of the projection problem is presented in blue. In this particular configuration, the vectors x52 — x% and
x°2 — x°1 are colinear and Eq. (10) is verfied if gy = — ||x*1 — x*2||.

3.2. Contact potential

As mentioned before, we use a penalty potential to limit penetration of surface point x*! in
body B2. We use the following penalty potential to do so:

§(§12V—T§N+TT2) if gnv<T
254" %) = | gk if T<gy<0> (13)
0 it gv20

Hpen (Bl

where € denotes the user-selected penalty stiffness and Bi denotes the fields of kinematic variables
of the i*!' beam that are involved in the contact. In Eq. (13), T' denotes a numerical parameter used
to switch between a cubic and a quadratic penalty potential. The cubic potential is effective to
regularize contact for surface points with small contact forces, as their contact status (penetrated
or detached) may easily change from one global iteration to the next [33] and which may cause
convergence issues (at the global level). Note also that the transition between the quadratic and
cubic part of the potential is smooth, and so is the transition of its derivative.



8.8. Integration of the contact potential over the slave surface.

As contact interactions arise over a finite area, the total contact potential is obtained from the
following integral on the slave side:

HPEN(1317132,Q(131,]32)) = /asl Mpen, dS*, (14)
where 9S' denotes the slave surface and h denotes the entire projection of the slave surface on the
master surface according to Eq. (10).

To numerically evaluate the integral in Eq. (14), numerous slave (quadrature) points are seeded
on the surface of the slave body. For each one of them (that is detected as being close enough
to the master surface), the projection problem in section 3.1 is solved. If a surface point on the
slave surface penetrates the master body, the associated contribution is added to the total contact
potential:

Tpen(p',p% @', p") =Y willpen s [0k (B3)]], (15)
k=1

where wy, denotes the weight factor and n;, the non-unit normal vector to the surface (which serves
as a deformation-dependent weight to the quadrature point). II,., /, denotes the contact potential
of the k™ slave surface point with local coordinates hy and is given by Eq. (13).

8.4. Contact potential’s contribution to the weak form

Now that the contact potential between two beams is constructed, its contribution to the weak
form needs to be derived. To do so, we consider the variation of Eq. (15) with respect to the
kinematic variables of both bodies in contact:

n

pen(p',p%, 20" 2%) = D wid (Wyenss |0 (B1)]]) - (16)
k=1

The variation of the contact potential for a single quadrature point (from now we omit subscript
k) can be expressed as follows:

8 (Tyen [0 (BN)]]) = [0 (B[] 0TTpen + Tpend [ (2] (17)

Now we will work out the two parts of this variation. For the ease of the notation, we collect all
kinematic variables in p. II,c, depends explicitly on p, as well as on ¢ (itself depending implicitly
on p i.e. g(p)). Its variation can thus be expressed as:

aHpen 8Hpen
. Sa. 1
dp Jq %9 (18)

As the primary variables of the problem are the kinematic variables stored in p however, the
variation must ultimately be expressed in terms of dp. To establish the relationship between d¢q and
8p, we state that the local residual in Eq. (10) must remain valid for an infinitesimal change of p.
We express this as follows: B

0llper, = . 6]3 +

f
op + ot g =0. (19)

of
6f(q) = op

1



We can recognize matrix H of Eq. (11) in this expression as:

of

H(g) = 9 (20)

Y
q
with the only difference that H in Eq. (11) is evaluated at an estimate of ¢ (i.e. at ¢°) and here it
is evaluated at g. Based on Eq. (19), we can now write:

f
0q = <—<q>‘1 ™ ) op = Adp, (21)
q
such that Eq. (18) can be written as:
o1l o1l
Mpen, = PEL ) LS P L AS 22
: (@)>p+<3Q> 22
on onn
— 5 pen pen
p(ap = %)
= dp-r
anpen

The issue with this expression is that is significantly elaborate to derive and hence,

its derivation is prone to mistakes. We therefore do not derive r analytically but we employ the
automatic differentiation technique. With the formalism introduced in [35], we equivalently obtain
r as follows:

Mpen
|
2 -2

z:

(23)

Now that we have treated variation 6IL,e, in Eq. (17), we continue with variation § |[n!(h")| in
Eq. (17). As n! corresponds to the normal vector of a (fixed) slave surface point, it does not depend
on h?, nor on gy, so its variation simply reads:

1 n'
[

on' T n!

el B

<8p) Pl
on! nl

= 6p. _

= Op |nt|

p— 5p~

6 ||’

A

(24)

In order to compute the consistent tangent matrix of the contact scheme, we again use the
automatic differentiation technique (see [35, 36, 37, 38]) which yields:

g:gﬁ). (25)
oplD—_a



4. Spatial discretization with the Finite Element Method and smoothing of the surface

4.1. Finite Element Discretization

Each beam is now discretized as a string of successive beam finite elements. Each beam element
employed in this contribution uses two nodes. Each node comes with a reference location vector, a
displacement vector and three rotations. The displacements and rotations form the six kinematic
variables of each node. The elements thus use a linear interpolation of (i) X, the original location
vector of the centroid line, (ii) u., the displacement vector of the centroid line, and (iii) 6, the
rotation vectors. It is important to mention that, consistent with the beam kinematics in the space
continuous setting introduced in section 2, the cross-section does not deform (although its orienta-
tion relative to the centroid line can change). It must also be noted that the linear interpolation of
the rotation vectors employed here renders the finite-element model slightly strain-variant (see [25]
for a discussion). This is in contrast with the strains employed in the space-continuous geometrically
exact beam theory (see [22, 23|) that are not affected by rigid translations and rotations.

In the following, we explain how the kinematics introduced in section 2 are interpolated for a
single beam element of length Ly, in the reference configuration. The reference location of each
material point of this beam element is defined by a vector in the local coordinate system attached

3
to the beam centroid line by h =) h;eq; (where hy € [0, Lg_,]), as well as by a vector in the global
i=1

3
coordinate system, X =Y X;a;.

i=1
The interpolation of the reference location of the beam element’s centroid line can be expressed
as follows:

X.(h1) = N(h1) - X, (26)

where X denotes the column with the reference location vectors of the beam element’s nodes and N
denotes the column with associated basis functions. The displacement field of the beam element’s
centroid line can be expressed as follows:

uc(h1) = N(h1) - u, (27)

where u denotes the column with the displacement vectors of the beam element’s nodes. Together,
the centroid line in the deformed configuration follows:

Xe(h1) = N(h1) - (X +u). (28)

To locate material points that are not placed on the beam element’s centroid line, the orientation
of the local basis attached to the sections are needed (see Eq. (4) and (5)). To this end, interpolation
of the field of rotation tensors A is required. As SO(3) is a nonlinear manifold, A(hy) cannot
be interpolated directly, but is obtained here by applying Rodrigues’ formula (see [27]) to the
interpolated rotation vector:

0(h1) = N(h1)- 0 (29)

as follows:
A(h1) =TI+ sin([|0]]) S(8) + (1 — cos ([|0]])) S(6)S(8), (30)

where I denotes the unit tensor, ||e|| denotes the Lo-norm and € denotes the column with the nodal
rotation vectors. A denotes the (unique) rotation tensor corresponding to a rotation around the



axis ﬁ by an angle of ||@]|. S is skew-symmetric and its matrix form can be furthermore expressed
as:

0 —93(}11) 02(111)
S(6(h)) = | Os(ha) 0 —01(hy) | . (31)
—0O5(h1)  01(h1) 0

Eq. (3) is used to locate points that are not on the beam element’s centroid line employing the
interpolations of x. and A in Eqs. (28) and (30), respectively.

4.2. Smoothing of the surface

For the type of beam element that we use, local base vector ey always points in the direction
of the beam axis in the initial configuration:

ON
_oh; %o

B2

Thus, if a string of successive beam elements is not straight in the reference configuration, its
centroid line is C%-continuous (see Fig. 4). The vector fields of local basis vectors ey, g2, €93 are
then C'~!-continuous. This causes a discontinuity in the orientation of the cross-sections at nodes
shared by two elements, meaning that the surface of the string of beams is discontinuous. Contact
is then obviously hard to formulate.

To avoid this issue, we introduce a smooth surface, to which contact constraints are applied.
This smooth surface also has the advantage that the C° or C~!-continuity of the string’s surface is
replaced by a C'-continuous surface, which we believe improves the convergence properties of the
framework (although we do not compare this in the results section).

In this subsection, the construction of this smooth surface is discussed. It is important to mention
that contact is considered for this smooth approximation, instead of the string’s actual surface, but
that the beam formulation itself remains unchanged. The smoothing approach could thus be applied
to other types of beam formulation with some minor changes.

The smoothing procedure uses Bézier curves to smooth the string’s centroid line. One Bézier
curve is used to smooth the centroid line of two successive beam elements. This entails that if a
string consist of n beam elements, n — 1 Bézier curves are used to smooth the string’s centroid line,
and by this, the surface. A typical result of this is shown in Fig. 4 for a string of three beams. The
smoothing procedure is presented for two adjacent beam elements with indices j and j + 1. This
entails that three nodes are involved. The indices of these nodes are i, i + 1 and i + 2.

e01 h1 (32)

10



Figure 4: The surface of a string of three beam elements and two smoothed surface.

Reference configuration

The smooth centroid line between two beams in the reference configuration is created using four
Bernstein polynomials as follows:

Xe(m) = B(m) - X, (33)

where B denotes the column that includes the four cubical Bernstein polynomials and XC denotes
the column that contains the original location vectors of the four control points (see fig. 5):

~ ~ ~ - - T
X, = [X0.XLX2,X] (34)
with: .
X0 = = (X + X! 35
c 2( c+ c ) ( )
- 1 ) )
X7 =5 (X +X7) (36)
X; = X0+ (X = X))a (37)
X2 = X2+ (XI - XiP)a (38)

where a € [0,1] denotes a parameter to be selected by the user [39] that dictates the location of
the second and third control points in Eqgs. (37) and (38). n; € [0, 1] parametrises the smoothed
centroid line X, € R3.

11



Figure 5: Schematic of a smooth centroid line (plain blue) constructed from the centroid lines of two beam elements
(dashed lines) in the reference configuration. The nodes of the elements are indicated by circle and the control points
by crosses. A (fictitious) section attached to X, is indicated in black.

The neatest would now be to define the first base vector of the local basis normal to the cross-
section in the smoothed reference configuration (i.e. €p1) as:

9B
o

0B
an e

: (39)

o | [

€o1(m) =
O

so that cross-sections of the smoothed reference configuration would be orthogonal to the smoothed
centroid line. This would however also entail that €y and €y3 need to be set by the user, which can
be significantly less straightforward for the smooth Bézier curves than setting egs and eg3 for the
beam elements. We therefore determine them for the Bézier approximation of the centroid line as
follows:

€oi(m) = B(m) - €y (40)

where &,;, i C {1,2,3} denotes the column that stores ep; at the four control points. For linearly
interpolated beam elements €, contains four times the same base vector for an initially straight
strings of beams, and two different base vectors otherwise.

The location vectors of the material points of the string in the smoothed reference configuration
are then given by:

X(n) = Xe(m) + V(n), (41)

where

V(1) = n2€02(m1) + n3€o3(m), (42)

12



where V denotes a vector connecting X, to a point on the perimeter of the (fictitious) section
attached to this centroid point (see fig. 6), and n = {n1,n2} € [0,1] x [0,27] denotes a column of
two local variables parametrising the smooth patch’s surface (see Fig. 6).

Deformed configuration

To determine the smoothed centroid line in the deformed configuration, we also need the
smoothed displacement field of the centroid line, which is expressed as:

u.(m) = B(m) - a,, (43)

where 1, denotes the column of displacement vectors at the four control points. The smoothed
centroid line in the deformed configuration can then be written as:

Xe(m) = Xe(m) +0c(m) = Blm) - (X, + 1), (44)

To locate all material points in the approximated deformed configuration, instead of just those
on the centroid line, we also need to smooth the rotation vector field, for which we similarly write:

0c(m)=B(m)- 0, (45)

where 6 denotes the rotation vectors at the four control points. Corresponding rotation tensor .&(771)
can then again be determined using Rodrigues’ formula (Eq. (30)).

The location vectors of the material points of the string in the smoothed deformed configuration
can now be written as (see Fig. 6):

x(h) =xc(m) +v(n), (46)

where

V(1) = A1) (12802(m1) + n38o3(m))- (47)

13
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Figure 6: A surface point x° and its local surface basis {ifm , ifm,fls}. The surface of the two beams from which
the smooth surface is constructed are presented in yellow.

Note that vector v is generally not in the plane normal to X., because, as stated above, the
(pseudo) cross-sections are in general not normal to the smoothed centroid line in the reference
configuration, but also because of the relative rotation of the (pseudo) cross-section around the
(pseudo) centroid point X..

To adapt the contact framework to the smoothed geometry introduced above, one needs to
replace the local coordinates in h by the local coordinates of the smooth surface 7. For an integration
point, X!, on the slave side with local coordinates ', the procedure is as follows:

e The projection point of X! on the master surface, ~52@2), is found by solving the local

problem in Eq. (10) adapted to the smoothed surfaces, i.e. the column of local parameters q
to solve for is now ¢ = [n?, 73, gn],

o If x*! is penetrated, the contribution of this integration point to weak form is computed using
Eq. (17). The kinematic variables involved are the nodal degrees of freedom used to construct
the smooth patches that are stored in columns p' and p?. Three beam nodes are necessary
to construct each patch so that p' and p? have 18 components each. Consequently, contact
residual r in Eq. (23) has a length of 36 and the dimensions of contact tangent matrix K are
36 x 36.

5. Numerical Results

In the current section, we present initial results that can be achieved with the contact scheme.
We first focus on two strings of successive beam elements that come in contact with each other
under different loading conditions. Second, we focus on the twisting of several parallel strings of
successive beam elements as a simplified manufacturing process for wire ropes.

14



Different possibilities exist to place quadrature points. At the beginning of each time step,
integration points could be placed in the region where beams’ surfaces are close to each other. This
would entail several update of the integration points’ surface coordinates.

Another option, that is less accurate but computationally less expensive is to compute the
coordinates and weights of a grid of integration points on the entire beam surface in the undeformed
configuration. This means that the number of quadrature points is constant and that their surface
coordinates and weight do not need to be recomputed. This approach that has been adopted in the
following numerical examples.

5.1. Two orthogonal strings

In the first example, we consider two beams with elliptical cross-sections denoted by A and
B (see Fig. 7) discretised with strings of successive beam elements. These strings are initially
orthogonal in space, and they both have the same geometrical properties (length and dimensions
of the sections), mechanical properties and discretisation (see ahead to the top row of Fig. 10).
The aim of this numerical example is to show that the presented scheme is able to treat contact
problems in which large sliding displacements occur (i.e. slave points in contact can slide from one
smooth surface approximation to another), whilst the deformation of the contacting surfaces is
substantial. The geometrical and material parameters are, together with the numerical parameters
of the discretisation and the contact scheme, presented in Tables 1 and 2. Various Dirichlet boundary
conditions (BCs) are applied at the end nodes of string A during the interval of (fictitious) time
t € [0, 6]. The kinematic variables of the end nodes of string B are retained. We apply the following
Dirichlet BCs to string A (see Fig. 8):

e ¢ = (: the strings are slightly detached; gy ~ 0 in the middle of the strings at a single surface
point.

0 <t < 1: the end nodes are moved by 1.5 ¢m in as-direction.

e 1 <t < 2: the end nodes are moved in [1,0, 1] direction by 1 e¢m.

2 < t < 3: the centroid point in the middle of string A is used as the center of rotation of
string A around az with an amplitude of %. This rotation is applied to nodes at the end string
A.

3 <t < 4: the end nodes undergo the reverse rotation around the same axis of rotation.

e 4 <t < 5: the end nodes undergo the reverse displacement as the one that was performed for
1<t<2

e 5 <t < 6: the end nodes are moved vertically until the two strings completely detach.

The number of quadrature points placed on the surface of each slave patch (at fixed material
coordinates) to evaluate Eq. (15) is given in Table 2. The number of surface points is important
because at the beginning of the interval 0 < ¢ < 1 and at the end of the interval 5 < ¢t < 6, contact
may be localised and hence, contact may be poorly approximated with a coarse grid of surface
points.

Table 2 also provides the initial penalty stiffness employed. This value should be related to
the mechanical parameters of the contacting bodies as well as the geometrical features of the
surfaces at the contact area and the penetration [40] (note that a penalty stiffness directly dependent
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Figure 7: Initial configuration.

ap

on the kinematic variables would result in more complex expressions for r and K). Here, the
penalty stiffness is adapted if the local penetration measured for one or several of the slave points is
larger than a certain user-defined threshold. In the present case, we choose to increase the penalty
stiffness by 10% if the penetration is larger than 5% of the smallest cross-sectional radius (see
also [33] for another example of regularization of the contact constraint by increasing the penalty
stiffness). The update of the penalty stiffness is performed after an increment of the global solver
has converged. Directly after the update, the nodal equilibrium is again solved for, since the increase
of the penalty stiffness results in a loss of equilibrium. Additional iterations are therefore needed to
restore force equilibrium before moving to the next increment. If, after convergence with this new
penalty stiffness, the violation of contact constraint gy is still too large, the process is repeated.

The configurations after each second of the fictitious time are presented in Fig. 10. Contact
tractions in the contact area are presented in Fig. 9 for ¢ = 1,2 and 3 seconds. The evolution of two
components of the reaction forces at the end nodes of a string are presented in the top diagrams of
Fig. 11. The number of active contact points is presented in the same figure. During the 15 second,
contact does not change location but increases in magnitude over time. This can be observed by
the substantial increase of the number of active slave points during the first half of the 1%¢ second
(bottom-left diagram in Fig. 3). Consequently, the reaction force in as-direction (top-right diagram
in Fig. 3) increases qualitatively almost the same as the number of penetrating surface points.
During the second half of the first second, the number of penetrating points oscillates. This is due
to the adjustment of the penalty stiffness.

During the 2°¢ second (1 < t < 2), string A slides with respect to string B. Consequently, the
number of penetrating surface points remains similar, which is to expected. The reaction force in as
direction reduces somewhat, whilst the reaction force in a; direction slightly increases. Concluding
we can state that the contact framework is able to accurately treat large sliding displacements
(penetrating slave points can move from one surface approximation to another and new slave points
become active, whilst active ones become inactive).

In the 3' second (2 < t < 3), the location of the contact area remains largely at the same
location, but the contact area increases due to the prescribed rotation. We nevertheless see a
decrease of the number of active slave points, because the employed grid of slave points has a
wider spacing in the string’s longitudinal direction than in the tangential direction. The change
of contact area has substantial influences on the reaction forces. The interesting issue here is that
the present loading would have no influence on the reaction forces for a point-wise contact scheme
(which would not work to begin with because contact does not occur at a single point), except for
the trigonometric change of the reaction forces.

In the last 3 seconds, the entire loading is reversed and consequently, we see that the reaction-
force time diagrams are symmetrical around ¢ = 3. Once again, the reason that the number of
active slave points is not symmetrical is because the penalty stiffness is increased if necessary, but
not reduced if possible. These results are highly satisfactory.
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Figure 8: Boundary conditions applied during the dif-
ferent phases of the loading. The schematics are not
to scale.
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Figure 9: Contact tractions acting in the direction of the normal to the slave surface at the quadrature points for
different times of the simulation.
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Figure 10: Three views of the deformed beams after different pseudo-times (without scaling of the deformations).
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Figure 11: Evolution of the reaction force in ag direction (left) and in a; direction (middle). Evolution of the number
of active contact points (right). Note that the order of magnitude of the forces in the left and central diagram is a
factor of two different.

5.2. Tunsting

In the next example, we consider two setups of several parallel beams which are twisted (see Fig.
13). For setup A, the central beam has a circular cross-section and the beams around it have an
elliptical cross-section. In setup B however, the central beam is elliptical and the peripheral beams
have a circular section. For both setups, the central beams have the same section area. Similarly,
each peripheral beam in setup A has the same cross-sectional area as the peripheral beams in setup
B.

The cross-sections at the two ends of the beams are rigidly rotated around the longitudinal
beams’ direction in the reference configuration with an amplitude of m. The planes containing
these sections are kept at a constant distance during the simulation. This problem is challenging
for a contact framework as the contact forces increase substantially, the contact is non-local and
contacting surfaces increasingly deform and curve during time.

The employed beam properties are presented in Table 3. The initial and final configurations are
shown in Fig. 13. Fig. 14 shows the evolution of the total reaction force in longitudinal direction and
the total torque at one of the end sections. The evolution of the number of penetrated contact points
is also presented. The results clearly show that the cross-sectional shape has a major influence on
the simulation results.
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Figure 12: Illustration of the Dirichlet boundary condition applied to one end of one discretized beam (red circle).
The rotation of IT around the axis of rotation (dashed line) applied incrementally is illustrated with the black arrow.

Central Beam | Peripheral Beams

Beam length (cm) 15 15
Radius 1 of the elliptical cross-section (cm) 0.5 =
Radius 2 of the elliptical cross-section (cm) 0.5 %
Young’s modulus (GPa) 100 100
Poisson’s ratio 0.3 0.3
Beam finite elements per beam 60 60

(a) Setup A.

Central Beam | Peripheral Beams

Beam length (cm) 15 15
Radius 1 of the elliptical cross-section (cm) z 3 \/gﬁ
Radius 2 of the elliptical cross-section (cm) % 3 leﬁ
Young’s modulus (MPa) 1000 1000
Poisson’s ratio 0.3 0.3
Beam finite elements per beam 60 60
(b) Setup B.
Surface points in axial direction 4
Surface points in tangential direction | 80
Initial ¢ (MPa) 100

(c) Contact properties of each slave patch.

Table 3: Properties of the beams used for the twisting.
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(a) setup A, t = 0. (b) setup B, t = 0.

>

(c) setup A, t =tfinal- (d) setup B, t =tinar-

(e) setup A, t =tfinar, side view. (f) setup B, t =t finai, side view.

Figure 13: Setup A and B in their initial and final configuration.
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Figure 14: Left: Axial reaction forces; Middle: The reaction torque around the axis of rotation; Right: evolution of
the number of active contact points.

6. Conclusion

Slender structural components are typically represented by beams in mechanical models, in turn
discretized with beam finite elements. They are often characterized by circular cross-sections, but
elliptical cross-sections are regularly required instead. Contact between shear-deformable beams
with elliptical cross-sections cannot only be based on the centroid lines, as is most often done in
contact schemes for beams with circular cross-sections.

The contact framework proposed in this work therefore relies on the surface of the beams. It
allows to deal with scenarios in which the distance between the contacting surfaces has no clear
minimum, as is the case for parallel beams for example. Thus, this contribution is a first attempt
to complete the frameworks of [19, 20], which are limited by the assumption of a unique contact
location.

Our framework places points on one of the two surfaces candidates for contact (slave) and
then projects them on the other surface (the master). This projection differs from the conventional
closest point projection (CPP), because the CPP is not unique and may change drastically for small
variations (in case of non-circular cross-sections). Instead, we determine the amount of penetration
based on surface points and a point on the centroid line.

Since the employed geometrically exact beam elements furthermore use a linear interpolation of
the kinematic variables, the associated surface of a string may be C°-continuous in the deformed
configuration and even C~!-continuous in the reference and deformed configuration. To overcome
this issue, a smoothing procedure of the strings’ surfaces is formulated that makes the surfaces
C'-continuous.

23



The proposed contact approach is computationally more demanding than the approaches of
[19, 20] due to the seeding of many points for which penetration is considered. If no unique maximum
penetration occurs, as is the case for many practical applications on the other hand, a less efficient
approach than [19, 20] appears to be unavoidable. Future work will therefore focus on more efficient
generations of surface points and the optimisation of the implementation.
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