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Abstract— Recent studies have demonstrated the presence of
residual transceiver hardware impairments even after employing
calibration and compensation techniques in different wireless
systems. The effect of these impairments becomes more severe
in the systems involving a large number of inexpensive Radio
Frequency (RF) chains such as massive Multiple Input Multiple
Output (MIMO) systems due to the requirement of cost-efficient
implementation. However, most of the existing studies consider
ideal transceivers without incorporating the effect of residual
hardware impairments. In this regard, this paper studies the
impact of additive residual transceiver hardware impairments on
the Minimum Mean Square Error (MMSE) filtering performance
of Rayleigh-Product (RP) MIMO channels. Using principles from
Random Matrix Theory (RMT), the MMSE filtering performance
of the RP channels is analyzed and a tight lower bound is derived
by taking the effects of residual additive transceiver impairments
into account. Moreover, some useful insights on the performance
of the considered system with respect to various parameters such
as the transmit Signal to Noise Ratio (SNR), the number of
scatterers and the severity of impairments on both the transmit
and receive sides are provided.

I. INTRODUCTION

Recently, massive Multiple-Input Multiple-Output (MIMO)
has been considered as a candidate technology for the Fifth
Generation (5G) of wireless communications due to its ben-
efits in terms of higher system throughput, increased energy
efficiency and reduced end to end latency [1]. However, one
of the main requirements for the low-cost implementation of
this technology is inexpensive transceiver hardware, which is
easily prone to impairments. Therefore, it is crucial to take
the effect of transceiver hardware impairments into account
while designing wireless transceivers, especially for the large
antenna systems demanding low-cost hardware components.

Most of the existing MIMO related works are based on
the assumption of rich scattering wireless environment which
allows to consider the signal transmitted from each transmit
antenna to appear highly uncorrelated and to have a unique
spatial signature at the receiver [2]. However, in practice, sev-
eral scenarios with spatial fading correlation, rank-deficiency,
pinhole or keyhole effects, and limited scattering exist [2, 3],
where the underlying environment is not sufficiently scattered

to hold this assumption. In this context, double scattering
channels, which model the aforementioned aspects by utilizing
the geometry of the underlying propagation environment, have
received important attention [2–5]. The existence of such chan-
nels has been experimentally verified [4] and these channels
have also been recently studied for the case of massive MIMO
systems [6]. The RP channel considered in this paper is a
special case of double scattering channels with the identity
correlation matrices for the transmit-side antenna, receive-
side antenna and the scatterers, and captures the effect of
rank-deficiency caused by insufficient scattering or a keyhole
phenomenon [7].

Several works in the literature have studied RP MIMO
channels in different settings [7–9]. Authors in [7] studied
the outage probability of MIMO beamforming in RP channels
by considering three special cases of this channel. Further-
more, the contribution in [8] analyzed the performance of
RP MIMO channels with linear Minimum Mean-Square-Error
(MMSE) and Zero-Forcing (ZF) receivers, and characterized
the achievable diversity-multiplexing tradeoffs. Moreover, the
recent work in [9] derived the closed-form expressions for the
ergodic mutual information and the average symbol error rate
of the RP channels. However, all the aforementioned works are
based on the assumption of ideal transceiver hardware, which
is unrealistic in practice.

In practice, hardware impairments may result due to various
factors such as sampling rate and carrier frequency offset, In-
phase/Quadrature (I/Q) imbalance, and oscillator phase noise
[10]. Even after employing suitable compensation algorithms
at the receiver or calibration schemes at the transmitter, a
certain level of distortion still exists due to inevitable residual
hardware impairments [12]. In this regard, recent works have
studied the effect of residual transceiver impairments on the
performance of various wireless systems [10–15] considering
ergodic capacity as a performance metric in most of the cases.
In the context of RP channels, the only work which studied
the impact of transceiver impairments is the recent work in
[16], however, only optimal linear receivers were considered,
which are complex to realize in practice.
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MMSE receivers are much more practical to implement than
other classes of receivers such as successive interference can-
cellation receivers, which require sequential user processing.
On the other hand, the MMSE receiver only requires the joint
filtering of the received signals followed by individual user de-
tection and decoding [17]. In contrast to the widely-used con-
ventional ergodic capacity metric [10–13], the average MMSE
criterion provides meaningful insights on the performance
of single-user receivers after performing multi-user MMSE
filtering [18]. In this regard, the contribution in [18] analyzed
the MMSE filtering performance of Dual-Hop Amplify and
Forward (DH-AF) multiple access channels and the authors
in [15] extended this for the case of DH-AF massive MIMO
relay systems with additive residual transceiver impairments.
In this paper, we analyze the MMSE filtering performance of
the RP channels in the presence of residual additive transceiver
impairments. Using principles from Random Matrix Theory
(RMT), we derive a tight lower bound for the average MMSE
of the RP channels by taking the effects of residual additive
hardware impairments into account. Furthermore, we validate
our theoretical analysis with the help of numerical results and
provide useful insights on the impact of residual hardware
impairments on the RP channels.

The remainder of this paper is structured as follows: Section
II provides the system model of RP MIMO channels with the
residual additive transceiver hardware impairments. Section III
provides theoretical analysis for the MMSE filtering perfor-
mance of the considered MIMO channels while Section IV
evaluates and discusses the effect of residual hardware impair-
ments with the help of numerical results. Finally, concluding
remarks are provided in Section V.

Notations: Throughout this paper, the notations (⋅)T, (⋅)H,
and tr(⋅) represent transpose, Hermitian transpose, and trace
operators, respectively. The notation 𝔼 [⋅] denotes the expecta-
tion operator, and the notations 𝒞𝑀 and 𝒞𝑀×𝑁 refer to com-
plex 𝑀 -dimensional vectors and 𝑀×𝑁 matrices, respectively,
diag{⋅} represents a diagonal matrix, and 𝒞𝒩 (0,Σ) denotes
a circularly symmetric complex Gaussian with zero-mean and
covariance matrix Σ.

II. SYSTEM AND SIGNAL MODELS

We consider a flat fading point to point MIMO channel
with 𝑀 number of transmit antennas, 𝑁 number of receive
antennas and 𝐾 number of scatterers. In Fig. 1(a), we present
the system model for the conventional RP MIMO system with
the ideal transceiver hardware, and in Fig. 1(b), we illustrate
the system model for the considered RP MIMO channels
with additive transceiver hardware impairments. Although the
hardware impairments may impact the signal model either in
an additive or a multiplicative way, for the sake of analytical
tractability, we consider the case with additive residual impair-
ments, i.e., the residual impairments are modeled as additive
distortion noises as in [13–15]. In the following, we start with
the signal model for the conventional case and then write the
signal model for the considered case with the additive residual
transceiver hardware impairments.

Noise
z

Rayleigh-Product
Channel

with K scatterers

BS (M antennas)

Intended signal
x

BS (N antennas)

Received signal
y

(a)

Noise
z

Rayleigh-Product
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x

Transmitter Distortion
t

Receiver Distortion
r

Received signal
y
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(b)

Fig. 1. Illustrations of (a) conventional RP MIMO system with 𝐾 scatterers
and ideal transceiver hardware. (b) RP MIMO system with 𝐾 scatterers and
residual additive transceiver hardware impairments.

In terms of mathematical characterization, a double scat-
tering channel is realized by using a matrix product which
involves two independent complex Gaussian matrices and
three deterministic matrices to represent transmit, receive and
scatterer correlation matrices [3]. As mentioned earlier in
Section I, double scattering channels with the identity transmit-
side antenna, receive-side antenna and scatterer correlation
matrices are defined as the RP channels. Thus, after neglecting
the spatial correlation of transmit antennas, receive antennas
and scatterers, an RP channel can be mathematically written as
the product of two statistically independent complex Gaussian
matrices [7].

Following the above discussion, the RP MIMO channel H ∈
𝒞𝑁×𝑀 ∼ 𝒞𝒩 (0, I𝑁 ⊗ I𝑀 ) with 𝐾 number of scatterers in
the propagation environment is defined as [3]

H =
1√
𝐾

H1H2, (1)

where H1 ∈ 𝒞𝑁×𝐾 ∼ 𝒞𝒩 (0, I𝑁 ⊗ I𝐾) and H2 ∈ 𝒞𝐾×𝑀 ∼
𝒞𝒩 (0, I𝐾 ⊗ I𝑀 ) are random matrices.

For the conventional system model (Fig. 1(a)), the received
signal can be written as

y = Hx+ z, (2)

where x ∈ 𝒞𝑀×1 is the zero-mean transmit Gaussian vector
with the covariance matrix 𝔼 [xxH] = Q = 𝜌

𝑀 I𝑀 , and
z ∼ 𝒞𝒩 (0, I𝑁 ) denotes the Additive White Gaussian Noise
(AWGN) vector at the receiver.

Let 𝜼t and 𝜼r denote the distortion noises resulted from
the residual impairments at the transmitter-side and receiver-
side, respectively, as depicted in Fig. 1(b). With the help of
measurements in [10], it has been shown that the transmit and
receive distortion noises caused due to additive transceiver
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hardware impairments are Gaussian distributed with their
average power being proportional to the average signal power.
Besides, the aggregate impact of many impairments can also
be modeled as circularly-symmetric complex Gaussianity [16].
Following this approach (similar to [15, 16]), the distortion
noises 𝜼t and 𝜼r can be defined as

𝜼t ∼ 𝒞𝒩 (0, 𝛿2t diag (𝑞1, . . . , 𝑞𝑀 )),

𝜼r ∼ 𝒞𝒩 (0, 𝛿2r tr (Q) I𝑁 ), (3)

where 𝛿2t and 𝛿2r are the proportionality parameters which indi-
cate the severity of the residual additive transceiver hardware
impairments in the transmit and receive sides, respectively, and
Q represents the transmit covariance matrix with the diagonal
elements (𝑞1, . . . , 𝑞𝑀 ). By substituting the form of Q in (3),
we obtain: 𝜼t ∼ 𝒞𝒩 (0, 𝛿2t

𝜌
𝑀 I𝑀 ), and 𝜼r ∼ 𝒞𝒩 (0, 𝛿2r 𝜌I𝑁 ).

After including the effect of residual additive hardware
impairments in (2), the received signal corresponding to the
considered system model in Fig. 1(b) can be written as

y = H(x+ 𝜼t) + 𝜼r + z (4)

= h𝑚𝑥𝑚 +

𝑁∑
𝑖=1,𝑖 ∕=𝑚

h𝑖𝑥𝑖 +H𝜼t + 𝜼r + z, (5)

where 𝑥𝑚 denotes the signal transmitted from the 𝑚th transmit
antenna. It can be noted that (5) reduces to the ideal case in
(2) for 𝛿t = 𝛿r = 0.

It should be noted that the parameters 𝜼t and 𝜼r are related
to the Error Vector Magnitude (EVM), which is a commonly
used metric in quantifying signal distortion caused due to
residual hardware impairments [10, 13]. In practical scenarios,
its typical value can be determined either from the minimum
EVM requirements specified on the published standards or
from the publications related to the previous implementations.
For example, the EVM requirements for Long Term Evolution
(LTE) system correspond to 𝛿𝑡 ∈ [0.08 0.175] [13, 19].

III. MMSE RECEIVER PERFORMANCE ANALYSIS

In this section, we investigate the MMSE filtering perfor-
mance of RP MIMO channels by utilizing some important
principles from the asymptotic RMT such as free probability
theory. One of the main motivations behind using asymptotic
RMT principles in our analysis is that the random results con-
verge quickly to the deterministic ones when the dimensions
of the considered channel matrices go to infinity but with a
fixed ratio. In addition to the simplicity of obtaining closed-
form expressions with this method, the results obtained using
this analysis are also sufficiently valid for the finite number of
antennas as depicted later in Section IV. For the simplicity
of MMSE filtering performance analysis in this paper, we
consider linear processing and assume 𝑁 = 𝑀 .

For the considered RP MIMO channel with residual additive
hardware impairments, the average MMSE, let us denote by

MMSEavg, can be expressed as

MMSEavg = 𝔼

[
1

𝑀

𝑀∑
𝑚=1

MMSE𝑚

]

= 𝔼

[
1

𝑁

𝑀∑
𝑚=1

[(
I𝑀 +

𝜌

𝑀
HHR−1H

)−1
]
𝑚,𝑚

]

= 𝔼

[
1

𝑀
tr

{(
I𝑀 +

𝜌

𝐾𝑀
HH

2H
H

1R
−1H1H2

)−1
}]

= 𝔼 [
1

𝑁
tr {

(
I𝐾 + 𝑓1H2H

H

2H
H

1H1

)−1

×
(
I𝐾 + 𝑓2H2H

H

2H
H

1H1

)
} ] , (6)

where R =
𝜌𝛿2t
𝐾𝑀H1H2H

H
2H

H
1 +

(
𝜌𝛿2r + 1

)
I𝑁 , 𝑓1 =

𝛿2t 𝜌

𝐾𝑀𝛿2r

and 𝑓2 =
𝛿2t 𝜌

𝐾𝑀𝛿2r
with 𝛿2t = 1 + 𝛿2t , 𝛿2r = 1 + 𝜌𝛿2r , and [A]𝑘,𝑘

denotes the 𝑘th diagonal element of a square matrix A. For
the notational simplicity, we define K̃ = H2H

H
2H

H
1H1.

In our analysis, we consider the values of 𝑀 , 𝑁 , and 𝐾
going to infinity with the fixed ratios 𝛽 = 𝐾

𝑀 and 𝛾 = 𝑁
𝐾 .

Subsequently, the average MMSE in (6) can be written as

MMSEavg= lim
𝐾,𝑀,𝑁→∞

𝔼

[
1

𝑁
tr

{(
I+ 𝑓1K̃

)−1(
I+𝑓2K̃

)}]
.

(7)

Using the trace inequality for the matrix product from [20]
in (7), the lower bound for the average MMSE of the RP
MIMO channel in the presence of residual additive transceiver
impairments can be expressed as

MMSEavg≥ lim
𝐾,𝑀,𝑁→∞

𝔼

⎡
⎣ 1

𝑁

𝑁∑
𝑛=1

1 + 𝑓2𝜆𝐾−𝑘+1

(
K̃
)

1 + 𝑓2𝜆𝑘

(
K̃
)

⎤
⎦

→
∫ 1

0

1 + 𝐹−1

K̃
(1− 𝑥)

1 + 𝑓2𝐹
−1

K̃
(𝑥)

d𝑥, (8)

where 𝜆𝑖 (X) denotes the 𝑖th ordered eigenvalue of matrix
X, and 𝐹−1

X is the inverse of the asymptotic cumulative
distribution function of X. To compute this, we need to
find the corresponding asymptotic probability density function
(a.e.p.d.f.), i.e., 𝑓∞

K̃
(𝑥), which can be computed by using the

following procedure.
In the RMT literature, one of the widely used methods

to obtain the a.e.p.d.f of a function is by means of Stieltjes
transform [21]. For the simplicity of the analysis, we define
the following notations

Ñ1 = HH

1H1 (9)

Ñ2 = H2H
H

2 (10)

K̃ = H2H
H

2H
H

1H1 = Ñ2Ñ1. (11)

Herein, the matrix K̃ has the same form as the one in
[16] and we obtain the Stieltjes transform of K̃ following
the same method, which is described below for the sake
of completeness. Using the multiplicative free convolution
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property of asymptotically free deterministic matrices Ñ1 and
Ñ2, the Σ transform of K̃ can be written as

ΣK̃(𝑥)=ΣÑ2
(𝑥)ΣÑ1

(𝑥)⇐⇒ (12)(
−𝑥+1

𝑥

)
𝜂−1

K̃
(𝑥+1)=

1

1 + 𝛽𝑥

1

𝛾 + 𝑥
.

Next, the inverse of the 𝜂 transform is calculated using Defini-
tion 2 (see Appendix) and (12). Then after employing Lemma
2, the Stieltjes transform 𝒮K̃ of the asymptotic distribution of
eigenvalues of K̃ can be obtained for any 𝑥 ∈ ℂ by solving
the following cubic polymonial

𝛽𝑥2𝒮3
K̃
− (𝑥 (1 + 𝛽 (𝛾 − 2)))𝑆2

K̃

−(𝑥+ (𝛽 − 1) (𝛾 − 1))𝑆K̃ − 1 = 0. (13)

Finally, the a.e.p.d.f. of K̃ is obtained by evaluating the
imaginary part of the Stieltjes transform 𝒮K̃ for the real
arguments as in [21, Eq. 2.45]

𝑓∞
K̃
(𝑥) = lim

𝑦→0+

1

𝜋
Im{𝒮K̃(𝑥+ j𝑦)}. (14)

IV. NUMERICAL RESULTS

In this section, we illustrate the MMSE filtering perfor-
mance of RP MIMO channels in the presence of residual
hardware impairments with the help of numerical results. In
order to illustrate the variation of the average MMSE metric
defined in Section III with respect to the transmit SNR, we
plot the average MMSE versus 𝜌 in Fig. 2 considering the
cases without impairments, i.e., 𝛿 = 0 and with impairments
for 𝛿 = 0.08 and 𝛿 = 0.15. For this analysis, the impairment
values on both the transmit and receive sides are considered
to be the same, i.e., 𝛿 = 𝛿𝑡 = 𝛿𝑟. From the figure, it
can be noted that the analytical results provide tight lower
bounds over the considered SNR range for all the values of
the residual transceiver impairments. Furthermore, it can be
depicted that in the absence of residual hardware impairments,
i.e., in the ideal scenario, the average MMSE decreases with
the increase in the value of transmit SNR (𝜌). On the other
hand, in the presence of residual transceiver impairments, i.e.,
𝛿𝑡 = 𝛿𝑟 ∕= 0, the average MMSE first decreases with the
increase in the value of 𝜌 and then saturates after a certain
value of 𝜌. Moreover, in Fig. 2, we also illustrate the effect of
different values of impairments on the average MMSE. It can
be noted that the average MMSE decreases with the increase
in the value of 𝛿 and the saturation point occurs earlier (i.e.,
at the lower value of 𝜌) with the increase in the value of 𝛿.

Figure 3 shows the average MMSE performance versus the
number of scatterers 𝐾 in the considered double scattering
environment. In this figure, we plot both theoretical and simu-
lated results for the case without impairments, i.e., 𝛿 = 0 and
for the case with the additive residual hardware impairments.
It can be noted that the average MMSE increases with the
increase in the number of scatterers. The intuitive reasoning
behind this is that the dense scattering environment results
in the degradation in the MMSE filtering performance due to

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

Fig. 2. Average MMSE versus the transmit SNR 𝜌 (𝑀 = 20, 𝐾 =
10, 𝑁 = 20).

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
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Fig. 3. Average MMSE versus the number of scatterers 𝐾 (𝜌 = 20
dB, 𝑀 = 15, 𝑁 = 15).

the larger number of multi-path components to be resolved,
thus resulting in the increase in the value of MMSEavg.
Besides, as expected, the value of MMSEavg increases for the
higher values of impairments over all the considered range
of the scatterers. It should be noted that the obtained result
corresponds to the channel model considered in Section II.

Furthermore, in order to study the effect of transmit and
receive impairments on the MMSE filtering performance, we
plot MMSEavg versus the impairment value 𝛿 ∈ [0 1] in Fig.
4 by considering the parameters 𝜌 = 15 dB, 𝑀 = 5, 𝐾 = 4,
𝑁 = 5. For evaluating the effect of transmit-side impairment
𝛿𝑡, the value of receive-side impairment 𝛿𝑟 is considered to be
zero and vice versa. From the figure, it can be depicted that
MMSEavg increases with the increase in the value of 𝛿 for
both the cases, however, the effect of receive-side impairment
𝛿𝑟 on the average MMSE is found to be much severe than that
of 𝛿𝑡 as noted for the case of DH-AF MIMO relay channels
in [15].

V. CONCLUSIONS

Taking into account the fact that residual hardware impair-
ments are inevitable in practice, this paper studied the effect of
additive residual hardware impairments on the MMSE filtering
performance of RP MIMO channels. The lower bound for
the average MMSE metric was derived by using tools from
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Fig. 4. Average MMSE versus the value of impairment 𝛿 for three
different cases (𝜌 = 15 dB, 𝑀 = 5, 𝐾 = 4, 𝑁 = 5).

random matrix theory. It has been noted that the derived
lower bound is tight over the considered range of transmit
SNRs as well as the number of scatterers. Furthermore, it
has been concluded that MMSE filtering performance of the
considered RP channels first increases with the increase in the
value of SNR and then gets saturated after a certain value
of SNR. Moreover, it has been shown that MMSE filtering
performance degrades significantly with the increase in the
number of scatterers and with the increase in the severity of
transceiver impairments for all the evaluated cases.

APPENDIX I
PRELIMINARIES ON RANDOM MATRIX THEORY

Let 𝑓X(𝑥) denote the eigenvalue probability density func-
tion of a matrix X. In the following, we provide some
definitions and lemmas from RMT.

Definition 1 (𝜂-transform [21, Definition 2.11]): The
𝜂-transform of the density of eigenvalues of a positive semi-
definite matrix X is given by 𝜂X (𝛿) =

∫∞
0

1
1+𝛿𝑥𝑓X(𝑥)d𝑥.

Definition 2 (S-transform [21, Definition 2.15]): The
S-transform of the density of eigenvalues of a positive
semi-definite matrix X is defined as

ΣX(𝑥) = −𝑥+ 1

𝑥
𝜂−1
X (𝑥+ 1). (15)

Definition 3 (The Marčenko-Pastur law [22]): For an 𝑀×
𝐾 matrix H ∼ 𝒞𝒩 (

0, 1
𝑀 I𝑀 ⊗ I𝐾

)
, as 𝑀,𝐾 → ∞ with

𝐾
𝑀 → 𝛽, the a.e.p.d.f. of HHH converges almost surely to
a non-random limiting distribution with the following density
function

𝑓∞
HHH(𝑥) =

(
1− 1

𝛽

)+

(𝑥) +

√
(𝑥− 𝑎)

+
(𝑏− 𝑥)

+

2𝜋𝛽𝑥
, (16)

where 𝑎 = (1−√
𝛽)2, 𝑏 = (1+

√
𝛽)2, and 𝛿(.) is a Dirac delta

function. Similarly, the a.e.p.d.f. of HHH can be obtained as

𝑓∞
HHH(𝑥) = (1− 𝛽)

+
(𝑥) +

√
(𝑥− 𝑎)

+
(𝑏− 𝑥)

+

2𝜋𝑥
. (17)

Lemma 1 ( [21, Eqs. 2.87, 2.88]): The S-transforms of the
matrices HHH and HHH are given by

ΣHHH (𝑥, 𝛽) =
1

1 + 𝛽𝑥
,ΣHHH (𝑥, 𝛽) =

1

𝛽 + 𝑥
. (18)

Lemma 2 ( [21, Eq. 2.48]): The Stieltjes-transform of a
positive semidefinite matrix X can be obtained by its 𝜂-
transform using 𝒮X(𝑥) = −𝜂X(−1/𝑥)

𝑥 .
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