Freie Universitit Berlin
Institut fiir Informatik

Extensional Paramodulation for
Higher-Order Logic and its Effective
Implementation Leo-I11

— Preprint —
See also the published version by AKA Verlag,
as part of the DISKI series, volume 345,

EAN/ISBN: 978-3-89838-739-2

ALEXANDER STEEN

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat)

am Fachbereich Mathematik und Informatik der Freien Universitit Berlin

2018
BERLIN, DEUTSCHLAND

Title Extensional Paramodulation for Higher-Order
Logic and its Effective Implementation Leo-II1

Author Alexander Steen
School Freie Universitit Berlin, Berlin, Germany
Supervisor Prof. Dr. habil. Christoph Benzmiiller

Second Examiner Prof. Dr. Geoff Sutcliffe (University of Miami)

This dissertation was submitted to the Department of Mathematics and Computer
Science of Freie Universitit Berlin on 07.06.2018 and defended on 11.07.2018.
The doctoral commission consisted of Prof. Christoph Benzmiiller (FU Berlin,
Head of commission), Prof. Raul Rojas (FU Berlin), Prof. Geoff Sutcliffe (Uni-
versity of Miami) and Dr. Klaus Kriegel (FU Berlin).

The dissertation project was conducted within the ”Leo-III" project funded by the
German Research Foundation (DFG) under grant BE 2501/11-1, and the project
“Consistent Rational Argumentation in Politics” funded by the Volkswagens-
tiftung. All source code related to work presented in this thesis is publicly avail-
able (under BSD-3 license) at|https://github.com/leoprover/Leo-III.
Supplemental material is available at https://alexandersteen.de/phd/|

https://github.com/leoprover/Leo-III
https://alexandersteen.de/phd/

Abstract

Abstract

In this thesis the theoretical foundations and the practical components for imple-
menting an effective automated theorem proving system for higher-order logic
are presented. A primary focus of this thesis is the provision of evidence that
a paramodulation-based proof calculus can effectively be employed for perfor-
mant equational reasoning in Extensional Type Theory (higher-order logic). To
that end, a sound and complete paramodulation calculus for extensional higher-
order logic with Henkin semantics is presented. The completeness proof hereby
unifies and simplifies existing abstract consistency techniques for a formulation
of higher-order logic that is based on primitive equality as sole logical connective.

In the practically motivated main part of this thesis, the design and archi-
tecture of the new higher-order theorem prover Leo-III is presented. Leo-III is
based on the above paramodulation calculus and implements additional practi-
cally motivated inference rules including equational simplification routines such
as heuristic rewriting and support for reasoning with choice. The system en-
compasses a flexible mechanism for asynchronous cooperation with first-order
reasoning systems, a powerful proof search procedure and a sophisticated and
efficient set of underlying data structures. Pragmatic and practically significant
features of Leo-III are discussed, including its native support for polymorphic
higher-order logic and reasoning in higher-order quantified modal logics. An
evaluation on a heterogeneous set of benchmark problems confirms that Leo-III
is one of the most effective and versatile higher-order automated reasoning sys-
tems to date.

vii

The dissertation project was conducted within the ”Leo-III" project funded by the
German Research Foundation (DFG) under grant BE 2501/11-1, and the project
”Consistent Rational Argumentation in Politics” funded by the Volkswagens-
tiftung. All source code related to work presented in this thesis is publicly avail-
able (under BSD-3 license) at|https://github.com/leoprover/Leo-III.
Supplemental material is available at https://alexandersteen.de/phd/|

https://github.com/leoprover/Leo-III
https://alexandersteen.de/phd/

Acknowledgements

Acknowledgements

First of all I want to express my gratitude to Christoph Benzmiiller who intro-
duced me to the broad field of automated reasoning, in particular in higher-order
logic and further expressive non-classical logics, during my master’s studies. I
want to thank him for accepting me as PhD student and thereby entrusting me
with the development of the Leo-III theorem proving system, the successor-in-
spirit to his own successful systems. Christoph’s passionate teaching, visionary
ideas and challenging research questions greatly stimulated my own personal de-
velopment and created a warm and motivating working environment. His strate-
gic foresight and tight inclusion into scientific processes allowed me to quickly
get accustomed with the relevant research community and renowned scientists of
the field. For his inspiring support, his supervision and his invested time, I want
to express my heartfelt thanks.

In the context of my studies at Freie Universitit Berlin, I want to thank in
particular Heinz Schweppe for his support and advice; Marcel Kyas for many
joyful memories and his sustainable teaching; Lutz Prechelt for his unique abil-
ity to stimulate critical reflection; and to everyone else who gave lectures on
computer science and mathematics to me. In want to thank my colleagues Oliver
Wiese, Nadja Scharf, Jonas Cleve, Max Willert and many others with whom I
spent many lunch breaks and had fruitful discussions. Concerning the Leo-III
project I want to thank Tomer Libal from whom I learned about higher-order uni-
fication and Hans-Jorg Schurr, Maximilian Haslbeck and Tobias Glei3ner who
were wonderful to work with.

I want to thank Geoff Sutcliffe and Stephan Schulz who spent a lot of time
creating integral parts of the automated theorem prover community (e.g. TPTP
and the first-order system E, respectively) from which I learned a lot. There
were many hours in which I studied the source code of the E prover and I think
no teaching book on automated theorem proving could have ever taught me as
much. Furthermore I'd like to thank Jasmin Blanchette, Chad Brown, Martin
Suda, Cezary Kaliszyk and many others who welcomed me to the research com-
munity.

I am thankful for my friends; in particular Max Wisniewski, Marco Tréiger
and Paul Podlech, with whom I spent a lot of time and had countless inspiring
discussions. Above everyone else I want to thank my wife Giulia for her un-
derstanding and her emotional and professional support during my studies and

ix

Acknowledgements

beyond. I am furthermore indebted to my family Franziska and Pascal and in
particular to my parents Karin and Bodo for their patience and their support. It
was my parents who gave me my first personal computer when I was a child,

which greatly influenced my interests and certainly stimulated my fascination for
computer science.

— To my niece Ida.

QUOD SCRIPSI, SCRIPSI.

Contents

Contents

[LINErOAUCHON] ... eeevveenverenerenrerrvennuereneeeeessuessnessseassesssesssesssesssasssesnns 1
[CTMOGVAGOML oot 1
[1.2.Higher-Order Logic|.........ccviiiiiiiiieiie e 4
|1.3.Automated Theorem Proving|.................coo 9
[1.4.The Leo SyStems]........cuvuiriiiiiiiiiee e 14
[L3Structure of the TRESIS -+ -vvnnneeeeeeeeeeiiiiiiiiee e 16
[2.Higher-Order LOZIC |...ccccvireiiericasierenrasicasieseeresrecesrssesassosssssssscans 19
2.1.Syntax of HOLJ.......ooiiiiii e, 19
R.2.Semantics of HOLL.....c.ovniiniiiiii e, 21
2.3.Related SYStems|........veuiiiriiiiiiiiie e 25
[3.Higher-Order Paramodulation)|........c.cccceuviuiiuiiniiniiniiniiniinceeninncnnee. 27
BLPreliminamies] c.veveveiiiiieiieii et 28
[3.2.Extensional Paramodulation Calculus EPl...............c..c..cooon. 30
[3.3.Completeness|...........coooiuiiiiiii 38
[3.3.1.Abstract Consistency Classes|..........coeveverveniininninennennnn. 39
B.3.2.Hintikka Sets|........coooiii 44
3.3.3.Model EXIStencel.cvuveeniiniiiiiiiiiiiiiieiiiicncieieenn 47
13.3.4.Completeness of EP|..............c.ooiii, 48
[3.4.0rdering Constraintsf............cooveiiiiiiiiiiiiiiie e, 54

B The Teo-TIT SySteml........uuueeerrrrerrrrsnreereesesssssneeesssssssssnsessssssssssnnenes 57
K. 1.System Architecture]...........oevuviniiiniiiiiiiie e, 59
4.2.Calculus EXIENSIONS] .. c.uvvueeneeniiiiiiiiiiiei e 65
4.2.1.Clause Contraction]...........ccovevvnviiniiiniiiiiiniieien, 65
4.2.2.Defined Equalities|.............ccooooiiiiiiiiiini, 69
4.2.3.ChOICE| ...uvveiniiiii e 69

4.2.4 Heuristic Instantiationl.............ccoovviniiniiiiiinninene. 70
[4.2.5.Function Synthesis|..............ccooooiiiiiiiiii, 71
4.2.6.Pattern Unificationl...........ccooooveiiiiiiiiii e, 74

4.3.Proot Searchl.........coovveiiiiiii 75
[4.3.1.Pre-Processing|..........ccoueiviiiiiiiiiiieii e, 76

Contents

2 ration Pr TEl ettt et 79

B33 Search Confroll.........oocvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 84

4. External CoOPeration|...........coeuveuviueuieieniniiiiiiiineiieeeeienn, 92
|4.4.1.Utilization during Proof Searchf.........................o. 93

|4.4.2. Translation to First-Order Logic|.................cooooiiiiinnni. 94

4.5.P OUEPUL|. ettt ea e 99
|4.6.Reasoning 1n Polymorphic HOLJ................... 103
4.6.1.Adjustments to Leo-III|...................oo 104
14.6.2.External Cooperation].............coeevvviuviiiniiininiiiinennnnn. 105

. 7.Modal Logic Reasoning|.............cc.coeviiiiiiiiiiiiininninen, 107
4.’7.1.Higher-Order Modal Logic|............ccocoiviiiiniiininnnin. 109
B.7.2. Semantics Varfations]............cccovvvviviiiiiiiiiiiiiii, 109
4.7.3.Automation of HOML m Leo-IIIl 111
i.8.Implementation Details|.............coooiiiiiiiiiiiin 115
B.8.1.Term Data Structurel...........cccovvvvvvviiiiiiiiiiiiiieiiin, 116
|4.8.2.Indexing Techniques|.............coooeiiiiiiiin, 118
|4.8.3.Management of External Reasoners|.............................. 119
4.9.Additional Features|..............coooeiiiiiiii 120
14.9.1.Interactively Guided Refutation|......................c.oin. 120
14.9.2.Editor Front-end for Leo-IIll..............cooviiiiininnin, 122
14.9.3.Integration to Isabelle/HOL].....................oooiiiinnin, 122

4.9.4 Further Minor Features|............ccoooviiiiiiiiiii 123
[B.Application EXampPIes|.......ccceveueeeiereeeneeeerennneeeerennnceeeessnnseesessannenns 125
[5.1.Higher-Order Reasoning|.............c.cceviiviniiiiiiniiiniiniieinieeneanes 125
[5.2.Polymorphic Higher-Order Reasoning].................cccceeevvvunnennenn. 135
15.3.Modal Logic Reasoning|............ccoeoeuviuiininiiiininiininiiinieeneanes 137
B.4Teo-TTas aMeta-Prover...........coooeviiiiiinnnieiiiiiiiiiiiee 140
0. Evaluationl.......ccceuvenieniiniiiiiiieiiiiiiniicni e 143
|6.1.Higher-Order Reasoning...............ccooviiviniiiiiiiniiiniiniinieeann 144
16.2.Polymorphic Higher-Order Reasoning......................... 151
|6.3.Modal Logic Reasoning]...............cooooiiiiiiiiiiiiiiin 153
[6.4Proof CertifiCales]. .. . vvvvereeeiiiiiieeiieeeeieeeiieiie e 157
[7.Conclusion and OutlookK|.........ccecvuiuiiniiniiniiiiiiiiiiiiiiiiiiiieiinnnees 159

Xiv

Contents

[AInstallation and Usage of Leo-TII|ccceevuueneeeerennnneeeernnnneeeernnnnnnns 163
A.1.Requirements|................cooooeiiiiiii 163
[AZI0STAITAGTONLeeeeeeeee e 163
A 3 USAZE] . vt 165

B.List of ContriDUBIONS]. ... eeeevvererreeesrueesseeesraeeesreeessseessaesssseessseessnns 169

.Complete Leo- 010 &) [N 173
C 1. Proof Of SETB57] ovieiiiiei e 173
C.2.Proof of SYOO377T] . ovniviiiieie e 174
C.3.Proof of NUNO257T] . ..uivniiiiieieie e 176
C 4 Proof of SYNOOT T] ..uviiniiiiii e 178
[C.5. Proof 0f SYOS487T] .. vuiviiiieiieie e 179
C.0.Proof of SYOST97T] ..uunieiiii s 180
|C.7.Proof of modified NUNO25"1 (EX. Eg)|....c.cooeeiiiiii s 181
|C.8.Proof of Polymorphic Cantor]...............ccooooeiiiiini, 184
C.9.Proof o B N L i 185
IC.10.Proof of the Barcan Formulal.....................o 186
IC.11.Proof of the Converse Barcan Formulal................................... 188

[D.Deutsche Zusammenfassungl.............cccooveiiiiieiinninieiinnneeiniinnennnn. 191

[E.ADOUT The AUTROL....cuvvueiruiiruiereeenireeeerneerueeeneenncrsnceseecessessecsnnnns 193

LISt Of FIGUTeS|...ciuiiuieieiiuiiniiiiiiiiiiuiiiiiiiiiiieiiiiiiiciiiesieesiesrasiasees 197

IASEOF TADIES. .. vevveeererreesreeeessenaessesssessesssesaessesaessassaessasssasaessanes 199

IAEX] ceoivninnienieniinniuiiaieonsiesiuscacsnssesrasssscsscsssssssssssssssssessssssnsssssassans 200

Bibliography|....ccccoeeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiircr e 205

XV

Chapter 1. Introduction

1. Introduction

1.1. Motivation

God necessarily exists — This is the final conclusion of Godel’s Ontological
Argument which was part of his Nachlass and published post-mortem by So-
bel [Sob87, IG6d70L [Sco72]. Ontological Arguments in general try to verify the
existence of a “God-like individual” and have a long tradition, going back at
least to 1078 where Anselm of Canterbury tried to formulate a rational argument
for the existence of God [Ans78]]. In contrast to many previous formulations
by various authors, Godel worked on a sound and formal, that is mathemati-
cally rigorous, argument that can successfully stand a critical analysis of mathe-
maticians and logicians, notwithstanding that the argument’s assumptions them-
selves may be controversial among philosophers or theologians. Godel’s formu-
lation elegantly incorporates modalities [BvBWO6] and higher-order quantifica-
tion [End15]], i.e. operators expressing concepts of necessity and possibility, and
quantification over predicates and sets, respectively, and is considered a master-
piece argument of metaphysics. Godel’s Ontological Argument certainly is one
of the most discussed proofs of modern times and regularly a topic of academic
philosophy classes; and, in particular, accepted as a sound mathematical proof.
Because of this it is even more surprising that only recently (around 2014)
an automated deduction system found a major flaw in Godel’s argument that had
been overlooked for decades by philosophers and mathematicians [BWP14]: The
higher-order automated theorem prover LEO-II [BPST15] verified that the argu-
ment of Godel is in fact inconsistent, hence allowing every conceivable statement
as valid consequence (including obviously contradictory conclusions such as "ev-
ery formula is a tautology", "truth and falsehood coincide", etc) [BWP16] The
results of these studies not only constitute new knowledge to the field of theo-
retical philosophy and demonstrate the capabilities of contemporary reasoning
systems but also — and even more importantly — illustrate the limitations of hu-
man capabilities to safely maneuver within complex reasoning tasks such as non-
trivial arguments formulated in a higher-order quantified modal logic as used by

! The example of Gédel’s Ontological argument presented here serves mainly as a prominent
motivating example, but itself constitutes an interesting and diverse field of research. Details on the
results of the formal study of the argument and various variants of it can be found in the relevant
literature [BWP14. BWP16].

Chapter 1. Introduction

Godel in his Ontological Argument.

There are two key points that rendered the above discovery possible: Firstly,
the existence of automated deduction systems for higher-order quantified logics.
Although there exist different technical translation processes that allow the em-
ployment of first-order reasoning tools on higher-order problems [Ker94, MPOg],
these approaches are either incomplete with respect to Henkin semantics or inef-
fective for practical and complete automation of higher-order logics within first-
order systemsE] In the experiments of Benzmiiller and Woltzenlogel Paleo, the
higher-order reasoner LEO-II was in fact the only reasoning system that con-
tributed the key higher-order inferences that were essential for the detection of
the inconsistency in Godel’s argument [BWP14]]. None of the existing powerful
first-order theorem proving systems, even when combined with well-established
translation mechanisms, could infer the necessary higher-order instances required
for the proof. Secondly, the availability of techniques for automating quanti-
fied modal logics were vital for the success [BWP16]]. In the experiments of
Benzmiiller and Woltzenlogel Paleo, a translation process is used that reduces
second-order quantified modal logic formulas into equivalent formulas of classi-
cal higher-order logic using a shallow semantical embedding approach [BP13a].
This in turn allows the employment of powerful deduction systems for classical
logics, such as LEO-II as described further above, in the context of modal logic.

Of course, Godel’s Ontological Argument is only one example for the use of
higher-order formalisms. Boolos pointed out that there exists a family of simple
theorems of first-order logic that cannot practically be proven within any first-
order calculus as the number of necessary inference steps grows similar to the
Ackermann function [Boo87|]. In a higher-order calculus, however, there ex-
ist simple and short proofs for these theorems that essentially make use of the
expressiveness of the term language for formulating a suitable induction princi-
ple [BBO7|]. In the context of computer science, the expressiveness of higher-
order logic can e.g. be used to concisely formulate correctness specifications of
software. Furthermore there exist various language extensions for higher-order
logic that allow an even more versatile employment in computer science [FarO8]].

2 Note that automation of higher-order logic is usually studied with respect to so-called Henkin
semantics [Hen50] which is essentially as expressive as first-order logic. However, aspects of ex-
tensionality and comprehension complicate automation of relevant classes of higher-order problems
within first-order reasoning systems. Nevertheless, first-order reasoning systems can often be fruit-
fully exploited by higher-order deduction systems for discharging higher-order proof obligations that
are essentially first-order or require only few higher-order reasoning steps [BN10b]. As a promi-
nent example, encoding of higher-order language features for cooperation with first-order reason-
ers is implemented by the Sledgehammer [BBP13|] system within the interactive proof assistant Is-
abelle/HOL [NWPO02] for semi-automatic discharging of (simple) higher-order goals.

2

Chapter 1. Introduction

The practical evidence that quantified modal logics can effectively be modeled
as a fragment of classical higher-order logic furthermore suggests that higher-
order logic can serve as an universal meta-logic [Benl7b]. This claim is further
substantiated by more recent evaluations [BOR12,IGSB17,/SB18]] and the obser-
vation that there exist analogous reductions for numerous further non-classical
logics [BS16, ISB16l IBen17a, Benl7/cl IBFP18]], for many of which there exist
none or only few specialized reasoning systems. A strong foundation for the au-
tomation of higher-order logic and an effective implementation of a correspond-
ing deduction system thus enables computer-assisted reasoning in even more,
practically relevant, logical systems and application areas. This observation has
been a core inspiration of this thesis project.

The described situation is, however, in contrast to the current state of higher-
order logic automation: Although there is increasing interest in higher-order rea-
soning and there has been significant progress, including the development of new
systems and substantial improvement of existing ones [BenlSal], the theoretical
and practical foundations of higher-order automated reasoning are still not as ma-
ture and well-developed as their first-order counterpart [BM14]]. This is due to the
fact that a significant amount of research in automated deduction focused on first-
order logic and even more restricted systems (such as SAT techniques [[Kro09])
and, as a consequence, many powerful proof calculi and practically relevant im-
plementation techniques exist mainly for such systems [RVOI]. One particu-
lar family of representatives in the context of first-order logic with equality are
superposition-based calculi that have proven an effective basis for reasoning sys-
tems and provide a powerful notion of redundancy [BG90, INR92| BG94]]. Su-
perposition calculi make use of so-called term orderings that impose a partial or-
dering on the terms of first-order logic and additionally incorporate further prop-
erties such as totality on ground terms and stability under substitutions [NRO1].
The idea is that generating inferences can be restricted to maximal (sub-)terms,
reducing the number of overall generated inferences while retaining complete-
ness. Unfortunately, simple adaptions of such term orderings do not exist for the
full language of higher-order logicE] This seems to render superposition-based
approaches for Henkin-complete higher-order reasoning in the full language im-
possible.

This work aims at constituting a first-step towards effective equational rea-

3 A simple counter example for the existence of such an ordering, denoted - here, is the following
cycle unsuitable for any strict ordering relation: ¢ =g (1X.c) ¢ > ¢, in particular implying that ¢ >~
c. Here, the first relationship denotes meta-logical B-equivalence between the constant ¢ and the
application term (AX.c) ¢, and the > step follows from the subterm property which is a core property
of usual term orderings as employed by superposition.

Chapter 1. Introduction

soning in higher-order logic. To that end, a complete paramodulation-based cal-
culus is presented that treats equality as a language primitive rather than a defined
notion. Although this calculus is still unordered and thus potentially suffers from
the same drawbacks as experienced in first-order paramodulation, including early
state space explosions and a prolific proof search, the idea is to anyway use this
calculus as a basis for a new automated theorem proving system and to pragmat-
ically tackle the problems on the implementation level. The resulting theorem
proving system, called Leo-II1, uses a higher-order term ordering to heuristically
restrict generating inferences and to enable equational simplification procedures
such as unconditional rewriting. Since this sacrifices completeness in general,
the goal is to find a suitable set of search heuristics to nevertheless produce an
effective system for practical applications. As initially motivated, various non-
classical logics may be automated using an encoding to classical higher-order
logic. In order to offer out-of-the-box automation for such logics, the Leo-III
system provides native pre-processing routines that automatically apply the ap-
propriate technical translations and hence eliminate the need for external, error-
prone, encoding work.

In the remainder of this chapter, first, a semi-formal exposition to higher-
order logic is presented alongside a brief motivating survey of its history. Subse-
quently, the origin and principles of automated deduction are summarized, focus-
ing on the beginnings of higher-order automated reasoning and its recent devel-
opments. Finally, an overview over the Leo theorem prover family is presented,
specifying the goals of this thesis within the Leo-III research project.

1.2. Higher-Order Logic

The term higher-order logic refers to expressive logical formalisms that allow
for quantification over predicate and function variables. While the term is in-
herently ambiguous and there are many formal systems of such kind, today
higher-order logic typically denotes — at least in the context of the automated
deduction community — systems based on a typed A-calculus [BDS13]. The
use of quantification over arbitrary types and its mechanism of explicit bind-
ing allow a concise representation of complex mathematical concepts and struc-
tures [[And02al [FarOS]].

Logical systems admitting quantification beyond first-order, that is (restricted)
quantification about sets of objects, were first studied by Frege in the 1870s
as attempt to formalize the foundations of mathematics on the basis of formal
logic [Zall/]]. In his Begriffsschrift [Fre79|] Frege presented a second-order pred-
icate logic calculus and a notion of proofs that can be used to formally deduce

4

Chapter 1. Introduction

mathematical properties within that calculus. The most remarkable result in this
context is probably the formal proof of the Dedekind/Peano axioms for num-
ber theory as a theorem of the system [Zall7]]. Furthermore, first concepts of
function substitutions were included, comparable to rudimentary substitutions of
A-abstractions. Consequently, the work by Frege can be seen as the first gen-
uine higher-order logic as it is understood today. However, in subsequent work
that aimed at establishing a theory for arithmetics within his system, Frege in-
cluded axioms related to comprehension principles{z_r] that ultimately rendered the
system inconsistent as it was susceptible to a paradox as Russell pointed out in
1902 [VH67, Rus96]. This paradox involves the construction of a set of all sets
that do not contain themselves, today widely known as Russell’s Paradox. To
overcome the inconsistencies, Russell proposed a formal type theory, which was
first depicted in an appendix called doctrine of types [Rus03] and further elabo-
rated in his ramified type theory [Rus08] that differentiates between objects and
sets of that objects. The strict distinction between different natures of objects
was, admittedly, already known to Frege, who distinguished predicates from in-
dividuals in his calculus.

An alternative formulation of type theory was presented 1940 by Church
who employed a formal system based on functions rather than sets as primitives
and simplified the formulation of Russell in various aspects [Chu40|]. Addition-
ally, the system includes an syntactical representation for functions in terms of
A-abstractions and explicit conversion rules for them [Chu32, [Chu41]. The re-
sulting system is referred to as Simple Type Theory (STT), Church’s Type Theory
and sometimes classical higher-order logic (HOL)E]

HOL is a typed logic. This means that every syntactical object of HOL car-
ries a unique and fixed type that indicates what sort of object the term represents:
Starting from a set of base types (or atomic types), the set of simple types is
freely generated by these base types and function types. A function type is gen-
erated by simple juxtaposition, i.e. if T and v are types, then v7 represents the
type of functions from objects of type T to objects of type v. Usually, there is
one dedicated base type 1t representing the type of objects from the universe of
discourse. In HOL, there is no strict separation between formulas and terms as
it is explicitly constructed in first-order logic [Fit96]. This is realized by des-

4 Comprehension axioms guarantee the existence of certain sets or functions, e.g. an example of
an unrestricted comprehension axiom is the assertion that there exists a set that consists of exactly
those objects that satisfy a given predicate.

5 Although the term HOL is not identified with STT but rather with a subsystem of STT through-
out this thesis, the differences are of no importance for most principles and ideas of HOL introduced
here. The term HOL is specified to coincide with the EXTT subsystem of STT further below.

Chapter 1. Introduction

ignating a dedicated type o as the type of Boolean terms. Types are written as
subscript to terms as in #; which can be read as: ”f; is a term of type 7. The
syntax of HOL is minimalistic: Given a logical signature X (that is a collection
of typed constant symbols) and a set of variable symbols V, terms of HOL are
constructed inductively using only the following four rules (7 and v being two
type meta-variables):

Constant: If ¢; € X, then ¢ is a term of type 7.

Variable: If X; € V, then X; is a term of type 7.

Abstrac- If X; € V and sy is a term of type v, then (AX;.sy)y¢ is a term
tion: of type vT.

Applica- If sy is a term of type v and #; is a term of type 7, then
tion: ($yz f7)y is a term of type V.

Terms of HOL are based on work by Schonfinkel [[Sch24] that studied the fact
that functions of more than one argument can be represented by functions of one
argument that themselves produce functions as values. The reduction to monadic
functions is today also referred to as curryingﬂ named after Haskell Curry who
used this technique in his studies of combinatory logic [Cur30].

As noted above, formulas of HOL are simply terms of type o and may
consequently also occur as proper subterm. In particular (and in contrast to
first-order logic), formulas (or predicates) may be used as arguments to pred-
icates such as (p(,,, (qor xl)) and as arguments to (non-Boolean) terms, as in
(fio Po) or even (fi(000) Vooo). Furthermore, A-abstractions allow the ad-hoc
construction of functions in the language of HOL: If sy is a term of type v, then
(AX:.sv)yr denotes the function that is constructed from mapping each object
x¢ of type T to s[X/x], where s[X/x] is identical to s except that every occur-
rence of X in s is replaced by x. Hence, A-abstractions intuitively represent func-
tions with the difference that they do not carry any explicit name. Application
of a given term #; to such a function is then given by (AXz.sy)yr tr which can
be transformed by so-called f-conversion to s[X /7] as desired. The exact rules
how to manipulate A-abstractions within HOL are given by a set of conversion
rules including a-, - and n-conversion (cf. formal introduction of HOL in
§2) that have been investigated by Church and others in the context of HOL’s
underlying A-calculus [Chu32, [Chu41l Bar81, BDS13]. Another advantage of
HOL is that the presence of A-abstractions and their conversion rules as sketched

6 Although schénfinkeling of even fregeing would be more accurate as Frege was probably the
first who introduced this technique in his works [Fre93| §§35 — 37] and Schonfinkel further developed
this technique.

6

Chapter 1. Introduction

above already make type-restricted comprehension principle{] derivable in the
system [And02a].

HOL comes with built-in notions of functional and Boolean extensionality,
denoted EXT"® and EXT?, respectively [BBK04al, Def. 4.5]. These principles
can be formulated as

EXTY" :=VFyr.VGyr. (VX FX = GX) = F=""G
EXT’ := VP,.VQ,.(P < Q) = P=°Q

and state that two functions are equal (where =} is the equality predicate on
type T, written in infix notation for reasonsof readability) if they correspond on
every argument and that two formulas are equal if they are equivalent (where
<000 denotes equivalence), respectively. Note that the opposite directions are
always implied by substitutivity of equality. Using these principles, one can infer
that two functions such as AP,. T and AP,. PV =P are in fact equal, which is of
great importance in many applications of equational reasoning in HOL (where
T, denotes syntactical truth and V,,, represents logical disjunction). Using the
same principles one can infer that AP,.AQ,.PV Q and AP,.AQ,.QV P are equal.

A prominent example for the expressiveness of HOL is the formulation of
Cantor’s Theorem that states that the powerset of a set is strictly larger than the set
itself. In HOL, sets of type 7 are associated with predicates of type oT denoting
the characteristic function of that set. Then, a variant of Cantor’s statement can
concisely be expressed as follows:

_‘Elf‘()rr'VYo‘L" =), € (fon' X‘:) :Zfor)(or) Yor

This formula captures the essence of Cantor’s Theorem by formally expressing
that there does not exist a surjection f from a set of objects of type 7 to its
powerset. No further axioms or auxiliary constructions are required.

Simple Type Theory as proposed by Church contains various axioms that
are not considered valid in HOL as assumed throughout this thesis. Axioms
that have been assumed by Church but are usually neglected in modern formu-
lations of HOL are the axiom of infinity (stating that the successor function on
Church numerals is injective [BM14, §3.6]), the axiom of description (asserting
the existence of an operator that chooses a unique element satisfying a certain
predicate) and the existence of at least two individuals. When omitting these

7 An example of a type-restricted comprehension axiom scheme is the formula
3F,z.VX".F X" = gy stating that there exists a function F,z (or set if v = o) that corresponds
to a given term (predicate) gy, where F is not a free variable of gy. Such a function F is easily
constructed within HOL by AX". g, using A-abstraction.

Chapter 1. Introduction

three principles, the resulting logical system is often denoted Extensional Type
Theory (ExTT) [BM14] and constitutes the logical basis of most automated the-
orem proving systems for higher-order logic. This thesis hence follows the work
by Henkin [Hen50] and many others and identifies the term classical higher-
order logic (HOL) with EXTT. Note that ExTT still contains extensionality prin-
ciples{ﬂ and might, depending on the system at hand, also validate the axiom of
choice. Yet another subsystem, denoted elementary type theory (ETT) is con-
structed from removing the extensionality principles (and possibly choice) from
ExTT [And74]. ETT roughly corresponds to an extension of first-order logic
with quantification over arbitrary types and a term language based on A-terms.
Note that, however, basic extensionality principles are not valid in ETTE] While
the version of HOL considered throughout this thesis corresponds to EXTT with-
out the axiom of choice, the implementation of the automated theorem proving
system presented as a contribution of this thesis does in fact support reasoning
with the axiom of choice for pragmatic reasons (it can nevertheless be disabled
manually if necessary).

Unfortunately, as a consequence of Godel’s Incompleteness Theorem, all
proof calculi for STT (EXTT, ETT) with standard semantics are necessarily in-
complete [[GOod31], thus eliminating the hope of effective automation. Henkin
introduced a generalized notion of semantics for HOL (also referred to as Henkin
semantics) in which completeness can be achieved, i.e. that provability in ExXTT
corresponds to validity in all general models [Hen50]. Note that standard mod-
els for HOL are subsumed by general models (or Henkin models) such that every
valid formula with respect to general semantics is also valid in the standard sense.
The key idea of general semantics is that the domain of functional types need not
necessarily be the complete set of total functions but rather a subset of all func-
tions such that every term can be assigned a denotation in a reasonable way.
Andrews’ work corrected a technical flaw in Henkin’s construction that allowed
models that did not validate functional extensionality principles [And72a]] and
clarified the notion of general semantics using a more direct definition that uses
elements from combinatory logic [And72b]. For the remainder of this thesis,
HOL with general semantics is assumed, unless stated otherwise.

Various theoretical and practical advantages of using HOL are highlighted by

8 Strictly speaking, Church did not add an axiom for Boolean extensionality into STT but merely
discussed the possibility of doing so. The formulation of type theory considered here follows the
work by Henkin who did include the axiom in his formulation of type theory [Hen50].

9 Technically, since many systems for ETT are based on a A-calculus that includes 1-conversion,
a weak form of functional extensionality can be derived within that systems. This notion of exten-
sionality is nevertheless strictly weaker than the one included in ExTT [BBKO4a].

8

Chapter 1. Introduction

Figure 1: Bird’s-eye perspective on automated theorem proving as a black box.

ATP
System
Problem Answer
(Certificate)

%

[/

Farmer, including a clear and uniform syntax, a simple semantics and pragmatic
flexibility [FarO8|]. The expressivity of higher-order logic is however not only
exploited by mathematicians or logicians, but also in the field of formal methods
in computer science and engineering (e.g. for software and hardware verifica-
tion [Gup92|]) and in computer linguistics [Sch15]]. A more recent and innovative
field of study is the application of automation of expressive logics in theoreti-
cal philosophy, also referred to as Computational Metaphysics [EZ07, BWP16],
for formalizing and assessing abstract concepts and their consequences. To that
end, classical higher-order logic can be used to emulate a large number of ex-
pressive logics using a semantic embedding approach [Benl1]. Hence, efficient
automation of higher-order logic also permits automation results for practical
relevant logics in e.g philosophy, such as quantified modal logics or conditional
logics [BP13a, Benl7a]. Note that there are only few systems available even
for propositional fragments of such logics. When considering quantified modal
logics for example, the situation is even worse and generally restricted to a few
special semantical settings. For the case of higher-order quantified systems, there
are currently no deduction systems available. Hence, automated theorem provers
for HOL can effectively close the gap for such expressive quantified logics.

1.3. Automated Theorem Proving

Automated theorem proving (ATP) denotes the automation of deduction proce-
dures that, given a set of assumptions (usually given as axioms) and a conjec-
ture as input, use a computer program to validate or reject the statement that the
input conjecture is a logical consequence of the given set of assumptions. Intu-
itively speaking, a formula is a logical consequence if it is not possible that all
assumptions are validated while the conjecture is not (cf. Def. [2.6|for a formal
definition). In the context of ATP systems, this reasoning process is done fully
automatically, in particular without any further user-interaction. ATP systems
are used in academic and industrial applications, such as in planning [Rin09]],
software and hardware verification [KroQ9, (CRSS935], or knowledge-based sys-
tems [BCM™03]. Particularly successful applications are restricted variants of

9

Chapter 1. Introduction

SAT and SMT reasoning within decidable logic fragments [BHvMW(9].

Figure[T]displays a schematic top-level view on an automated reasoning pro-
cess. Here, the ATP system is given a problem that consists of a set of formal
logical formulas assumed as axioms and, possibly, a dedicated formula serving
as the conjecture. In a most simplistic setting, the output of an ATP system is
some form of a yes-or-no answer, depending on whether the conjecture could be
proven or refuted, respectively. Increasingly many ATP systems additionally out-
put a proof object that certifies the afore stated answer. Such a proof certificate
can then be used to assess the system’s proof for correctness or further additional
information.

Early developments. The historical overview of early developments in propo-
sitional and first-order automated reasoning presented in the following loosely
follows MacKenzie [Mac95], Bachmair and Ganzinger [BGO1] as well as Davis
[Dav01] for which the author refers to for a more detailed discussion.

Early automated deduction approaches include the development of a decid-
able procedure for the addition of integers by Presburger [Pre29]] in 1929 and
its implementation on a vacuum tube computer by Davis in 1954. As expected,
the deductive power of that implementation was still very limited, also because
the complexity of Presburger’s procedure is at least doubly exponential [FRO§].
Nevertheless, simple fundamental theorems about integers could be proven au-
tomatically [Dav83]. Also during that time, Newell, Shaw and Simon presented
their "Logic Theory Machine” [NS56] for reasoning in propositional logic. The
Logic Theory Machine found proofs for 38 of 52 selected theorems from the
Principia, in particular a simpler proof to a specific theorem, compared to the
one given by Whitehead and Russell [Dru09]. While the system of Newell et al.
was not complete, Wang and Gao presented a Gentzen-style proof system in 1987
which was complete for propositional logic and outperformed the Logic Theory
Machine on examples from the Principia [Wan83].

The field of first-order automated theorem proving as it is established today
can be traced back to the 1920s and early 1930s where Skolem and Herbrand
provided important basic results that later formed the foundations of modern the-
orem proving software [Dav83]. While the first theorem proving systems for
first-order logic based on that results suffered from poor deductive effectivity
(e.g. that by Gilmore [Gil60]), subsequent work by Davis and Putnam [DP60]]
as well as Prawitz [Pra60|] prepared the path for more powerful reasoning tech-
niques.

One of the most popular machine-oriented proof procedures, the resolution
calculus, was presented by Robinson in 1965 [Rob635] and revolutionized the

10

Chapter 1. Introduction

field of automated deduction. In contrast to previous automation approaches, the
resolution calculus was comparably simple to implement and could be executed
by a computer program quite effectively. In resolution-based theorem proving
and, more generally, modern saturation-based theorem proving, the initial con-
jecture is negated, transformed into a set of clauses, and successively saturated.
If after some number of inferences the empty clause is inferred, a contradiction
is derived from the initial set of clauses hence establishing the validity of the ini-
tial conjecture. The resolution calculus is refutationally complete for first-order
logic, i.e. the empty clause can be derived from every inconsistent clause set by
resolution. Nevertheless, it was observed that a naive resolution search process
would produce a large number of clauses that do not necessarily contribute to
the desired proof. This stimulated a, to this day ongoing [Schl17], search for ef-
fective search heuristics that aim at reducing the search space within resolution-
based theorem proving systems, including the unit strategy [WCR64] and the
set-of-support search strategy [WRC65]]. Popular powerful ATP systems for first-
order logic based on (extensions of) Robinson’s ideas include Otter [MW97],
EQP [McC97a] SPASS [WDF™09], E [Sch02]] and Vampire [KV13] which all
shaped the field of theorem proving as it is today.

Today, there exist a number of different calculi well-suited for automation of
first-order logic, including (variants of) resolution-based calculi [BGO1]], paramod-
ulation based calculi including superposition [NRO1], tableaux methods [HahO01]
and connection calculi [Bib87, |OB17]]. The large number of different systems
already indicates that each system comes with advantages and disadvantages re-
garding different aspects, depending on their application domain. However, in
the last decades, superposition-based ATP systems have shown to be particularly
effective tools for general first-order reasoning.

Automation of higher-order logic. Foundations for theorem proving systems for
higher-order logic (also generally referred to as classical type theory to that
time) were not an extensive topic of research until the 1960s and 1970s, where
Robinson presented a tableaux calculus for HOL [Rob69]. Further notable cal-
culi of that time include Andrews’s higher-order resolution principle [And71]],
Jensen’s and Pietrowski’s approach [PJ72] and the constrained resolution method
by Huet [Hue72, [Hue73a]. Common to all of these approaches is the intrinsic
problem of the undecidability of higher-order unification [Gol81} [Hue73bl] which
complicates all mechanization attempts. Andrew’s resolution principle hence
avoids unification completely and rather uses an enumeration of the universe,
whereas Huet’s procedure postpones unification until the end of a refutation at-
tempt and rather uses pre-unification [Hue75] in order to avoid blind guessing as

11

Chapter 1. Introduction

included in full higher-order unification.

The automation approaches and calculi developed until the 1990s [Wol09}
Koh94, [Koh95] still lacked a calculus-level handling of extensionality principles
and thus required the input problem to contain explicit extensionality axioms
in order to guarantee completeness with respect to Henkin semantics [Hen50].
This led to the development of extensional higher-order resolution ER [BK98a]
as well as higher-order extensionality paramodulation £P and higher-order ex-
tensional RUE resolution ERUE [Ben99b]. While ER already was complete
for HOL with Henkin semantics without any additional extensionality axioms,
the calculi EP and ERUE focused on the handling of primitive equality in ex-
tensional HOL. However, in all three calculi, primitive equality is handled by
expansion into its definition as proposed by Leibniﬂ As investigated later by
Benzmiiller et al., Leibniz equality axioms effectively (just as extensionality ax-
ioms) enable cut-simulation [BBKQ9|] and hence should be avoided at all costs
for automation attempts.

Higher-order automated theorem proving has recently made major progress
and several sophisticated ATP systems for higher-order logic have been devel-
oped, including Satallax [Brol2], Isabelle/HOL [NWP02]] and LEO-II [BPST15]].

Higher-order ATP systems. In this paragraph, a number of popular interactive
and automated theorem proving systems for higher-order logic are surveyed:

TPS. One of the earliest system for classical type theory was developed by
Andrews and Cohen, originating from experiments for combining An-
drews’ resolution approach with Huet’s unification procedure. Subse-
quently, the system was completely revised and improved, yielding the
system today known as TPS [ABIT96, [AB06]. TPS makes heavy use
of mode scheduling for its automatic mode, but can also be used semi-
automatically and interactively.

10 The Identity of Indiscernibles (also known as Leibniz’s law) refers to a principle first

formulated by Gottfried Leibniz in the context of theoretical philosophy [Lei89]. The princi-
ple states that if two objects X and Y coincide on every property P, then they are equal, i.e.
VX:.VY;. (VPy:.PX & PY) = X =Y. where ”=" denotes the desired (primitive) equality predicate.
Sometimes the principle is identified with the conjunction of the above statement and its backward
implication, yielding VX;.VY;. (VP.PX < PY) < X =Y. Since this principle can easily be for-
mulated in HOL, it is possible to encode equality in higher-order logic without using the primitive
equality predicate. An extensive analysis of the intricate differences between primitive equality and
defined notions of equality is presented by Benzmiiller et al. [BBKO4a] to which the author refers to
for further details.

12

Chapter 1. Introduction

HOL. The HOL prover family, starting with HOL88 and HOL9S, is based on
LCF-style theorem proving [GMW79] in which a rich proof assistant is
built on top of a small, trusted logical kernel. Current members of the
HOL family are HOL4 [GM93]], ProofPower, HOL Zero and the mini-
malistic HOL Light [Har09].

Isabelle/HOL. The Isabelle [Pau88] system is a theorem prover for an intu-
itionistic variant of type theory. On top of that, Isabelle/HOL [NWPO02]
is designed as an interactive proof assistant for HOL that includes so-
phisticated proof tactics, provides an expressive specification language
and comes with a continuously growing library of formalized theories,
the archive of formal proofs [KNPO3|.

QMEGA. The proof planner and interactive proof assistant QMEGA [SBAO6]
for HOL includes, similar to Isabelle/HOL, various proof tactics and
subsystems including LEO [BK98b] (cf. further below) and first-order
provers for discharging proof obligations. QMEGA aims at providing a
deduction system for mathematics and mathematical education.

Satallax. A particular powerful ATP system for extensional type theory is
Satallax [Brol2]. It implements a complete ground tableaux calculus
for HOL with choice in which successively generated higher-order in-
ferences are associated with propositional clauses. These clauses are
checked for unsatisfiability using an external SAT solver.

Nitpick. The higher-order counter-model finder Nitpick [BN10a] systemati-
cally explores resp. enumerates finite model structures for establishing
the (counter-)satisfiability of a set of formulas. Nitpick is integrated
into Isabelle/HOL and is usually used for checking the consistency of
user-provided axiomatizations or to quickly generate counter-examples
to given conjecture.

AgsyHOL. The higher-order ATP system AgsyHOL is based on generic lazy
narrowing [LinO8|] and implemented in Haskell. A main focus of the
system is to provide checkable proof certificates. The sequent-style
proofs of AgsyHOL can e.g. be verified using the Agda system [BDNO9].

Zipperposition. The first-order Zipperposition system is based on superposi-
tion and supports data types, arithmetic and rewriting [CrulS]. It has

13

Chapter 1. Introduction

quite recently been extended to higher-order logic. However, the sup-
port for reasoning in HOL is still experimental.

This list is by no means exhaustive; a more extensive description of higher-order
reasoning systems is presented by Benzmiiller and Miller [BM14]].

Recent developments. In more recent history, automated theorem provers have
been successfully applied to relevant mathematical problems. The first computer-
assisted proof of an open mathematical problem was conducted in 1976 with the
proof of the four-color problem (colorings of maps with four colors) that used
an exhaustive case distinction analysis [AH76|]. Another prominent example is
the proof of Robbins conjecture (identities in a special algebra denoted Robbins
algebra) with the help of the theorem prover EQP in the late 1990s [McC97b].
Quite recently, Kepler’s conjecture (optimal sphere packing in three dimensions)
was proved using computer-assisted reasoning systems [Lagl1].

Recently, the expressivity of higher-order logic has been exploited for en-
coding various expressive non-classical logics within HOL. Semantical embed-
dings of, among others, higher-order modal logics [BP13a,|GSB17]], conditional
logics [Benl7al], many-valued logics [SB16], deontic logic [BEP18], free log-
ics [BS16], access control logics [Ben09] and combinations of such logics [Ben11]]
can be used to automate reasoning within the respective logic using ATP systems
for classical HOL. A prominent result from the applications of automated rea-
soning in non-classical logics, here in quantified modal logics, was the detection
of a major flaw in Godel’s Ontological Argument [FB17, BWP17] as well as the
verification of Scott’s variant of that argument [BWP15]] using the LEO-II theo-
rem prover [BPST15]] and the interactive proof assistant Isabelle/HOL [NWPOQ2].
Similar techniques were used to assess discussions between philosophers regard-
ing non-trivial arguments from the field of metaphysics [BWWP17].

Additionally, Isabelle/HOL and the Nitpick system were used to assess the
correctness of concurrent C++ programs against a previously formalized mem-
ory model [BWB™11]]. The proof assistant HOL Light played a key role in the
verification of Kepler’s conjecture within the Flyspeck project [HAB™17].

1.4. The Leo Systems

This dissertation project’s research and development is conducted within the
project "Leo-III", funded by the German National Research Foundation (DFG)
under grant BE 2501/11-1, that is conducted by Benzmiiller (PI). Benzmiiller al-
ready developed successful reasoning systems for higher-order logic in the past,
such as the automated theorem provers LEO [BK98b] and LEO-II [BPST15]

14

Chapter 1. Introduction

Figure 2: The logo of the Leo-III theorem prover. The three heads underline the
fact that it is the third incarnation of a Leo system and also symbolize its initial
layout as massively parallel system.

which pioneered the area of resolution-based theorem proving for Henkin se-
mantics. In particular, the latter system found international acclaim as successful
reasoners and won the international CASC competition in 2010 [Sut10]].

LEO (or LEO-I) was designed as a resolution-based automated theorem
prover component of the proof assistant and proof planner Qmega [SBAOG].
Similar to Isabelle’s Sledgehammer system [BBP13], LEO’s task was to au-
tomatically solve given subgoals originating from the Qmega system in order
to minimize the need for user interaction. The LEO system already supported
calculus-level treatment of extensionality principles and used first-order ATP sys-
tems for cooperation [BSJKOS]]. However, LEO lacked proper handling of native
equality as it expanded occurrences of equality by Leibniz’ definition. LEO was
hard-wired into the Qmega system and could not be used as a stand-alone ATP
system.

The LEO-II ATP system is based on Resolution by Unification and Exten-
sionality [DH86], adapted its predecessors treatment of extensionality principles
and supports native treatment of equality [BPST15]. Furthermore, LEO-II has
been integrated into the proof assistant Isabelle.

The goal of the Leo-III project is to turn the LEO-II prover into a prover
based on paramodulation and term orderings which benefits from massive paral-
lelism in the form of a multi-agent blackboard architecture. From the beginning
of the project, careful attention is paid to a robust foundation of efficient data
structures [Stel4] and compatibility with other proof systems by complying to
relevant standards of the TPTP infrastructure [Sutl7b].

This dissertation project plays an integral part in the realization of the fol-
lowing goals of the Leo-III project:

o Implementation of a stand-alone ATP system for HOL with Henkin se-
mantics based on a paramodulation calculus that additionally uses a

15

Chapter 1. Introduction

higher-order term ordering for restricting the inferences and hence re-
ducing the size of the prover’s search space.

e Theoretical justification of the work above, in particular for HOL with
a primitive notion of equality.

e Development of flexible means for collaboration with external reason-
ing systems, including higher-order model finders and first-order theo-
rem provers.

e Provision of detailed proof objects that can be used for assessing the
correctness of the system’s results as well as for communicating with
other proof systems.

e Integration of the ATP system into an interactive proof assistant for dis-
charging user-defined sub-goals.

e Development and employment of effective term representation tech-
niques for higher-order automated reasoning, including representation
of free variables.

e Evaluation of the system on heterogeneous sets examples from higher-
order reasoning and modal logic reasoning.

e Dissemination of Leo-IIl, in particular making the system freely avail-
able within the SystemOnTPTP infrastructure as well as foster develop-
ments concerning standards for reasoning in non-classical logics such
as modal logic.

Note that the development of means for massive parallel proof search using in-
dependent agents is not in the scope of this thesis and not yet part of the Leo-III
system. Nevertheless, Leo-III already is one of the most effective higher-order
ATP systems available. Despite its relative young age, Leo-III came in second
place at the CADE ATP System Competition (CASC) in 2017 [Sutl7a], convinc-
ingly beating its predecessor LEO-II. With Leo-III’s native support for reasoning
in polymorphic HOL and higher-order quantified modal logics, it is additionally,
up to the author’s knowledge, the most widely applicable ATP available to date.
The code of the project, including the code that was developed within the
dissertation project, can be found at the Leo-III project repository at GitHub un-
derlhttps://github.com/leoprover/Leo-III.

1.5. Structure of the Thesis

The dissertation can roughly be separated into two parts: In the first, theoretical,
part of the thesis, §2]formally introduces the syntax and semantics of higher-order
logic, followed by the presentation of an extensional paramodulation calculus for

16

https://github.com/leoprover/Leo-III

Chapter 1. Introduction

that logic in including respective proofs of soundness and completeness. In
the second, practically oriented, part of this thesis, the Leo-III system and its
associated components are presented. This includes the design and architecture
of the Leo-III prover, including details about its proof search, data structures and
implementation details, is discussed in §4] Subsequently, the versatile application
domains of the Leo-III prover are presented in §5] containing examples of higher-
order, polymorphic and modal logic reasoning. An extensive evaluation of the
Leo-III system is then presented in §6] Finally, §7]concludes the dissertation and
sketches areas of further work.

The interested reader is referred to Appendix [A] where detailed instructions
for obtaining, installing and using the Leo-III system are presented. Appendix
summarizes the contributions of this thesis. Detailed proofs of Leo-III originating
from the application examples of §3|are presented in-full in Appendix[C] A brief
German summary of the thesis is provided in Appendix [D} Finally, a short CV of
the author is given in Appendix

17

Chapter 2. Higher-Order Logic

2. Higher-Order Logic

In this chapter, the syntax and semantics of higher-order logic is introduced as
well as notions and definitions that are used throughout the thesis. The term
higher-order logic (HOL) is used interchangeably with extensional type theory
(EXTT) as described by Henkin. A brief survey over further higher-order for-
malisms is presented at the end of the chapter.

Different notions of equality will be used in the following: If a concept is
defined, the symbol := is used, e.g. as in D, := {T,F} (cf. further below). The
equality relation of HOL, written =7 denotes a logical constant from the signature
such that s; =7 #; is a term of the logic (assuming s; and #; are). Meta equality
= denotes identity between objects.

2.1. Syntax of HOL

HOL is a typed logic. This means that all terms of HOL are associated a fixed
and unique fype. Intuitively, a type can on the level of semantics be regarded as a
representation for a specific collection of objects that inhabit that particular type
and denote the possible values for each term’s interpretation of that type.

Types. The types of HOL are given by so-called simple types of the underlying
typed A-calculus. Let S be a non-empty set of sort symbols which serve as
syntactic identifier for the base types of the logic. The set T of simple types is
then freely generated b

T,vi=seS|(vr) (D

where types of the first form are called base types and types of the latter form are
function typesE] A function type (v7) is the type of total functions from objects
of type 7 to objects of type v. Parentheses may be omitted whenever possible.
By convention, function types are left-associative, i.e. the type pv7 is identical
to ((uv)7). If t=v,--- v,V is a function type and v, is a base type, goal(7) = v,
is called the goal type of 7. For base types 7, goal(7) = 7.

! The symbol ::= denotes an abstract syntax production rule.

2 Another widespread notation of function types uses the — sign. Here, vT corresponds to
T — v (note the inverted order of both operands). Especially for programmers, the notation with
arrows might be more convenient to read. Nevertheless, already for comparably small examples, this
representation quickly becomes too large. Of course, both versions can be thought of interchangeable.

19

Chapter 2. Higher-Order Logic

In the context of HOL, the set of base type symbols S is chosen to be S :=
{1,0} where 1 stands for the type of individuals, i.e. the type of objects from the
universe of discourse, and o is the type of Boolean truth values.

Terms. Let X; be a set of constant symbols of type T € 7 and let X := J;c 7 Z¢
be the union of all typed symbols, called a signature. Let further V denote a set
of (typed) variable symbols. From these the terms of HOL are constructed by the
following abstract syntax (t,v € T):

s,ti=c; €X| X €V (AXr.sv) e | (Svrtz), @

The terms are called constants, variables, abstractions and applications, respec-
tively. The set of all terms of type T over a signature X is denoted A(X)
and AS(X) if only ranging over all closed terms. Likewise, the set of all terms
is denoted A(X). It is assumed that the set)V contains countably infinitely many
variable symbols for each type T € T and that there exists some cardinal X such
that all sets X; are of cardinality ;.

The type of a term is written as subscript and considered a part of its name
but may be dropped if clear from the contextE] By convention, parentheses are
omitted whenever possible and application is assumed to be left-associative. Fur-
thermore the scope of an A-abstraction’s body reaches as far to the right as is
consistent with the remaining brackets. Nested applications s ¢! ... #" may also
be written in vector notation s ", s is called its head symbol. Variables are de-
noted by capital letters such as Xz, Y, Z; and, more specifically, the variable sym-
bols P,, Q, and Fy;, Gy are used for predicate or Boolean variables and variables
of functional type, respectively. Analogously, lower case letters sz,#;, u; denote
general terms and fy, gy are used for terms of functional type.

The notion of free and bound variables are defined as usual. The set of free
variables of a term 7 is denoted by fv(z). A term ¢ is called ground if fv(¢) = 0.

3 The here presented typing semantics approach is sometimes called Church-style [Pie02} p. 111]
(or intrinsic interpretation) and commonly used in the context of higher-order logic and throughout
this thesis. Another approach is the so-called Curry-style [Pie02, p. 111] (or extrinsic interpretation)
that is rather used in the context of programming languages and logical frameworks. In the first,
the type of a term is considered a part of its name and is thus fixed and cannot change between
different contexts. This also means that all terms are automatically well-typed terms since we cannot
(syntactically) construct terms that are not well-typed. The latter variant views types as an additional
information assigned to terms from some external context. Consequently, terms itself do not carry
any type information: The term Ax. x can syntactically be constructed and the typing Ax.x: T — 7
and Ax. x: v — v (where T # v are types) can be inferred depending on the context the term occurs
in. Both styles are equally expressive since they can simulate each other [Rey98b| p. 327ff]. Curry-
style can be mimicked by Church-style using type-erasure, and the other way around using type
reconstruction.

20

Chapter 2. Higher-Order Logic

Syntactical equivalence of terms, written s; = f; for two terms s¢,z; € A(X),
is assumed modulo «-conversion, i.e. consistent renaming of bound variables
within a term. A substitution ¢ is a mapping from variables to terms of the
same type. It is extended to terms in the usual way and its application to terms is
written in post fix notation, e.g. as in so. Application of substitutions is assumed
to be capture-free[| A finite substitutions & is written o = {s'/X",...,s"/X"}
and denotes the substitution that replaces the variable X by s/, 1 <i < n.

The equality predicate, denoted =7, for each type 7 is assumed to be the
only logical connective present in the signature X. All (potentially) remain-
ing constant symbols from X are called parameters. A formulation of HOL
based on equality as sole logical connective originates from Andrew’s system
Qo [And02b) |IAnd63]]. Figure [I| shows the definitions of the remaining logical
connectives that are defined in terms of equality. For simplicity, the binary log-
ical connectives may be written in infix notation, e.g. the term p, V g, formally
represents the application (Vypo Po o). Also, binder notation is used for uni-
versal and existential quantification: The term VX;.s, is used as a short-hand for
IT* (AX.s,) and analogously for existential quantification. A X-formula is a term
from A, (X) of type o and a X-sentence if it is a closed X-formula. The reference
to X may be omitted if clear from the context.

An alternative possibility is to regard the logical connectives —,V and IT° as
primitives of the logic. The remaining logical connectives are then defined, in
particular the equality predicate can be defined using the definition from Leib-
niz’ principle, i.e. to have = := AX;.AY;.VP,;.P X = PY, where = denotes
the thereby defined equality predicate (to distinguish it from a possibly exist-
ing primitive equality connective). However, Leibniz equality = only denotes a
proper equality predicate if the underlying model structure contains the identity
relation for every type [[And72a, BBKO4a]. The use of equality as sole logical
connective is motivated by the fact the subsequent proofs generally have to cover
fewer cases and are hence more compact. In a practical implementation, the usual
connectives might nevertheless be regarded as primitive in order to avoid costly
expansion and comparison procedures.

2.2. Semantics of HOL
HOL is built on top of the simply typed A-calculus. The notions of conversion

including a-, B- and m-conversion are defined as usual [BDS13|] and denoted
—ra—8 and —p, respectively. The symmetric closure of —, is written

4 This can always be achieved using appropriate renaming of bound variables using o-
conversion [BDS13].

21

Chapter 2. Higher-Order Logic

Figure 1: Definitions of logical connectives based on equality. The remaining
connectives such as disjunction, implication, existential quantification etc. can
be defined as usual.

To = =G0 :z(()(())oo)(ooo) =000

Lo = (AP,.P)=%°(APR,.T)

=00 = AP.P=°1

Novo = APy AQy. (AFy,.F T T) =20) (AF,,,.F P Q)
Sooo = AP,LAQ,.P=Q

M, = APcP=""2X:.T

<, the transitive and reflexive closure of these relations is denoted —7, for
* € {a,B,n}. a-conversion is treated implicitly when necessary in the follow-
ing.
For x € {B,n,Bn}, two terms s¢,7; € A(X) are x-equivalent, written s; =,
tr, if and only if s; <—] ¢, i.e. both terms can be rewritten into the same term
using successive applications of <. Since the simply typed A-calculus is
confluent and terminating every term s; has a unique 3-normal form (1-normal
form) which is denoted s{ g (s{5,,). Then, the condition s ¢— 17 (st «—>p,, 17)
is equivalent to s;{ g= trd B (s¢4 Bn = trd ﬁn)' A detailed review about HOL’s
underlying A-calculus and its properties can be found in the literature [BDS13].
For the semantics of HOL a universe Uy of non-empty sets with the usual
properties is assumed [GP94]]. Each type is represented by some set within U,
i.e. the set of all denotations associated to that particular type. Given a type
T € T, the set of denotations for 7 is referred to by D; € Uy. The exact structure
of those Dy is given by the notion of frames:

Definition 2.1 (HOL Frame).
Let D = (Dz),c7 be a family of sets. D is called a HOL frame (or simply
frame) if

(i) D, #0,
(i) D,:={T,F}, and
(iii) Dy. C D",

where T # F are distinct objects representing truth and falsehood, respectively.
D‘l,)f is the set of all total (set-theoretic) functions from D; to D,,. _l

A frame D is called standard if Dy is chosen to be the full set D\?f. Given a
signature ¥ and a standard frame D, an interpretation Z on D is a set-theoretic

22

Chapter 2. Higher-Order Logic

function Z that maps each constant symbol c; € X of type T € T to some (arbi-
trary) element d € D. Z(cr) is called the denotation of ¢; € . In an appropriate
model for HOL, it is additionally assumed that each equality constant symbol is
associated the respective (set-theoretic) identity relation by Z.

Definition 2.2 (Standard HOL Model).
Let X be a signature with {=7_. | 7€ T} CX. A standard HOL model is a
pair M = (D,I) where D a standard frame and 7 is an interpretation on D

such that for each 7 € T it holds that
Z(=!..)(x,y)=Tifand only if x =y
for all denotations x,y € D. J

A variable assignment g is a function mapping variables X; € V of type 1 € T
to some element of D;. For a term s; and a variable Xz, let g[s/X] denote the
variable assignment that is identical to g, except that X is mapped to s.

Finally, the value of a HOL term under a given model M is determined by
a valuation function ||.||. The valuation ||.|| maps terms s; of type T € T to their
denotation within D¢, relative to a model M and a variable assignment g.

Definition 2.3 (Valuation function).
Let X be a signature, M = (D, Z) a standard HOL model and let g be a variable
assignment. A valuation function ||.||[* is given by (c; € £,X; € V, s¢y,ty €
A(R)):

lez||*# :=Z(c)
X[:= g(X)

AXz. 1y M5 1= Z vy [[o] M8E/X]
Mg . ; ,
sy oy]| o= [l 42 ([le])
where g, denotes a set-theoretic function from Uy. For s; € A¢(Z), ||s||**8
is called the value of s with respect to model M and variable assignment g (or
simply the value of s). a

As a consequence of Godel’s Incompleteness Theorem [G6d31]], HOL with stan-
dard semantics is necessarily incomplete [BM 14, §4]. However, Leon Henkin de-
veloped a generalized notion of HOL models, so called general models or Henkin
models, that allow a meaningful notion of semantics in which completeness can
be achieved [Hen50]. Intuitively, the idea of general models is that the domain

23

Chapter 2. Higher-Order Logic

Figure 2: Relationship between standard and general models and their valid
sentences: The larger the class of considered models, the lower is the number of
generally valid sentences in all models.

standard general

general . standard

Models Valid sentences

Dy of functional types vt € T need not necessarily be the complete set of func-
tions from 7 to v but merely a subset of those functions with the restriction that
there are still enough denotations for every syntactical object.

Definition 2.4 (General HOL Model).
Let X be as in Def. A general HOL model is a pair M = (D,T) where
D is a (possibly non-standard) frame and Z is an interpretation on D as in
Def. such that, for each variable assignment g, the valuation |.||*" is a
total function. J

The above restriction that ||.|**¢ is a total function ensures that every term de-
notes with respect to every variable assignment. A less indirect definition of
general semantics is due to Andrews and asserts the existence of certain combi-
nators in the respective semantical domains [And72b]. For general HOL models
M, the valuation function ||.||*¢ is well-defined and uniquely determined. For
the remainder of this thesis, HOL with general semantics is assumed.

For the above defined general semantics, also referred to as Henkin seman-
tics, sound and complete machine-oriented calculi exist [And71l, [Hue72| [PJ72|
Ben99all. Note that every standard HOL model is also a general HOL model and
hence every valid sentence in the general sense is also valid in the standard sense.
This situation is visualized in Fig.[2] The remaining usual connectives such as —,
V etc. are given their proper denotation by ||.|| in general and standard semantics:

Lemma 2.5 (Properties of usual connectives [BBKO04a| pp. 1046 — 1047]).
Let £ and M = (D, Z) be as in Def.[2.4]and let g be a variable assignment. It
holds that

1O TIME=T,

24

Chapter 2. Higher-Order Logic

2) HJ_HM’g =F,

(3) ||-s||™¢ = T if and only if ||s||[*¢ =F,

@ ||svt||™#8 =T if and only if ||s| ™€ =T or ||¢| M€ =T,

(5) ||TIF Ppe|| ™€ =T if and only if ||P||*¢(u) =T for every u € Ds.

Validity and consequence are defined as usual:

Definition 2.6 (Validity, Consequence).
Let M be a general HOL model, g is variable assignment and s, € A,(X) a
formula.

(1) s, is valid with respect to model M and variable assignment g, de-
noted M, g |= s, if and only if ||s||**¢ = T.
(il) s, is valid with respect to model M, denoted M k= s,, if and only if
M, g £ s, for every variable assignment g.
(iii) s, is valid, denoted |= s,, if and only if M |= s, for every general
HOL model M.
(iv) Lett, € A,(X) be a formula. s, is called a consequence of t,, denoted
ty |E so, if and only if for every general HOL model M such that
M 1, it holds that M = s,,.
(v) Let® C A,(X) be a set of formulas. s, is called a consequence of @,
denoted ® = s,,, if and only if for every general HOL model M such
that M =1, for every £, € ®, it holds that M |= s,. 4

Further studies of more general classes of HOL models can be found in the
literature, including intensional models [Mus07], generalizations to model struc-
tures without functional and/or Boolean extensionality [BBKO4a] and the even
more general v-complexes by Andrews [[And71]. Since this thesis aims at ef-
fective automation of HOL with Henkin semantics, a discussion of these more
general models is omitted here.

2.3. Related Systems

There exist various alternatives intended to serve as a foundation of mathematics,
most notably axiomatic set theory [Zer08]] due to Zermelo and Frinkel, von Neu-
mann’s set theory [VN25] and, more recently, so-called univalent foundations
related to homotopy type theory [PW12].

In the context of higher-order logic, there too exist systems that modify or
extend Church’s Simple Theory of Types as introduced above. As an example,
Andrews’ presented the system Qp [And63] that only employs a single rule of

25

Chapter 2. Higher-Order Logic

inferences (in contrast to the Hilbert-style calculus of STT) and bases its logic
on equality as sole logical connective, similar to the term language of HOL pre-
sented in §2.1] Note that, however, the system Qy is essentially equivalent to
Church’s STT except for the choice of the primitive connectives resp. relations.

A more expressive type system underlying a higher-order logic was studied
by Gordon in the context of the HOL family [GP94, IGM93||. Here, types are al-
lowed to contain type variables, yielding a polymorphic variant of Church’s STT.
Furthermore, Andrews’ system Q [And65] and Melham’s so-called “Extended
HOL” [Mel93] permit quantification over types, and even more general systems
account for type abstraction as e.g. the one underlying HOL2P [V6I07].

Dependent type theories form another rich field of expressive systems that
include functions from terms to types as part of the language. Popular imple-
mentations of dependent type systems are PVS [ORRT96], Automath [DB70],
Coq [Paulll] and Agda [BDNOQ9].

26

Chapter 3. Higher-Order Paramodulation

3. Higher-Order Paramodulation

Paramodulation extends resolution by a native treatment of equality on the calcu-
lus level. It was developed in the late 1960s by G. Robinson and L. Wos [RW69|]
and introduced as an attempt to overcome the shortcomings of resolution-based
approaches to handling equality. A paramodulation inference incorporates the
principle of replacing equals by equals and can be regarded as a conditional
rewriting step. However, unrestricted paramodulation was quickly found to be
unsuited for practical applications as a large number of redundant inferences are
generated that do not contribute to the overall proof goal [NROI1]]. In the con-
text of first-order reasoning, superposition-based calculi [BG90, INR92| [BG94]
overcome this weakness by imposing ordering restrictions on the premises of the
paramodulation rule such that redundant clauses (with respect to the ordering) are
not generated in the first place. The orderings used by these approaches are term
orderings > that satisfy certain properties, including stability under substitutions
(if s > ¢ then so > to for every substitution ¢) and totality on ground terms (or,
a weaker condition, > must be completeable). The use of term orderings origi-
nates from the field of rewriting, in particular from work by Knuth and Bendix
who presented a procedure that transforms a set of rewriting rules into an equiv-
alent set that is confluent and terminating [KB70, [Hue81l]. However, due to the
more complex structure of the term language of higher-order logic, there do not
exist suitable term orderings that allow a straight-forward adaption of first-order
superposition to HOL.

A further complication of proof search in higher-order logic is intrinsic to
its more complicated meta-theory: In first-order refutation-based calculi, proof
search is generally layed out as a combination of proof search on the calculus-
level (i.e. by means of generating inferences) and a dedicated set of meta op-
erations such as clausification, further pre-processing and unification. In this
context, unification is used as a filtering mechanism that restricts inference at-
tempts between incompatible, that is non-unifiable, configurations of clauses.
The unification procedure is hereby an isolated subroutine that does not inter-
act with the remaining proof search routines. In particular, first-order unifica-
tion has linear time complexity [MM76, WM7S|| and thus provides an efficient
auxiliary mechanism to the overall proof search. In the context of higher-order
logic, unification is neither decidable nor unitary [Hue73b, |Gol81]], however
semi-decidable. As a consequence, unification cannot be used as a decision rou-

27

Chapter 3. Higher-Order Paramodulation

tine by machine-oriented calculi for HOL in general. Huet proposed to ignore
unification completely and postpone unification attempts until the end of proof
search [Hue72| [Hue73al] where all produced inferences are tested for unifiability.
It turns out that such an approach is unfeasible as a very large number of infer-
ences are produced and even a bounded unification search for all of them takes
too long. However, under the assumption that undecidable problems do not occur
often in practical application a hybrid approach can be employed: Unification
constraints are encoded into the inferences of calculus rules and can eagerly be
tackled by (bounded) unification subroutines. If successful, the resulting unified
clauses are inserted into the proof search — if not, the unification constraints are
kept until possibly solvable after further inferences. Such an approach was taken
by Kohlhase [Koh94] and further developed by Benzmiiller [Ben99b]. Since cal-
culus rules may also generate non-CNF inferences, clausification is too lifted to
the calculus level and, consequently, interleaved with the overall proof search.

Higher-order paramodulation for extensional type theory was first presented
by Benzmiiller [Ben99al [Ben99b]. However, this calculus was mainly theoreti-
cally motivated and extended a resolution calculus with an additional paramodu-
lation rule instead of being based on a paramodulation rule alone. Additionally,
that calculus contained a rule that additionally expanded equality literals by their
Leibniz definition. As Leibniz equality axioms effectively enable cut-simulation
[BBKO9], the proposed calculus seems unsuitable for automation. The approach
presented here, in contrast, avoids the expansion of equality predicates but adapts
the use of dedicated calculus rules for extensionality principles.

In this chapter, an extensional paramodulation for extensional type theory is
presented. It does not include a resolution rule and treats equality as a primi-
tive, rather than defined, notion. The resulting calculus EP is shown to be sound
and complete for HOL with Henkin semantics. For the completeness argument,
a model existence theorem is presented which rests on variants of abstract con-
sistency conditions that simplify the ones presented by Benzmiiller et al. in the
context of equality as the only logical connective. Finally, the problems of im-
posing orderings constraints into the calculus are discussed.

3.1. Preliminaries

Since the calculi discussed throughout the thesis work with formulas in conjunc-
tive normal form, the input formulas are reformulated to a clausal representation

! The experiments of the author do in fact support this assumption.

28

Chapter 3. Higher-Order Paramodulation

and subsequently transformed into equisatisfiable sets of clauses in clause normal
form (cf. further below).

An equation is a tuple of terms s,7 € A, written s >~ t. A literal { is a signed
equation, i.e. an equation together with a polarity o € {#, ff}, written £ = [s ~ ¢]*.
, Polarities denote the intended truth-value of a literal. The opposite polarity &
to a polarity « is given by & = ff and §j = #. Non-equality predicates such as
(por ¢1) are represented as an explicit equation with the Boolean truth-value T as
in (por ¢;) ~ T. Aliteral £ = [s ~¢]% is said to be equational if and only if nei-
ther s nor ¢ are identical to T or L. By convention, non-equational literals ¢ are
represented as literals £ = [s ~ T]%, i.e. where the right-hand side of the under-
lying equation is identical to T. Every non-equational literal can be transformed
to this representation using one of the three (validity preserving) transformation
rules below.

[Tos]*— [s=T|¢ [~ L1]% —[s=T]* [Les]® — [s=T)|

Non-equational literals [s ~ T]% may simply be written [s]*. A negative equa-
tional literal £ is also referred to as unification constraint. It is called a flex-flex
constraint if £ is of the form £ = [X s/ ~ ¥ ¢{]7, where X,Y are variables. Given
a model M, a variable assignment g and a literal ¢ = [s; ~ £]%, £ is valid with
respect to M and g, written M, g |= ¢, if and only if M,g =s =1 and ot = tt or
M, g =s#tand a = ff. Itis valid with respect to a model M, written M |= ¢,
if and only if M, g |= ¢ for every g. (Un-)Satisfiability is defined as usual.

Clauses are multisets of literals, denoting their disjunction. A clause C of
literals ¢1,..., ¢, is written C = ¢, V...V ¢,. For uniformity, for two clauses C, D
and a literal ¢, let C VD and C V £ denote the multiset union C WD and D {¢},
respectively. A clause C = ¢; V...¢, is valid with respect to a model M and
a variable assignment g, denoted M, g |=C, if M,g = ¢; for some 1 <i<n.
It is valid with respect to a model M whenever M, g |= C for every variable
assignment g. Again, (un-)satisfiability of clauses is defined as usual. A clause
is the empty clause, denoted L, if it only consists of flex-flex constraints. This is
motivated by the fact that flex-flex unification problems can always be solved, and
hence any clause only consisting of flex-flex constraints is unsatisfiable [Hen50].
In particular, M [~ O for any HOL model M.

A literal ¢ = [s; ~ 1;]% is called atomic if and only if it is (1) equational or
(2) non-equational and the head symbol of s; is not f7-equivalent to a (primi-
tive or defined) logical connective. A clause C is in clause normal form (CNF)
if and only if all literals in C are atomic. Clauses that are not in CNF are also
referred to as pre-clauses. It is well-known that every formula s, can be trans-
formed into an equisatisfiable set of clauses in CNF (cf. further below).

29

Chapter 3. Higher-Order Paramodulation

A substitution o is a function mapping variables X; for terms of the same
type. Application of a substitution o to a term s¢ is defined as usual. Let £ = [s ~
£]* be a literal and o a substitution, then the application of ¢ onto ¢, written {0,
is given by the component-wise application {c = [so ~tc|*. Analogously, for a
clause C =/, V...V, and a substitution ¢, Co is givenby Co =/ ,0V...V{,0.
Positions 7 are defined as usual, the set of all positions of a term s is denoted
pos(s), and the subterm of a term s at position 7 is denoted s|. s[t]; denotes the
term that is equivalent to s except that its subterm at position 7 is replaced by 7.

A calculus is a set R = {r;} of inference rules of the form

n= S Gy

where C; are clauses and (R;) is the name of the rule. The C; are called premises
and C is the conclusion of (R;). If an inference rule has multiple conclusions,
they are simply written below each other. In the following, it is always assumed
that all premises are variable disjoint. Given a calculus R, a set of clauses C and
a clause C, C is said to be derivable from C by R (or simply derivable), denoted
C Fg C, if there exists a sequence CoC| ...C, of clause sets such that Cy = C,
C € C, and for each 0 < i < n it holds that there exists a rule € R such that
Ci+1 = C;UD where D is a set of clauses that are the conclusion of r on some
premises from C;. The subscript R in g may be dropped if R is clear from the
context. Concrete rule names may also be used as subscript to - to indicate
(ambiguously) that a derivation exists that uses the given inference rule(s).

3.2. Extensional Paramodulation Calculus EP

The calculus EP lifts (unordered) first-order paramodulation to extensional higher-
order logic. As mentioned above, unification cannot be used as a filtering mecha-
nism. Following earlier work of Benzmiiller et al., the inference rules of EP will
encode unification constraints into the resulting clause that are then eligible to
appropriate unification inferences. Similar to the ERUE system of Benzmiiller
et al. [Ben99b]], EP allows eager solving of unification constraints such that they
are not necessarily postponed until end of proof search and then solved in a ded-
icated routine (as proposed by Henkin).

The inference rules of EP can be grouped into four classes of inferences
which are introduced individually in the following:

CNF: Clausification rules for transforming pre-clauses into clausal normal
form,

30

Chapter 3. Higher-Order Paramodulation

Figure 1: Clause normalization rules CA/F.

\ CLAUSIFICATION RULES C/\f}"\
=r)~T]% CV [—s,|*
CVI(lr=rs) = T] (LiftEq) [7%], (CNFNeg)
CV Iz ~ 1]* CV [s,]®
if
CV[soVio)® N M (CNFConj)
Vv e eV
ob Ve AL
CV [VX;. s, , CV [VXz.5,]0 .
VT T (CNFAID' (CNFExists)*
CVlsolZ/X]] CV [so[sk £v(C) /X))
+: where Z; is a fresh variable for C +: where sk is a new Skolem constant of appropriate
type

‘PZ: Primary inference rules including paramodulation and primitive sub-
stitution,
EXT: Extensionality rules for Boolean and functional extensionality prin-
ciples, and
UNTZ: Unification rules for eagerly solving unification constraints.

Given a set of formulas ®, every formula s, € @ is initially transformed into cor-
responding pre-clauses that are then admissible for clausification. Pre-clausification
is used several times in the remainder of this chapter and formally given by the
following definition.

Definition 3.1 (Pre-clausification).
Let @ be a set of sentences. Then, the pre-clausification of ®, denoted P,
is given by @1 := {[sop, = T]* | s, € ®}. Pre-clausification essentially
converts formulas to their corresponding pre-clauses without any further nor-
malization or clausification steps. g

Pre-clausification is evidently validity preserving as it does not change the
semantics of the initial formulas. In general, the pre-clausified formulas will not
be in clause normal form (CNF) and hence need to be converted to proper clauses
as analogously done in resolution-based calculi.

Transformation to equisatisfiable clauses in clause normal form is realized
using the clausification rules CA'F displayed in Fig. [I] By convention, free

31

Chapter 3. Higher-Order Paramodulation

variables of clauses are implicitly universally quantified. Existential quantifiers
are eliminated from clauses via Skolemization by rule (CNFExists). Note that
Skolemization in HOL requires special attention as a naive adaption of first-order
Skolemization, as Andrews first pointed out in 1973, is unsound for HOL with-
out choice and incomplete for HOL with choice. However, Skolemization can be
adapted such that it is sound with respect to HOL semantics (Henkin semantics
and standard semantics) without choice: Every introduced Skolem constant is
not allowed to be used as proper term symbol without being fully applied to all
possible arguments [Mil83| [Mil91b]]. For the remainder of the chapter, this sound
Skolemization variant due to Miller is assumed. In particular, the clausification
rules are sound with respect to Henkin semantics as assured by Lemma 3.2

Lemma 3.2 (Soundness of CN/ F).
The clausification inference rules

CNF := {(LiftEq), (CNFNeg), (CNFDisj), (CNFConj),(CNFALI),
(CNFExists) }

preserve satisfiability with respect to Henkin models. g

Proof. Itis well-known that all rules of CN'F except for (CNFExists) preserve
validity and hence also satisfiability. (CNFEXxists) applies Skolemization which is
satisfiability preserving in the version presented by Miller [M1l83, Mil91bf]. [

The primary inferences PZ of EP are paramodulation, factorization and
primitive substitution as given in Fig. 2] The first two inference rules also ex-
ist in the context of first-order logic but differ significantly from their first-order
counterparts. This is due to the fact that unifiability of the relevant terms is not
used as a pre-condition to the rule but rather asserted by encoding the respec-
tive unification constraint as negative equality literal into the conclusion of the
inference rule. These unification constraints are then subject to the unification
inference rules (cf. further below) and can be eliminated if a unifier is found.
The latter rule, primitive substitution, is required for completeness in the context
of HOL as observed by Andrews [[And89]] and Huet [Hue72].

The paramodulation rule (Para) replaces subterms of literals within clauses
by (potentially) equal terms given from a positive equality literal. Since the latter
clause might not be a unit clause, the rewriting step can be considered conditional
where the remaining literals represent the respective additional conditions. In
contrast to previous work by Benzmiiller et al, the calculus EP does not include
expansion of equality by its definition and rather interprets equality as a primitive
logical constant. Of course, (Para) will generate a large number of inference as

32

Chapter 3. Higher-Order Paramodulation

Figure 2: Primary inference rules of EP.

PRIMARY INFERENCE RULES PZ |

C\/[S‘[;gtr]a D\/[lvgrv}&
[s[rlz =t]*VCVDV [s|z =]

(Para)”

*']a Ge gBiﬁ,v}u{HV.;erT}
(Prim)

CVI[H, Si—i]a VI[H ~ G|l

1 if 5|z is of type v and fv(s|z) C fv(s)

potentially every (type-correct) combination of equality literals with subterms of
the other clause yield a dedicated inference result. In practice, Leo-III tackles
this problem by heuristic inference restrictions that try to imitate the ideal of
first-order superposition (cf. §4.3.3).

Factorization (Fac) contracts two literals that are semantically equivalent but
not syntactically equal, reducing the size of the clause if eager unification is suc-
cessful on the generated unification constraints.

Primitive substitution (Prim) approximates the logical structure of literals
with flexible heads. In contrast to early attempts that blindly guessed a concrete
instance of head variables, (Prim) uses so-called general bindings [And89]:

Definition 3.3 (General Bindings [SG8&9])).
A general binding of type Tt" for head hym, also referred to as partial binding
or approximating binding in the literature, is a term g, of the form

— 1 vn 1 v myn
ge=AX7.h(H'X7) ... (H" X")

where 1€ 7,7 € T for1 <i<n, v/ €T for1< j<m,and the H' are fresh
variables of appropriate types. A general bindings is called imitation binding
if 1 is a constant from the signature ¥, and a projection binding if h is a bound

variable X',
For a set of constants H, the set of all imitation bindings of type 7 and
head & € H and projection bindings of type 7 is denoted GBY . J

33

Chapter 3. Higher-Order Paramodulation

General bindings step-wise approximate the instantiated term structure and
hence limit the explosive growth of primitive substitution. Nevertheless, (Prim)
still in a way enumerates the whole universe of terms but, in practical applica-
tions, often few applications of the rule are sufficient to find a refutation. An
example where primitive substitution is necessary is the following: Consider a
clause C given by C = [P,]" where P is a Boolean variable. This clause cor-
responds to the formula VP,. P which is clearly not a theorem. Neither (Para)
nor (Fac) or any other calculus rules presented so far or further below (except
for (Prim)) allow to construct a derivation to the empty clause. However, using

(Prim), there exists a derivation [P]* (prim) Bind) [7P']" FoNEneg [P']7. Note that

{=P'/P} is a substitution applying a general binding from QB?’V}U{HT’:T [7€T}

that approximates logical negation. Now, a simple derivation involving [P]* and
[P'] using (Para) and (Triv) yields the empty clause.
Soundness of the primary inference rules is asserted by Lemma [3.4}

Lemma 3.4 (Soundness of PZ).
The primary inference rules PZ := {(Para), (Fac), (Prim)} preserve satisfiabil-
ity with respect to Henkin models. a

Proof. The assertion follows from a case distinction:

(Para): If the freshly created unification constraint is not satisfiable, then the
conclusion is trivially valid in every model. If, on the other hand, the
unification constraint is valid in the current model, then the replacement
of the subterm is valid by substitutivity of equality (if the respective
literals from the premises were valid). All other cases are trivial.

(Fac): Analogous to (Para).

(Prim): Trivial, as only a disjunct is added to the premise. 0

In the extensional setting of HOL, the calculus needs to guarantee complete-
ness with respect to the extensionality principles. Earlier attempts simply added
the corresponding extensionality axioms to the problem formulation in order to
guarantee completeness even though the underlying calculus does not provide
special extensionality rules. As adding extensionality principles to the search
space enables cut-simulation [BBK09] and tremendously increases the number
of inferences that can be generated, this seems infeasible in practice. The here
presented calculus instead follows the work of Benzmiiller et al. and includes in-
ference rules for both positive and negative instances of Boolean and functional
extensionality, respectively (cf. Fig. E]

2 Note that “extensionality principles” usually only refer to the validity of (fy; X; = gvr X7) =

34

Chapter 3. Higher-Order Paramodulation

Figure 3: Extensionality rules of EP.

EXTENSIONALITY RULES 52(7'\
CV s, ~1t,|% CVls, ~ 1,7
M (PBE) M (NBE)
CV [so]* V [t,]7 CV [so]®V[t, "
CV [so)FV [t,]* CV [so)V [t,]7
Cv [Svr ~ tvq;]ltt . cv [Svr = tvr}ﬁ .
« (PFE) o (NFE)
CV[s X ~t Xq] CV [s skr ~t skq]
+: where X; is fresh for C I: where sk; is a Skolem term

Soundness of the extensionality rules is asserted by Lemma 3.5

Lemma 3.5 (Soundness of EXT).
The extensionality inference rules EXT := {(PBE), (NBE), (PFE), (NFE)} pre-
serve satisfiability with respect to Henkin models. a

Proof. Let M be a Henkin model and g a variable assignment. The proof
makes use of the fact that the Boolean and functional extensionality principles
are valid in all Henkin models.

(PBE): Suppose M = s, =1, for some formulas s, and #,. By definition
it follows that ||s = ¢|[**¢ = T. This is equivalent to requiring that
||s||*8 = ||¢]| 4. Since D, only contains two elements, this is equiv-
alent to either (1) ||s]|**¢ =T and [|¢[|**¢ =T or (2) ||s||*¢ =F and
[|¢[|[*¢ = F. In case (1) M = sV —t since ||s||*4 =T and M |= —s V¢
since [|7||*¢ =T, implying the assertion. Case (2) is analogous and
follows from the fact that ||—s|*"¢ = T whenever ||s||*8 =F.

(NBE): Analogous to (PBE).

(PFE): Suppose M = fyr = gy for some functions f and g. It follows that
I£1*%# = ||g[|**¢ and by congruence that || /]| (x) = [|g|**# (x) for
every x € D;. Hence it holds that M = VX;. f X = g X which implies
the assertion.

fvr = gve (functional extensionality) or of (p, < ¢o) = po = g, (Boolean extensionality) or their
contrapositives as given by rule (NFE) and (NBE), respectively. Technically, the positive variants
are more correctly referred to as congruence rules or simply applications of substitutivity of equality.
However, for an uniform presentation of the rules, both variants are referred to by the term “exten-
sionality”.

35

Chapter 3. Higher-Order Paramodulation

Figure 4: Unification rules of EP

UNIFICATION RULES UNZ |

C\/[ST’XST]ﬁ C\/[Xr':sr]ﬁ
C C{s/X}

(Bind)*

(Decomp)

CVIXyg s ~eye 1)1 gy e GBL)

CV Xy 8 ~cye 5TV [X = g

(FlexRigid)

CV[Xyp 8 ~Yyr)T gpegB

— — (FlexFlex)
CV[Xyg s =Yz t1]FV [X ~ g]T

+: where X; ¢ fv(s) +: where h € X is an appropriate constant

(NFE): Suppose M = fyr # gvr for some functions f and g. It follows that
(| 1|18 # ||g]|*¢ and hence there exists some object x € Dy such that
£ (x) # ||gl| 4 (x). Consequently it holds that M = 3X;. f X #
g X. Application of (satisfiability preserving) Skolemization yields the
desired result. 0

As mentioned earlier, higher-order unification is neither decidable nor uni-
tary. To circumvent this problem unification rules are integrated into the cal-
culus EP and unification tasks from generating inferences are encoded as nega-
tive equality literals (also referred to as unification constraints). A clause C =
DV [s' ~t']Fv...v[s" ~ "]l can be regarded as a conditional clause C =
([s" = t"T* A As" =~ 1"]%) — D. As a consequence, the negative equality
literals denote unification constraints that represent the conditions under which
the remaining clause D is valid. Unification constraints can be solved by iterative
transformation using the unification rules from Fig.[d A unification constraint
0 = [X; ~ s¢)/M is solved if and only if X ¢ fv(s). Solved unification constraints
can be propagated to the remaining clause using the rule (Bind). Note that equal-
ity resolution as known from first-order theorem proving is subsumed by (Bind).
The (FlexRigid) approximates the opposite site using either projection or imi-

36

Chapter 3. Higher-Order Paramodulation

tation bindings. The here presented unification rules are a variant of Huet’s
unification procedure [Hue75] which is known to be sound and complete with
respect to higher-order unification [Sny91}ISG89].

The unification rules can be used to eagerly solve unification constraints of
freshly generated clauses. As unification constraints are in practice often solv-
able using a depth-bounded unifier search, eager unification can avoid or at least
delay a search space explosion. Note that the here discussed calculus includes
the infinitely branching (FlexFlex) rule. This is primarily motivated by the fact
that the completeness proof of EP (in particular, the lifting lemma) is simpler
when (FlexFlex) is available. However, this rule effectively enables blind guess-
ing within a proof search and should be avoided whenever possible. There is
strong evidence that (FlexFlex) is in fact admissible in EP as no proof so far
faced by the author ever made use of that rule. This claim is further substantiated
by similar results for tableaux-based calculi [Brol3]]. This is also why the imple-
mentation of EP within the Leo-III system omits this rule. A formal proof for the
admissibility of (FlexFlex) remains further work.

Soundness of the pre-unification rules wrt. Henkin semantics is asserted by
Lemma[3.6

Lemma 3.6 (Soundness of UNT).
The unification inference rules

UNT = {(Triv), (Bind), (Decomp), (FlexRigid), (FlexFlex)}
preserve satisfiability with respect to Henkin models. a

Proof. Let M be a Henkin model and g a variable assignment. The assertion
follows from a case distinction:

(Triv): Suppose M |= s; # s; for some term s. Evidently by reflexivity of
equality ||s # s||*¢ = F for any variable assignment g.

(Bind): Suppose M = VX;.p,V X; # s; for some formula p, and a term s
such that X ¢ fv(s). By definition it holds that | VX. p, V X; # s¢|| M8 =
T if and only if || p,||*4¢14/X] = T or | X; # s¢||[M¢4/X) = T for all a €
D;. Choosing ag := ||s||*# can always be done since X ¢ fv(s). Con-
sequently it holds that || p||:8190/X] = T or || X; # s [|M8l90/X] =T but
by the above choice of a it holds that

Xz # s¢]|Moslao/X] = <||S||M~,g[ao/X] - ||S||M~,g[ao/X]) =F. Hence, it

holds that || p,||"¢%/X] which implies the assertion.

37

Chapter 3. Higher-Order Paramodulation

(Decomp): Suppose M = f s # f 1" for some function fyz,...;, and terms
st.,ti.. By definition ||f s = f 7|*$¢ = F and hence || f 57| #
|| £ 17||M¢. Tt follows that there exists an i, 1 <i < n, such that ||s’|| "¢ %
[|¢][*¢ and thus M = s’ # ' for some 1 < i < n. In particular it then
follows that M |= (s' #t') V.-V (s" #17).

(FlexRigid), (FlexFlex): Trivial, since only a disjunct is added. 0

Finally, the calculus EP is presented as a combination of all above presented
calculus rules:

Definition 3.7 (Higher-order Paramodulation).
The higher-order extensional paramodulation calculus EP is given by

EP:=CNFUPIUEXTUUNT

i.e. by all calculus rules given in Fig.[[|-[] A set of formulas ® is refutable
in EP if and only if there exists a derivation ®. Fgp J where @ is the pre-
clausification of ®. N

Using the considerations from above, the argument for the soundness of EP is
straight-forward and asserted by Theorem [3.8

Theorem 3.8 (Soundness of EP).
The calculus EP is sound wrt. Henkin semantics. More formally, for any set
of formulas @ it holds that if ® - [J then & is Henkin-unsatisfiable. g

Proof. All inference rules of EP are satisfiability preserving (some even valid-
ity preserving) by Lemmas[3.2] [3.4] 3.5]and [3.6] Hence, if a set of sentences ® is
Henkin-satisfiable, it holds that ® ¥ [J which implies the assertion. O

3.3. Completeness

In this section, completeness of EP is verified. To that end, a model existence
theorem is presented that adapts and simplifies earlier work of Benzmiiller et al.
in the context of equational higher-order logic with Henkin semantics. Model ex-
istence results itself are developed independently from EP using the usual multi-
step approach: First, syntactical properties are presented that constitute so-called
abstract consistency classes I's. Given a set of formulas @ contained in such an
abstract consistency class I's, Hintikka sets # extending ® are then constructed

38

Chapter 3. Higher-Order Paramodulation

as maximal elements of I'y. As a last step, a concrete Henkin model M is con-
structed from 7 such that in particular M = ®.

The completeness proof of EP then employs the model existence theorem by
verifying that the set of formulas that cannot be refuted by EP forms an abstract
consistency class.

3.3.1. Abstract Consistency Classes

The key idea of abstract consistency properties is that the verification of com-
pleteness properties of a given calculus R can be reduced to checking whether
certain proof-theoretic properties are satisfied (i.e. that the set of irrefutable
sentences in R constitutes an abstract consistency class), instead of analyzing
model-theoretic properties which are usually more difficult and tedious to as-
sess. Abstract consistency conditions for such an abstraction were first studied
by Smullyan in the context of first-order logic [Smu63., |ISmu95. [Hin55] (referred
to as unifying principles in that context), adapted to elementary type theory by
Andrews [And7/1,|And02al] and further developed for extensional type theory by
Kohlhase, Benzmiiller and Brown [|Koh94, Ben99a, BBK04al|.

Definition 3.9 (Sufficient X-purity).
Let X be a signature and ® C A,(X) and set of X-sentences. ® is called suf-
ficiently X-pure if and only if for each type T € T there exists a set P C X of
parameters with equal cardinality to A(X) such that no element of P occurs in
any sentence from ®. g

For technical reasons, in the remainder of this section every set of sentences
is assumed to be sufficiently X-pure as defined by Def. [3.9] This assumption
makes sure that there are always enough witnessing parameters available in a
given signature X. Sufficient X-purity can be obtained by enriching X with spuri-
ous constants [Ben99al].

Definition 3.10 (Closed under subsets, Compactness).
Let S be a class of sets. S is called

(1) closed under subsets if and only if for all sets S, 7 it holds that if § C
TandT € SthenS € S, and

(2) compact if and only if for all sets S it holds that S € S if and only if

every finite subset of S is a member of S. |

The technical notions of subset closure and compactness as defined in

Def. [3.10] are key properties of abstract consistency classes in the following. It

39

Chapter 3. Higher-Order Paramodulation

can simp
sets. By
formulas
associate

ly be verified that every compact class of sets is also closed under sub-
convention, let ® s denote the set ® U {s} where ® is some set of
and s is a formula. Also, multiple applications of % are assumed to
to the left, e.g. @ * s 1 represents the expression (P« s) *7 and, conse-

quently, the set ®U {s,?}.
Then, abstract consistency classes are given by the following definition:

Definition 3.11 (Abstract consistency classes).

Let X

be a signature and 'y a class of sets of X-sentences. I'y is called an

abstract consistency class if it is closed under subsets and the following
properties hold:

V.. Ifsis atomic, then s ¢ ® or —s ¢ ®.

Vﬁﬂ: IfszﬁntandsGCID,thenCID*tel"z.

Vi (s#s)¢ .

Vi THfuls],ePands=r1e Pthen Pxult], €Iy.

Vi Ifs=re®, then Pxsxr €y or Px-s*-rcly.

Vo Ifs#te®, thenPxsx—~t €yor®x—s*t €Iy,

V?: If fy: = gye € ®, then ®* f s = g s € I'y for any closed term
sEAN(T).

Vf’: If fyr # gve € D, then @ x f w # gw € I'y for some parameter
w € X that does not occur in any sentence of P.

Vm: Ifs,t are atomic and s,—t € O, then Dxs £1 €Iy.

Vi If h 5" # h " € @, then there is an i with 1 < i < n such that
Dxsi £t Ty,

The collection of all abstract consistency classes is denoted 2cc. g

Note that the notion of abstract consistency classes presented here differs from
the one presented by Benzmiiller et al. [Ben99a, [BBK04b, [BBKO04al BBK(9] in
the following ways:

40

Since the completeness proof is only required for Henkin models, the
class 2cc implicitly corresponds to the functionally and Boolean exten-
sional abstract consistency classes 2lccgy, as defined by Benzmiiller et
al.

In the work of Benzmiiller et al. the existence of identity relations in
each domain D,;; (called property) is assumed for every class of
model structures [BBK04a]. Due to the choice of primitive connectives
of the here presented HOL logic, this requirement is automatically met.
As equality is a primitive (versus defined) logical connective, the defini-
tion of abstract consistency classes presented here does not include con-

Chapter 3. Higher-Order Paramodulation

sistency conditions for extensionality that make use of Leibniz equality
=. This implies that negative as well as positive conditions are required
for functional and Boolean extensionality properties as the positive part
cannot be inferred by expansion of Leibniz equality.

Equality is assumed to be the only logical connective in this work. This
is why there are no consistency conditions for the usual connectives such
as disjunction or universal quantification. These properties can however
be inferred from the definition given here (cf. Lemma [3.13).

The class of abstract consistency classes 2(cc natively includes the con-
ditions V,, and V,. These properties were studied by Benzmiiller et al.
in the context of acceptable classes for Sﬁﬁﬂ, [BBKO4b, BBK09|]. As
a consequence, the completeness proof in the remainder of this section
does not assume safurated abstract consistency classes. Saturation is
related to cut-elimination and thus difficult to prove, while V,, and V,
are usually easier to verify in practice [BBKQ9].

Some technically convenient properties are established by Lemma [3.12] that are
used to shorten later proofs:

Lemma 3.12.
Let I's be an abstract consistency class and let @ € I'x. It holds that

(1
2
3)
“)
®)

Proof.
(1)

@
3

“

1¢d

1=T¢d
Ifs=Ted(ors# L €P)thenPxscly
Ifs=1lecd(ors#T D) thenPx—sly.

Let I'y be an abstract consistency class and let € I'y.

Assume | € ®. By definition of L it then holds that AP,. T = AP,.P €
®. By V;r and Vg, it then holds that @« T = u € I'y for any closed
up € A5(X). In particular taking u = —T produces ®* T = —T € I5.
Applying V| then contradicts to V., hence L ¢ ®.

Suppose =T € ®. By definition it holds that =,,,#=,,,€ ® which
contradicts VZ_. Hence, =T ¢ ®.

Suppose L =T € ®. By V‘b* it then holds that either ®x L x T €'y or
dx-1 «-T €I'y. Since both cases contradict (1) and (2), respectively,
it follows that | = T ¢ .

Suppose s = T € P, then by V; it holds that either ®x s+ T € 'z or
P x5+ T €I'x. By (2) the latter case is impossible hence @+ s* T €

41

Chapter 3. Higher-Order Paramodulation

&)

I'y and, by subset closure, @ s € 'y as desired. The argument for s # L
is analogous.
Suppose s = L € ®. Then ®* s € I's by definition of — and Vg,,. If
s# T € ®, thenby V either ®+s*x T €[y or®x—s+x T €I'x. By (2)
the first case is contradictory, so @ * —s* T € I'y and by subset closure
Px—sely.

O

The properties of the usual remaining connectives are respected by abstract con-
sistency classes:

Lemma 3.13 (Abstract consistency properties of usual connectives).
Let I'y be an abstract consistency class and let @ € I'x. It holds that

V.
Vv
Va
Vy
V3

Proof.

42

If s e P, then Pxsecly

IfsVie®d, then Pxsclyor®Pxrecly

(If (sAf) € B, then Pxsxt €Iy

:IfITF € @, then @+ F w € I's for every w € A°(X).

(If =(ITF) € ®, then @« —(F ¢) € I'y for any parameter ¢ € L.

Let I's be an abstract consistency class and let @ € I'y.

V_: Suppose ——s € @, then by definition of — and Vg, it holds that ® x (s #

L) € I's. Then, by V| and subset closure either (a) @ *s+ -1 € I's or
(b) ®x—sx L € I's. Since the latter case contradicts V. (as =—s € @),
it holds that @ x s+ —_L € I'y and thus by subset closure ®xs € I'y.

Vy: Suppose sVt € @, then by definition of V and Vg, it holds that ® x

Ag.g TT#Ag.gstely. Then, by Vf_, V gy and subset closure it holds
that ®xw T T #£ wst € I'y for some parameter w € ¥ not occurring in
any sentence of ® and by V,, Lemma and subset closure either
DPxsecI'yordxt eIy asdesired.

Vi Suppose (s At) € @, then by definition of A and Vg, it holds that @ *

Ag.g TT=2Ag.gst €Ty and thus by V;r and Vg, it holds that @ x
(Ag.g TT=Ag.gst)*(uT T =ust) €Iy for any closed term u €
A5, (E). Takingu =AX,Y.X =Y gives ®x(Ag.g T T =Ag.gst)xs=
t €'y by Vi, V2 and subset closure. Again, by V?j we either have
Dx(Ag.g T T=Ag.gst)xsxt €Ty or®x(Ag.g T T =Ag.gst)x*
—s*—t € I'y. The latter case implies ®x (Ag.g T T =Ag.gst)*xs=
L*t=_1 €Ty by definition of =, Vg, and subset closure. Now by VL

Chapter 3. Higher-Order Paramodulation

and subset closure it follows that ®xA1g.¢ T T =Ag.¢ L 1L € I'x. But
this contradicts Lemma(S) by V? and Vg, (e.g. take g = AX,Y.X).
Hence, it follows that @ xsxt € I'y.

Vy: Suppose IT F € . then by definition of IT and Vg, it holds that & * (F =
AX.T) €Ty and by V;r, Vg, and subset closure also @xFw=T €Ty
for every closed term w € A°(X). From Lemma (4) and subset
closure it then follows that @« F w € I'y.

V3: Suppose —~(IT F) € ®. then by definition of IT, -~ and Vg, it holds that
@« (F #AX.T) €Iy and by Vi, Vg, and subset closure also @ x
Fw# T €TI% for any parameter w € ¥ not occurring in any sentence
of ®. From Lemma (5) and subset closure it then follows that
Px—(Fw)eTs. 0

In the construction of models further below, it will be necessary to assume
that abstract consistency classes are compact. As Lemma [3.14] shows, abstract
consistency classes I's can be assumed to be compact without loss of generality.

Lemma 3.14 (Compactness of abstract consistency classes).
Let I'y be an abstract consistency class. Then there exists another abstract
consistency class I'y;, such that I'y, is compact and I's C I'}.. J

Proof. Let I'y be an abstract consistency class and let I';, be defined by
I's := {® C A{(X) | every finite subset of P is an element of I'y }

I is compact (hence closed under subsets) and it holds that I'y C Iy (I'y is
closed under subsets and hence for any ® € I'y, every finite subset of @ is in I'y).
It remains to be shown that all V, hold for I';. Let for that purpose ® € I'}. in
the following. The proofs follow earlier work by Benzmiiller et al. [BBKO4b),
Lemma 4.3] [BBKO4al Lemma 6.18].

V.: Suppose there is a s € AS(X) such that {s,—s} C ®. Since {s,—s} is a
finite subset of ® it holds that {s,—s} € I's, contradicting V.. for I's.

Vgy: Let s =g, t and s € @ for some 5,1 € A°(X). Let further be ¥ a finite
subset of @7 and ® := (W {t}) *s. Evidently, ® is a finite subset of
® and thus ® € I'z. By Vﬁn for I'y it also holds that ® x¢ € I's. Since
Iy is closed under subsets and ¥ C © x5 it holds that W € I's. Then, by
definition of I'y, ®*1 € I'..

VZ: Analogous to V..

VLi: Analogous to Vg,,.

43

Chapter 3. Higher-Order Paramodulation

Vi: Let s, =1, € ® and suppose that ®xsx7 ¢ 'y and @« —s* -t ¢ Iy
Then there exist finite subsets ¥;, ¥, of ® such that ¥ x s+t ¢ I'y and
Wy xsx—t ¢ Iy, V=W U, (s =1) is evidently a finite subset
of ® and thus ¥ € I's. By Vf{ for I'y it holds that either W x st €
I's or ¥x—s+—t € 'y and, by subset closure, that ¥ xsx¢ € I'x or
WY, x —sx -t € I's. Since this contradicts the choice of ¥ and ¥, it
follows that @ s*t € I'y or ®x s —r € I

V. : Analogous to V‘g.

V;’,Vf_, V. Analogous to Vﬁn_' '

Va: For 1 <i<mn, let each s;,1;; € AS(X), 1, € T, be closed terms and
hyg,..r, € £ a parameter. Let further (h s’ # ht) € ®. Suppose
@ (s #£1") ¢ T for all 1 <i<n. Then, there exist finite subsets
W, of ® such that W;* (s' #t/) ¢ T’y for all 1 <i<n. Now let
W= (Uj<jcy W) * (st # h1'). W is a finite subset of @, hence W € I's.
By V, for I'y it holds that there is an i such that W« (s' #¢') € I'y. As
Y¥; C ¥ and I'y is closed under subsets it follows that ¥; (si #+ £) eTs.
Since this contradicts the fact that W, = (s # ') ¢ I's forall 1 <i < n, it
follows that @« (s’ # t') € T for some 1 <i <n.

O

3.3.2. Hintikka Sets

Hintikka sets represent the most important tool for the subsequent model ex-
istence theorem as they allow computations similar to those of HOL models.
Hintikka sets will be constructed from maximal elements of abstract consistency
classes and allow the construction of concrete valuation structures that are then
turned into a corresponding Henkin model.

Definition 3.15 (Hintikka set).

Let H be a set of X-sentences. H is called an Hintikka set if the following
properties hold:

44

Chapter 3. Higher-Order Paramodulation

Ve s¢Hor-sgH.
%51]: If s=p, tand s € H, thent € H.
Vi (s#s)¢H.

Ve If us|, € H and s =1 € H then uft], € H.

%z: If s=t € H, then {s,7} CH or {—s,—t} C H.

Veo: Ifs#reH, then {s,~t} CHor{—s,t} CH.

Vi If fyr = gvr € H, then f s = g s € H for any closed term s €

AC(X).
Voo If fur #gvr € H, then f w# gw € H for some parameter w € X ..
V. Ifs,t are atomic and s,—t € H, then s £ ¢ € H.
Vg If hs™ # h " € H, then there is an i with 1 < i < n such that
si£tEH.
The collection of all Hintikka sets is denoted $). J

As the following lemma states, subset-maximal elements of abstract consistency
classes that satisfy a certain condition are in fact Hintikka sets. A set ® € I'y
is called subset-maximal if for every s, € AS(X) such that @ s € I's it already
holds that s € ®.

Lemma 3.16 (Hintikka lemma).
Let I'y be an abstract consistency class and let H € I's. If H is subset-maximal
in I's and satisfies Vf_ then 7 is a Hintikka set. J

Proof. Let I's be an abstract consistency class and let € I's as above. It
needs to be shown that all V., properties hold for #:

60: Follows from the fact that H € I'y satisfies V..

%Bn: Suppose s =g, t and s € H. Since H € I'y and Vg, it holds that H x7 €
I's. Since H is subset-maximal by assumption, this implies that r € H.

V’_: Follows from the fact that H € I'y satisfies V.

V3. Analogous to 6377'

Vi Suppose s =t € H. Since H € I's and Vg it holds that H s+t € I'y
or H*-s+—t € I's. Since H is subset-maximal by assumption, this
implies that either {s,} C H or {—s,—t} C H.

V,: Analogous to Yif

V;“: Analogous to V.

V;: By assumption.

6,,1, 661: Analogous to 6317'

45

Chapter 3. Higher-Order Paramodulation
O

Lemma now confirms that any compact abstract consistency class can be
extended to a Hintikka set. In the proof of this lemma, a transfinite induction over
a sequence of all closed X-sentences in conducted. Recall that it is assumed that
V is countably infinite and X; is infinite and of cardinality X for each type 7 € 7.
The proof idea is adopted from earlier work of Benzmiiller et al. [BBK04a]] which
in turn follows Henkin [Hen50].

Lemma 3.17 (Abstract extension lemma).
Let I's be a compact abstract consistency class and let @ € I's be sufficiently
Y-pure. Then there exists a Hintikka set H such that & C H. J

Proof. The proof of this lemma follows the construction by Benzmiiller et
al. [BBKO4al Lemma 6.32], where a transfinite sequence (7—[5) S<e is constructed

such that H® € I'y for every § < € and the resulting Hintikka set is given by
H :=Us—e HO. To that end, the set AS(X) is enumerated as (A‘S)(k8 and suc-

cessively inserted into H?® if consistent with 'y, together with witnesses if AS
denotes a negative equality between functions. Note that the sequence (A‘S) S<e
exists by the well-ordering principle and the fact that AS(X) has cardinality of at
most X, where € is the first ordinal of this cardinality.

The construction and the proof is identical to the one by Benzmiiller et al.
with the following exceptions:

(1) Only one witnessing sequence X? is defined by X% := (s w?) # (t w?)

if A% is of the form A% = s,; = tyr for some types 7,V € 7. Otherwise,
X9 := A% Note that this subsumes witnesses for existential quantifica-
tion by definition of IT in terms of equality.

(2) Consequently, the transfinite sequence (7—[5) s<¢ 1s modified to let
MO = HO « A%« X9 if HE xA% € Iy and HO*! := MY otherwise
in the successor case. For limit ordinals &, 19 is defined as usual by
HO :=Ugos HO and HO := .

(3) The argument that #9+! € I'y whenever H% € Iy is simplified as fol-
lows: If H% x A% ¢ T's then this is trivially true since because #5+! =
HO € I's. If, on the other hand, HOxAS e y, there are two sub-cases:

(i) If X% = A9 then evidently H% A% X% ¢ Iy,
(i) If X% £ A9 then by V{ it holds that HO %A

does not occur in any sentence of HO«AS.

* X% € 'y since w?

The remaining arguments remain unchanged, in particular H is subset-maximal
and satisfies V; by (3) and hence H € § by Lemma O

46

Chapter 3. Higher-Order Paramodulation

3.3.3. Model Existence

Using the abstract consistency classes and Hintikka sets from the previous sec-
tion appropriate HOL models can be constructed, yielding a so-called model ex-
istence theorem that states that for every set of formulas that is abstractly consis-
tent there exists a HOL model that satisfies this set. While the main result asserts
the existence of appropriate Henkin models (cf. Theorem[3.20), the result is con-
structed using an indirection over more general notions of HOL model structures.
The model structures used by Theorem [3.18]and Theorem [3.19] are given by the
class Mpyp of extensional E-models with primitive equation as introduced by
Benzmiiller et al. [BBKO04al, §3.3]. These model structures allow an abstraction
from HOL models over frames as introduced in §2.2]to a more general notion
based on applicative structures. For brevity, a thorough and verbose introduc-
tion of these model structures is omitted here, but can be found in the relevant
literature [BBKO4a, BBKO4b].

Theorem now states that a generalized notion of HOL model structure
exists for a given Hintikka set 7{ whereas Theorem [3.19] connects this result to
abstract consistency classes.

Theorem 3.18 (Model existence theorem for Hintikka sets).
Let H be a Hintikka set. There exists a model structure M € Mgy, such that
MEH. a

Proof. Analogous to the construction of Benzmiiller et al [BBK04bl, Theorem
8.12]. The only exception is that (weak-)compatibility is defined in terms of
primitive equality instead of Leibniz equality and the choice of logical connec-
tives. The definition of X-per evaluations and consequently the model constructed
can be simplified to only show the appropriate denotation of primitive equality.
However, to avoid exhaustive repetition of analogous constructions (e.g. all oc-
currences of Leibniz equality are replaced by primitive equality) and the fact that
the usual logical connectives are given their standard denotation (cf. Lemmal[2.5)),
the proof construction of Benzmiiller et al. can be used. O

Since abstract consistency classes can be extended to Hintikka sets, every
abstractly consistent set of formulas also has a general HOL model structure.

Theorem 3.19 (Model existence theorem).
Let I's be an abstract consistency class and let @ C I'sy be a sufficiently X-pure
set of sentences. Then there exists a model structure M € Mgyp, such that

ME®. J

47

Chapter 3. Higher-Order Paramodulation

Proof. Suppose I's is an abstract consistency class and let @ C I's be suf-
ficiently X-pure. By Lemma there exists a compact I'y, € 2cc such that
I's C F(L. By Lemma there exists a Hintikka set H € F’Z such that ® C H.
Finally, Theorem guarantees the existence of a model structure M € Mgy,
such that M = H and hence M = . O

The main result of this section is finally given by Theorem [3.20} This result
effective utilizes the fact that for any generalized model structure M € Mgy,
there exists an isomorphic Henkin model that validates the same sentences.

Theorem 3.20 (Henkin model existence theorem).
Let I'> be a abstract consistency class and let @ C I'y be a sufficiently X-pure
set of sentences. Then there exists a Henkin model M such that M =®. |

Proof. By Theorem [3.19] there exists a model structure MP™ € Mgy, such
that MP™ |= &. Tt is known that for every model from Mgy, there exists an
isomorphic Henkin model M [BBK04a, Theorem 3.68], in particular M |= ®.

O

3.3.4. Completeness of EP

In this section, completeness of EP with respect to Henkin semantics is verified.
To that end, it will be shown that the set of irrefutable sentences in EP consti-
tutes an abstract consistency class and hence always has a model. This validates
completeness of EP in its refutational setting.

The most complex technical result for the completeness of EP is the lifting
lemma. This lemma states that for any refutation of a set of instantiated clauses
Co there exists an analogous abstract refutation of the more general set of clauses
C. An even more general result is given by the following Lemma. The desired
result then follows directly.

Lemma 3.21 (General Lifting lemma).
Let C be a set of clauses, D; a clause and ¢ a substitution. If Co - D; then
there exists a derivation C - D, & for a clause D, and a substitution £ such that
'Dzé = Dl .

Proof. The proof is by induction about the length of the derivation A: Co - D;y.
The base case, i.e. a derivation of length zero, is trivial (take D := Dy and & :=
o). For the induction step, assume that A applies some inference rule r € EP for
the first derivation step. The assertion then follows from a case distinction over

48

Chapter 3. Higher-Order Paramodulation

the rules of EP and the induction hypotheses. Let Co € Co be a clause in the
following.

(LiftEq): Suppose Co =¢ 10V ...V{,0V[soc=tc~T|%and D; =/ 0V

...V£4,0V [so ~ tc]® for some literals ¢;, 1 < i< n, and terms s, of
equal type. The uninstantiated clause C = {1 V... ¢,V [X ~Y]% is now
examined for its possible structure with X,Y being two meta variables
(note that ~ is not a logical symbol from X and can thus not be instanti-
ated by any substitution ¢). The following cases are distinguished:
(HDIf X =s=1tand Y = T, then the assertion follows trivially (take
& :=o0). .
(2) If Y = T there exists a variable H and terms u', 1 <i < m of ap-
propriate types with X = H ' such that (H u')o = (s6 =t0). For H u!
it holds that either (i) Ho = AX'.] = r for some terms /,r such that
Hu'/X'}o = so and r{u' /X'}o =t0, or (i) Ho = AX'. X/ u, for some
term u, such that (X/ u){u’ /X'}o = sc =10.

Case (i): Rule (Prim) can be applied to C; with general binding
AX™ (H' X™) = (H? X™) for predicate variable H, where H' and
H? are fresh predicate variables of appropriate type. This yields a
new clause &£; with

E =0V . VLVH W ~T|*V[H~AX™ (H X7) = (H>X™)]1
and, after application of (Bind) to &£; another clause
S =0EV.. . VLEV[(H u) = (H? ul) ~T]*

where & = {X™. (H' X™) = (H?> X™)/H}. Now, (Triv) can be ap-
plied, yielding

E=0LEV.. . VLEV|H W)~ (H? ul)]*

Note that £ is more general than o since it is an approximating bind-
ing using two flexible variables H! and H? and hence there exists
another substitution Y that instantiates the variables H' and H? as
desired and coincides with ¢ on all other variables, i.e. ¢;(yo &) =
tio, (H' u)(yo &) = so and (H? u')(yo &) =to. Consequently,
52(’)/0 5) =7D;.

Case (ii): This case is analogous by applying (Prim) to C; with a
projection binding AX!. X/ (H X').

49

Chapter 3. Higher-Order Paramodulation

(3) If X = 5 =1 there exists a variable H and terms Ww,1<i< m, of
appropriate types with ¥ = H u such that (H v/)o = T. For H u it
holds that either (i) Ho = AX". T or (ii) Ho = AX*. X/ u for some term
u such that (X/ u){u//X'}o = T. Now, (PBE) (if & = t) resp. (NBE)
(if a =) followed by (LiftEq) can be used to infer the clause

E=0HV.. VLV s ~1%V [H ul]T

Note that the flexible literal [H ui] formally represents the literal
[H ui ~ T]. Hence, unification rule (FlexRigid) can be applied to ap-
proximate the rigid constant T.

Case (i): Using (FlexRigid) and (Bind), an imitation binding AXLT
can be applied to clause &, yielding a new clause

E=0HEV . NLEV s~V [T =TI
for substitution & := {AX?. T /H} and, consequently
E=0EV .. VLEV s ~1]%E

by rule (Triv). Note that £ is again at least as general as o, hence
there exists another substitution 7 that coincides with ¢ on all other
variables, i.e. £;(yo &) = ¢;0. Consequently, £3(yo &) = Dy.

Case (ii): This case is analogous by choosing a suitable projection
binding to be instantiated by (FlexRigid) and (Bind).

(4) In the remaining case where X s =1t and Y # T the previous two
cases can be applied successively, yielding the desired result.

(CNFNeg), (CNFDisj), (CNFConj), (CNFALIL), (CNFExists): The argument is
analogous to the previous case.

(Para): Lifting is straight-forward if the paramodulation step occurs in a sub-
term that is also contained in the uninstantiated literal. In all other cases,
the lifting argument of Benzmiiller [Ben99al Corollary 5.26] can be ap-
plied analogously. o L

(Prim): Suppose Co =C'c V [H sic]* and D; = C'c V[H sic|* V [H ~ P]
for a variable H, terms s’ of appropriate type and a suitable general
binding P € GBIV ="IVET} quch that Co F(prim) D1. An anal-
ogous inference of (Prim) can be applied to the uninstantiated clause
C =C'V[H si]* producing

& =C'VI[Hs|*V[H ~ P

50

Chapter 3. Higher-Order Paramodulation

where £,6 = D;.

(Fac), (PBE), (NBE), (PFE), (NFE): Analogous to the previous case.

(Bind): Suppose Co =C'o V [X ~ so]* for a variable X and a term s of
appropriate type. The uninstantiated clause is then of form C =C'V [Z ~
s]* where Z is a meta variable for terms of appropriate type. If X has
base type then Z is also a variable and the inference can analogously be
simulated on the abstract level. If, on the other hand, X has functional
type then Z might also be of the form Z = X r where X is a variable and ¢
is some term. Then, a substitution that is identical or more general than
o can subsequently be approximated by (FlexRigid) and (FlexFlex) on
the calculus level, yielding a clause £ such that there exists a substitution
T with £1 = D, [Ben99al].

(Triv): Analogous to the previous case. o

(Decomp): Suppose Co =C'o V [f sic ~ f tic]7 for aterm f and terms s', ¢,
1 <i < n. If the uninstantiated clause already has term f as head symbol
on both sides of the literal, the assertion trivially follows. Otherwise,
there are two cases:
Case (i): If only one side of the abstract literal has f has head symbol,
then the uninstantiated clause C is of the form C = C'V [H;a! ~ f bi]TT
such that (H a')o = f sic and b'c = t'c. In this case, rule (FlexRigid)
followed by (Bind) generate the clause

& =C'tV[f(H d)...(H*a) ~ f bi]th

where 7= {AX!. f (H' a)...(H*a')/H} and k is the arity of f. As this
inference uses approximating bindings, the substitution 7 is at least as
general as o (note the flexible heads HI 1< Jj < k). Hence, (Decomp)
can now be applied yielding a clause & and there exists a substitution
& such that £,€ = (.

Case (ii): If no side of the abstract literal has f as head symbol, an appli-
cation of (FlexFlex) can instantiate one occurrence as desired, followed
by the same argument as in case (i).

(FlexRigid): Suppose Co =C'cV [H sic ~ f t/c]/ for a variable H, a term f
and terms s',¢/, 1 <i<mand 1 < j <m. If (FlexRigid) is already appli-
cable on the abstract literal, then the assertional trivially follows. In all
other cases, the uninstantiated clause C is of form C =C'V [H s' ~ G a*]/
such that G a6 = f t/o. Then, an application of (FlexFlex) approxi-
mates f for variable H, hence yielding a clause on which (FlexRigid)
can again be applied. Since the substitution from the flex-flex step is at
least as general as o the assertion follows.

51

Chapter 3. Higher-Order Paramodulation

(FlexFlex): Analogous to the case of (Prim).
O

Corollary 3.22.
Let C be a set of clauses and ¢ a substitution. If Co + [then C - . O

For the completeness proof, the notion of consistent sets of clauses will play an
important role.

Definition 3.23 (EP-consistent).
Let @ C AS(X) be a set of sentences. P is called EP-inconsistent if ® [and
EP-consistent otherwise.

Finally, the proof that the set of irrefutable sentences of EP constitutes an ab-
stract consistency property is given. The class of EP-consistent sets of formulas
are those which cannot be refuted by EP.

Lemma 3.24.
Let I'y := {® C AS(X) | P is EP-consistent } be the class of all sets of X-
sentences that cannot be refuted by EP. Then, I'y is an abstract consistency
class.

Proof. LetI's be as above. It suffices to show each V., property (cf. Def[3.11).
Let @ € I'y be a set of sentences in the following. In all cases except for Vg,
each sentence s, € ® is without loss of generality identified with its pre-clausified
variant [s]ft € &.;. However, technically for each sentence s, € P there exists a
clause [s']* € @, by pre-clausification with s’ = s} pn- Since — g, is known to
be convergent (i.e. confluent and terminating), this does not affect the validity of
the arguments.

V.: Let s € A§(X) be atomic and suppose that s,—s € ®. Then Py = P/, *
[s]* * [-s]* for some ®.,. Furthermore, since s is atomic, there is a
derivation q)/cl * [S] ty [—\S] t l_(Neg) (I)él * [S] oy [S]ﬁ l_(PaIa),(TriV) (1. This
contradicts the assumption that @ is EP-consistent.

V”: Let s € A°(X) and suppose that (s # s) € ®. By initial pre-clausification
Dy = W x [~(s = 5)]* for some set W.;. Then, there is a derivation
W * [ﬁ(s = SﬂJtt }_(Neg),(LiftEq) W % [S ~ S]ff }_(Triv) 0, again contradict-
ing the assumptions.

The remaining cases are proved by showing their contrapositive:

52

Chapter 3. Higher-Order Paramodulation

Vpgy: This is trivially true since if s,,7, € ® with s =g, # and P - [then
by definition of pre-clausification there is a pre-clause [u]® € & such
that slg, =u=tlg, and Py = @/, * [u]" - O which is equivalent to

! % [siﬁn]“ FO.

V5_: Suppose that @ * [u[s]]* * [s = 1] * [u[t]]* - O. There is a derivation

D * [[]] [S = t]t }_(LlftEq) D * [[S]]& * [S =~ t]ﬂ I_(Pa.ra),(Triv) D *

[u]s]] * [s = t]% x [u[t]]* and hence Dy [u[s]]* * [s = 1]* - .

V. Suppose that @ [s, = 1, * [s]* « [t]* F O and P * [s, = 1,]% *
[—s]® % [—¢]% - 0. There exists a derivation ®¢; * [s, = 1,]* F(LiftEq),(PBE)
D * [s, = 1) % [s]* v [1]7 % [s]7 v [t]* from which there exists a
derivation of [J. The argument is similar to the one presented by
Benzmiiller [Ben99al Lemma 4.15].

V, : Analogous to V.

V: Suppose that D¢ * [fur = gut) " * [f 5 # g s]* - O for each closed formula
Sz By the lifting lemma (Corollary |3.22f -, it holds that @ * [fur =
gur|® * [f X # g X]" - O for a fresh variable X;. Hence, it follows that
D * [fur = gue|™ - O by a simple application of (PFE).

V; : Suppose that A1 @q* [syr # tuz) " x[s w #t w]* O where w is a param-
eter that does not occur in any sentence in ®¢. There exists a derivation
Doy * [syr # tm]ft F (LifiEq),(NFE) Pt * [Spur > tm]:rf *[s vt v]7T where v is
a fresh parameter. Since both w and v do not occur in any sentence of @
the derivation, the desired derivation @ * [sy¢ = ty¢] T * [s v~ v]T - O
can be constructed by renaming all occurrences of w in A by v.

V,u: Suppose that @ * [s]% x [f]% « [s # t]* - (0. There exists a derivation
D * [S]ﬂ * [—\l]ﬂ |_(Neg) D * [s]ﬂ * mﬁ |_(Para),(Triv) [ORES [S} oy [Z‘]ﬁ * [S ~
t] and hence a derivation of [J.

Vg: Suppose that @ * [h st # hti]% % [s' # ¢]% - O for some 1 <i < n.
There exists a derivation P * [h st 75 h l‘i}tt }_(Neg),(LiftEq) D * V’l st~
B)T = Decomp) et * [st = h t1] 1 [sh o 1] ..« [s" =~ "] and hence
a derivation of [J.

O

Completeness of EP now follows quite simply:

Theorem 3.25 (Completeness of EP).
EP is complete with respect to Henkin semantics, i.e. for every sufficiently X-
pure set of sentences ® and any sentence s, it holds that & x —s - [J whenever
P = J

53

Chapter 3. Higher-Order Paramodulation

Proof. Let® C AS(X) and s, € AS(X) as above such that @ |= 5. Since ® =5
it holds that s is valid in every Henkin model that satisfies ®, hence ® * —s in un-
satisfiable in every Henkin model M. Since only finitely many parameters occur
in s it follows that ® x —s is sufficiently X-pure. Furthermore by Lemma [3.24]
the class I'y := {® C AS(X) | ., is EP-consistent } constitutes an abstract con-
sistency class and hence, by Theorem [3.20] every EP-consistent set of sentences
has a Henkin model. Consequently, ® *x —s must be EP-inconsistent and hence
D —s -0 O

3.4. Ordering Constraints

In first-order theorem proving, plain (unordered) paramodulation approaches
were quickly neglected in favor of ordered paramodulation and in particular
superposition-based calculi [NROI1]]. This is due to the fact that the unordered
paramodulation rule generates many inferences many of which irrelevant for the
ultimate proof goal. In contrast, first-order proof calcali such as superposition
pose restriction on the premises of the inference rule such that only a subset of
all possible inferences are generated [BG94|]. These restriction are based on a
ordering relations derived from a term ordering > and allow to consider only
maximal (wrt. > or extensions thereof) sides of maximal literals within a clause
for generating inferences. More formally, in superposition > is assumed to be a
reduction ordering [BNOSJ, that is a noetherian strict partial order on (first-order)
terms such that it is total on groud terms (or, at least completable) and has the
following properties:

e Stability under substitutions: If s > ¢, then s >t o for every substitution
o.

e Compatibility with term structure: If s > ¢, then uls|, > u[t], for every
term u.

Note that the above properties of an reduction ordering > imply that for every
term s and any strict subterm ¢ of s it holds that s > ¢ [BN9§], this is often referred
to as subterm property.

Due to the more complex structure of higher-order logic terms there do not
exist straight-forward adaptions of first-order reduction orderings to HOL. A sim-
ple counter-example is given by the following scenario: Assume there exists
some constant ¢ € X, then there exists a cycle ¢ =g (AXz.c) ¢ = ¢ implying
¢ > ¢ which contradicts irreflexity of a strict partial order. Note that the second
step in the cycle is implied by the subterm property of > since c is a proper
subterm of (1X.c¢) c.

54

Chapter 3. Higher-Order Paramodulation

In the context of program termination, there has been intensive theoreti-
cal and practical research on higher-order rewriting and respective term order-
ings [GMR™ 15| and a wide field of different notions of higher-order rewriting
have been developed [Kop12]. However, the ordering relations developed in this
context lack the desired properties for utilization within a superposition-based
calculus. It is an open but highly interesting research question whether meaning-
ful ordered calculi can be constructed if usual properties of higher-order ordering
relations, such as compatibility with -reduction, are dropped.

Another approach is currently pursued in the context of the Matryoshka
project [BESW17] in which first-order reduction orderings and superposition-
based calculi are generalized to a restricted fragment of higher-order logic de-
void of A-abstraction, referred to as lambda-free HOLE] Here, adaptions of a
Knuth-Bendix-order [BBWW17]] and recursive path orderings [BWW17] have
been developed. Still, it is ongoing work to generalize such an approach to full
HOL with Henkin semantics, in particular including A-abstractions and Boolean
extensionality.

In contrast to above, in this work a more pragmatic approach is chosen to
increase the practical effectivity of the (unordered) calculus EP: In the imple-
mentation of EP, a higher-order term ordering originating from the termination
community is used to (heuristically) restrict the inferences generated during proof
search. The ordering of choice is hereby a variant of the Computability Path Or-
dering (CPO) [BJR15] which is a well-founded higher-order term ordering with
a restricted notion of substitution stability and subterm compatibility. As this
restriction does not guarantee completeness in general, the hope is that the re-
strictions on EP still perform sufficiently well in practice.

3 Note that the formulation of "Lambda-free higher-order logic” by Bentkamp et al. does not
come with any comprehension axioms and hence cannot be regarded as a higher-order logic formal-
ism in the usual sense, cf. discussions on higher-order formalism in the literature [End 15 [VBD83]J.
Additionally, in their formulation there exist no Boolean subterms (and consequently no Boolean
extensionality).

55

Chapter 4. The Leo-III System

4. The Leo-III System

As outlined at the beginning of the thesis, the main goal of the PhD project was to
develop an ATP system for classical HOL with Henkin semantics that addresses
the shortcomings of resolution-based approaches when handling equality. To that
end, the previously discussed paramodulation calculus EP has been implemented
and augmented with practically motivated inference mechanisms. The resulting
theorem proving system is called Leo-III, named after its predecessors LEO-
IT [BPST15] and LEO [BK98b]E]

Leo-III is an automated theorem prover for classical higher-order logic with
Henkin semantics and choice. It is implemented in Scala, open-source and avail-
able for usage and contribution under a BSD license at GitHubE] Instructions for
installation and usage can be found in Appendix [A]

Leo-III supports all common TPTP dialects [Sutl7bl, including CNF and
FOF [Sut09], TFF [SSCB12|] and THF [SB10]. Additionally, as one of the first
higher-order ATP systems, Leo-III supports reasoning in rank-1 polymorphic
HOL using the TF1 [BP13b|] and TH1 [KSR16] language dialects. During the
development of Leo-III, careful attention has been paid to providing maximal
compatibility with existing systems and conventions of the peer community, es-
pecially to those of the TPTP infrastructure [[Sutl7bl]. The prover returns results
according to the standardized SZS ontology [Sut08] and additionally produces a
TSTP-compatible (refutation) proof certificate [SutQ7,Sut10], if a proof is found.

In the tradition of the cooperative nature of the LEO prover family, Leo-III
collaborates during proof search with external reasoning systems, in particular,
with first-order ATPs such as E [Sch02]], iProver [Kor08] and Vampire [RV02]]
as well as SMT solvers like CVC4 [B™11]. Again, this collaboration strongly
benefits from the TPTP language standards as it makes use of the respective
dialects for communicating with the external systems. Unlike LEO-II, which

! Initially designed as theorem prover component as part of a larger reasoning framework called
Qmega [SBAO6L BEM ™ 06], the name LEO is an acronym for Logical Engine for Omega. As of the
development of LEO-II, the provers were designed as stand-alone ATP systems for HOL without any
employment restrictions related to Qmega. Hence the original acronym’s meaning does not apply
anymore to the Leo prover family. That is why the official capitalization used for the most recent
incarnation of the Leo provers, i.e. ”"Leo-III", was chosen to explicitly reduce the reference to its
original meaning while still gracefully referring to its predecessor versions.

2The most current version of Leo-III can be retrieved at|https://github.com/leoprover/
Leo-III/releases/latest,

57

https://github.com/leoprover/Leo-III/releases/latest
https://github.com/leoprover/Leo-III/releases/latest

Chapter 4. The Leo-III System

translated proof obligations into untyped first-order languages, Leo-III, by de-
fault, translates its higher-order clauses to (polymorphic or monomorphic) many-
sorted first-order formulas. Leo-III accumulates higher-order clauses during
proof search and repeatedly invokes all cooperating systems on the generated
proof obligations. For that purpose, various translation mechanisms from HOL
to different variants of first-order logic are implemented. If any external (first-
order) reasoning system finds the submitted proof obligation to be unsatisfiable,
the original HOL problem is unsatisfiable as well and a proof for the original
conjecture is found.

While LEO-II is based on an augmented version of RUE resolution [DH86|
BPST15]] and thereby supports handling of primitive equality on the calculus
level, its actual reasoning power concerning equality is still limited. Most of
LEO-II’s reasoning effectivity originates from external cooperation with E. This
is also due to the fact that LEO-II does not include effective reasoning and simpli-
fication techniques from equational first-order theorem provers such as rewriting
and (ordered) paramodulation. The cooperation principles of LEO-II are adapted,
improved and combined with a restricted paramodulation calculus in Leo-III.
Furthermore, major effort has been invested to adapt simplification and search
control techniques from first-order reasoning.

Leo-III aims at general purpose theorem proving in HOL and should hence
be based on a complete calculus. However, a primary goal of this work is to
develop a theorem proving system that performs well in practice, regardless if
its known not to be complete on a theoretical level or not. Such an approach is
also reflected by ongoing developments in the ATP community: Since the de-
velopment of Gandalf [Tam96], mode scheduling has been a major improvement
to the overall success of ATPs. In mode scheduling, theorem proving systems
run different configurations (i.e., vary parameters that influence the search space
traversal) within a single invocation using a limited resource scheduling strategy.
Here, some modes may intentionally sacrifice completeness due to empirical evi-
dence that the restrictions perform reasonably well on (some subset of) problems.
Current HOL ATP systems such as Satallax [Brol2]] and TPS [[ABO6] use this
approach as well. Additionally, there is an ongoing discussion about the use of
strategies in reasoning systems [Weil7].

Finally, Leo-III natively supports reasoning within every normal higher-
order modal logic [BVBWO06]. Modal logics have many relevant applications in
computer science, artificial intelligence, mathematics and computational linguis-
tics. Many challenging applications, as recently explored in metaphysics, require
first-order or higher-order modal logics (HOMLs). The development of ATPs for
these logics, however, is still in its infancy. Leo-III is addressing this gap. In

58

Chapter 4. The Leo-III System

addition to its HOL reasoning capabilities, it is the first ATP that natively sup-
ports a very wide range of normal HOMLs. To achieve this, Leo-III internally
implements a shallow semantical embeddings approach [BP13al [GSB17]. The
key idea in this approach is to provide and exploit faithful mappings for HOML
input problems to HOL that encode its Kripke-style semantics. These hybrid
logic competencies make Leo-III, up to the author’s knowledge, the most widely
applicable ATP available to date.

This chapter introduces the Leo-III theorem prover, its underlying principles
and implementation details. The general architecture and design of Leo-III is
discussed in In §4.2] additional, mostly practically motivated extensions
to Leo-IIT’s EP calculus are discussed. The proof search process, including pre-
processing routines and search heuristics, and the resulting proof certificates of
Leo-IIT are introduced in §4.3]and §4.3] respectively. The extensions to these pro-
cedures for admitting reasoning in polymorphic HOL are described in Sub-
sequently, the embedding approach that enables reasoning in higher-order modal
logics and its utilization in Leo-III is presented in Next, §4.8]sketches vari-
ous implementation details. Finally, §4.9|presents further pragmatic features and
functions of Leo-III.

4.1. System Architecture

The fundamental architecture of Leo-III is quite complex due to the agent-based
design of the system. Here, the initial idea of the project is to structure Leo-III as
a massively parallel theorem proving system that employs various independent
agents on top of a blackboard-based internal communication architecture. These
agents are then supposed to act as specialists for certain reasoning tasks and ex-
change information (i.e. newly generated inferences) using the shared black-
board. The goal is thus to collaboratively find a proof using the so independently
generated reasoning steps.

In principle, the employment of independent reasoning agents may speed-
up the reasoning process as a whole since they may exploit the availability of
multiple CPU cores and, hence, can be executed in parallel. In practice, how-
ever, the design of such a complex system with intricate relationships between
reasoning tasks makes it necessary to use sophisticated control and scheduling
layers and data consistency mechanisms while ensuring correctness of the rea-
soning process at the same time. As mentioned before, the implementation of
Leo-III is roughly divided into two parts; the design and implementation of an
agent-based architecture for automated theorem proving being an entire, quite
separated, project itself. As a consequence, the system architecture of Leo-III as

59

Chapter 4. The Leo-III System

Figure 1: Top-level system architecture of Leo-III. Each box roughly corre-
sponds to a component from the implementation. The arrow visualizes the data
flow through the system’s design.

(a) Architecture for sequential setting.

' External External

: Reasoner Reasoner
\OSenvionment T “H ______ ;
{leollprocess Uy TN N

| I/O Driver | :

= —‘—>’ Parser | | State |
Problem ! +*
: Saturation
Loop Control
| Calculus H Indexes | P
| Answer

External External |:
Reasoner Reasoner

5 | 1/0 Driver
= —-—>| Parser | | Calculus |
Input
Problem **
5 Internal External
Filter Agents Agents

Blackboard v/

M + Answer

Interpreter

designed by the author and presented in this section deviates from this ambitious
goal. Nevertheless, it should be general enough to replace the reasoning proce-
dures (as presented in the following sections) by an agent-based approach later
on. The resulting functional design is schematically displayed in Fig. [T} Here,
Fig. [Ia] displays the actual architecture currently implemented by Leo-III. The
relevant components, described partially ordered by their use during an invoca-
tion of Leo-III, are:

60

Chapter 4. The Leo-III System

Parser The parser transforms the ASCII-based input stream to an internal ab-
stract syntax tree (AST) representation. The problem file can be read
from local sources or via a network connection from a specified URL.
The parser reports syntax errors if the input is malformed.

Relevance filter The relevance filter removes axioms from the input AST that
are considered irrelevant for the subsequent proof search using syntac-
tic heuristics. The relevance filtering techniques used by Leo-III are
roughly sketched in §4.3.3]

Interpreter The interpreter translates the pruned input AST into a collection
of typed A-terms [and, in turn, creates a problem-specific signature X
under which these terms are interpreted. The translated set is checked
for shallow semantical flaws such as typing errors or use of unsupported
operations (e.g. arithmetic in the case of Leo-III).

Saturation loop The A-terms are passed to the main refutation procedure of
Leo-III. The refutation procedure roughly decomposes into three stages:

1. Firstly, the input formulas are pre-processed. This operation pro-
duces, for each input term s € I, an equisatisfiable set of clauses
C;. The overall result of this stage is a set of clauses given by
C:= Use[Cs.

2. Then, the set C is saturated until either the empty clause is found
or the system exceeds some provided resource limits (e.g. a time
limit).

3. Finally, if the empty clause is found, a proof is constructed and
presented to the user.

Pre-processing the individual input A-terms include multiple techniques

that are surveyed in The saturation procedure is organized as a

sequential loop algorithm which is described in detail in §4.3.2l An

overview on the generated proof certificates and their generation is in-

cluded in §4.5]

State The state captures all relevant information about the current proof
search, including various sets of clauses, known unit equations, heuris-
tic parameters and many more. The state itself is a passive object that
mostly serves as a lookup device for important information required by
the saturation loop or its control.

Control The so-called control of Leo-III is an abstraction layer between the
concrete proof search algorithm and the implementation of its under-
lying calculus. Based on current state information and heuristics, the
control decides how to use the low-level inference rules and further op-

61

Chapter 4. The Leo-III System

erations (e.g., external cooperation). Some details of the control layer
abstraction are discussed in §4.3.2}

Calculus The calculus represents the low-level implementation of Leo-III’s
underlying inference rules. These implementations are never used di-
rectly by the saturation loop, but only indirectly through the control
layer. The calculus implemented in Leo-III slightly modifies and aug-
ments the one described in §3] This includes e.g., multiple simplifica-
tion rules and reasoning rules focused on heuristics. These rules are
discussed in §4.2]

Indexes Indexing data structures are used to store terms, literals or clauses
in such a way that certain query operations can be executed more ef-
ficiently. The indexing data structures used in Leo-III are surveyed in
$.82

Encoder, I/O Driver Whenever the Leo-III control invokes an external coop-
eration attempt, the encoder translates the higher-order proof obligation
into the target language (commonly first-order languages) and passes
the transformed problem to the I/O driver. The driver creates new op-
erating system processes for the desired cooperating systems and waits
asynchronously for their results. All completed results are stored into
the current state via the control layer and wait for further processing.
External cooperation is described in detail in §4.4}

The strict separation between saturation, state, control and calculus may seem
over-engineered in the sense that it introduces several data flow indirections and
possibly implies a more complex code base. However, since the release of Leo-
IIT 1.0 in 2016, this layered architecture has, on the contrary, been of great value
to the improvement of the system.

For example, since version 1.1 of Leo-III, the mode of external cooperation
has been completely revised. This was achieved thanks to the outlined separation
of abstractions, with only local changes to the control layer, and without any
further changes in the saturation loop (or elsewhere). Another example is the
correction of various errors concerning the handling of polymorphic types in
Leo-III 1.2. Here, the low-level inference mechanisms needed to be improved to
avoid typing errors. However, no changes needed to be made at the control layer.
These examples suggest that the multi-layer architecture of Leo-III indeed helps
to isolate certain implementation tasks (improvements as well as corrections)
to a minimum of affected routines where (often) the visible interface assertions
stay unchanged.

62

Chapter 4. The Leo-III System

Recall that Leo-III was initially layed-out as agent-based system. This sce-
nario can also be captured by the presented architecture and, moreover, many of
the above described components can be re-used. Fig. [Ib]displays how indepen-
dent agents make use of these components. Here, the saturation loop as well as
its state and control layer are replaced by concrete internal and external agents.
These agents carry their own state and are controlled by a scheduler (replacing
the control layer) that is based on combinatorical auctions. Agents may serve
as specialists for certain tasks and can, for example, represent bundled calcu-
lus rules that are often used in combination. Agent-based theorem proving is
a complex subject that is not included in the scope of this thesis project and is
therefore not discussed further. An overview over the principles and design of
agents and their the utilization for theorem proving can be found in the litera-
ture [Wei199, WB16, ISWB16].

Challenges. The implementation of an effective theorem proving system for
higher-order logic poses various challenges. Due to nature of HOL, tedious and
computationally heavy procedures are required in order to produce a theoreti-
cally complete reasoning system. However it seems plausible that some of the
theoretically necessary operations can be avoided, or at least restricted, without
sacrificing a significant amount of reasoning effectivity. Nevertheless, it is not
obvious how a reasonable balance between potentially inefficient yet complete
and efficient but, in general, incomplete inference mechanisms is combined in
practice. Some of the most important challenges are:

(1) Primitive substitution. In a higher-order setting, for completeness it

needs to be ensured that free predicate variables can be instantiated
with arbitrary formulas. An unrestricted use of primitive substitution
may, however, generate infinitely many consequences even for a single
occurrence of a free predicate variable.
Fortunately, primitive substitution can be restricted to only instantiate
free variables that occur at the top-level with approximating bindings
that imitate the logical connectives from the signature. An unrestricted
use of these partial instantiations may still increase the size of the search
space by magnitudes. As a consequence, practically effective means for
the control of instantiations of free predicate variables are required. The
challenge here is to find suitable heuristics that restrict the instantiations
while not being too restrictive to hamper automation of relevant reason-
ing tasks.

(2) Unification and extensionality. Higher-order unification is undecidable
and, additionally, not unitary. Nevertheless, eager application of unifi-

63

Chapter 4. The Leo-III System

64

3

“

&)

cation is a key operation for effective automation in most state-of-the-art
HOL reasoning systems. The control of unification tasks hence incorpo-
rates of at least two main aspects: How should a reasonable search for
higher-order unifiers be used to ensure termination of the operation, and,
additionally, how many unifiers (if more than one is found) should be
applied for subsequent reasoning? Apparently, both problems strongly
influence the number of generated clauses and, hence, the growth rate
of the overall search space.

Additionally, it is possible that a unification task is semantically solv-
able modulo extensionality. A further challenge is, consequently, to
restrict the application of extensionality inferences in order to minimize
the number of mutually recursive invocations of proof search and unifi-
cation.

Paramodulation inferences. In contrast to higher-order resolution cal-
culi, the number of paramodulation inferences between a pair of clauses
is greater by magnitudes. This is due to the fact that paramodulation
acts on arbitrary subterms of each literal whereas resolution only con-
siders inferences on top-level. As a result, for every pair of clauses, the
number of freshly generated clauses by paramodulation tremendously
increases the size of the search space. A major challenge is to restrict
the paramodulation inferences in such a way that only relevant infer-
ences are drawn. This includes the search for ordering techniques as
employed in first-order superposition.

Equational simplification procedures. In the context of equational first-
order calculi, there are numerous powerful simplification techniques
available that involve, in particular, unit equations. These techniques in-
clude rewriting but also contraction of clauses based on non-orientable
unit equations.

Reasoning systems such as Leo-III would strongly benefit from suit-
ably lifted simplification techniques to the higher-order setting. How-
ever, these techniques often employ orderings or matching procedures
to identify simplifiable clauses. Full higher-order matching is decidable
but, in general, inefficient and not suitable for light-weight simplifica-
tion methods. Another challenge is thus to develop reasonable adaptions
of equational simplification mechanism that lead to practically relevant
improvements.

Indexing techniques. Indexing data structures are used for quickly cal-
culating relevant subsets of clauses (literals, terms) for regularly em-
ployed operations such as unification or matching. In the higher-order

Chapter 4. The Leo-III System

case, few to none of such indexing techniques exist. Another, practically
relevant challenge is thus to find indexing techniques that can be used to
speed-up (some parts of) commonly used operations in HO reasoning.

4.2. Calculus Extensions

Leo-III features several additional calculus rules that are not captured by the for-
mal EP calculus from §3] The rules presented here are practically motivated
and primarily target technical issues that complicate effective automation within
implementations of ATP systems. First and foremost, such rules address the in-
evitable problem of the explosive growth of the search space during proof search.
This commonly includes the employment of various simplification techniques
but, in the case of Leo-III, also heuristically guided inference mechanisms con-
cerning guessing of specific instances that serve as counter-examples.

In particular, Leo-III uses specific rules for clause contraction (simplifica-
tion), choice reasoning, defined equalities, function synthesis and higher-order
unification. These rules are discussed in the following.

4.2.1. Clause Contraction

Clause contraction are among the most important operations of a competitive
theorem proving system. Although the rules of EP are theoretically sufficient for
a complete reasoning system, a considerable share of the overall inferences that
are drawn during a system’s execution are commonly used for contracting (that
is removing or, in some sense simplifying) existing clauses. This is due to the
fact that generally a lot of clauses are generated, e.g. by paramodulation, that are
of no avail for the proof goal.

Additional to straight-forward simplification routines, Leo-III implements
are variety of (equational) simplification procedures. Leo-III is, up to the author’s
knowledge, the first HOL ATP system exploiting sophisticated equational simpli-
fication methods. Many of these rules are adaptions of corresponding first-order
simplification rules known from powerful first-order reasoning systems such as
E. As discussed further below, it is not always possible or feasible to lift rules
from the first-order domain to higher-order reasoning.

Following commonly used presentation conventions, modifying (or contract-
ing) inference rules are written using double lines:

<main premise> <side premise 1> <side premise n>

<conclusion>

65

Chapter 4. The Leo-III System

Figure 2: Simplification rules for simp. s and ¢ denote an arbitrary formula and
term of type 7, respectively. V,A,= and # are identified with their symmetric
variants.

sVs —s SAS —s§
—sVs — T sAs — L
sVT — T SAT —s
sVL —s sSANL — L
t=t — T t#t — 1
s=T —s s=1 — s
VXr.s —s i X ¢ fv(s) X5 —s ifX ¢fv(s)
-1 — T -T — L
s —— s

Here, the leftmost premise (also referred to as the main premise) is by conven-
tion the premise that is being modified by the inference. If no conclusion is
given, the inference denotes a deleting rule that effectively removes clauses from
the search space. All possible side premises are regarded immutable (as only
the main premise is being modified) and are not included in the conclusion. In
particular, side premises are never deleted from the search space.

Formula simplification A straight-forward simplification procedure simp is
specified by the transformation rules displayed at Fig.[2] These rules represent
well-known Boolean identities and are thus obviously sound. Non-Boolean sub-
terms remain unchanged. The resulting contraction rule (Simp) is given by:

[V POy ey 17 o)%
[simp(1') ~ simp(r!)]® /- -V [simp(I") = simp(r")]%

(Simp)

Since the procedure simp has linear time-complexity in the size of the term to be
simplified, the calculus rule (Simp) can be implemented very efficiently.

Clause simplification Clause simplification rules allow the elimination of literals
from clauses or even the deletion of whole clauses from the search space. A
representative of literal elimination inferences is rule (DD):

66

Chapter 4. The Leo-III System

This inference rule eliminates duplicated literals from clauses. This operation is
sound as it only exploits idempotency of disjunction. For first-order ATP systems,
deletion of resolved literals is usually another contraction rule. In this setting,
this inference is already captured by rule (Triv) which is related to higher-order
unification.

Tautological clauses are those that are implied by any theory. Such clauses
increase the search space without contributing any helpful information towards
to proof goal. The following two inference rules remove tautological clauses that
can efficiently be recognized:

CV[s~s* CV[s=t]*V s~
—— () (TD2)

Both rules are sound as they only remove clauses from the search space. In
particular, (TD1) and (TD2) implement reflexivity of equality and the law of ex-
cluded middle. First-order ATP systems often use another rule, called destructive
equality resolution. In the context of EP, this is already captured by the unifica-
tion rule (Bind).

Clause-Clause contraction Clause-clause contractions simplify or remove
clauses based on information provided by further clauses from the search space.
Unit equations provide the most important means for simplification techniques
in state-of-the-art equational first-order theorem provers. This includes, in par-
ticular, rewriting using unit equations that can be oriented with respect to suit-
able term orderings. In superposition-based first-order reasoning systems, cor-
responding term orderings are generally implied by the underlying calculus. As
discussed in §3] there is currently no higher-order ordering available that meets
the requirements of their first-order counterparts. Nevertheless, Leo-III imple-
ments rewriting using a higher-order term ordering (cf. further below).

Any unit equation can be used for simplifying a clause if one literal of that
clause can be eliminated. More formally, positive unit equations are exploited by
the so-called positive simplify-reflect rule that is captured by rule (PSR):

CV[s 1] [[~r)*
C

if there is a substitution o that matches the literal [s ~ 7] against the unit equation
I ~r,ie. o(l ~r)=s~t. Quite recent results show that higher-order matching
is decidable [St109]. Nevertheless, it is known to have non-elementary complex-
ity [Sta77, [Wie99] and seems inadequate for an effective automation procedure.
In Leo-III, a matching algorithm based on higher-order pattern unification is used

(PSR)

67

Chapter 4. The Leo-III System

this scenario. This is, of course, a trade-off solution that tries to mitigate the
above situation.

Analogously, negative unit equations are exploited by negative simplify-
reflect (NSR):

(NSR)

if there is a substitution ¢ with 6(I ~ r) = s ~¢. Soundness of (PSR) is straight-
forward: In any interpretation M that validates [/ ~ r]*, all instances of [/ ~
r]%, including [s ~ #], can be simplified to | and hence eliminated from the
(disjunctive) clause. Analogously for (NSR).

Another contraction technique that uses unit equations is rewriting which
has been developed in the context of Knuth-Bendix completion [KB70]. Leo-III
uses the computablility path ordering (CPO) by Blanqui et al. [BJR15] for its
rewriting procedures. CPO is a well-founded and monotone higher-order term
ordering that has been developed in the context of higher-order termination. The
ordering relation induced by CPO is denoted >cpo is the following.

CVis~t]* [[~r)#
CV [s[ro], ~1t]*

(RW)

if 5| p = lo for some substitution ¢, where /6 ~cpo ro. Furthermore, if @ = ,
either p # € or s % t or © is not a renaming substitution. While the first conditions
ensure that matching terms are replaced by (wrt. >cpo) smaller equivalents,
the latter condition prevents a destructive self-rewrite of positive unit equations.
Soundness of rule (RW) is a direct consequence of substitutivity of equality.

In contrast to rewriting in first-order, rewriting in HOL can also be applied
to formulas, that is, on terms of Boolean type. As a consequence, also non-
equational unit clauses such as C: [p]* can be utilized for rewriting Moreover,
orientable negative unit equations p, ~ ¢, between Boolean terms can be em-
ployed as a rewrite rule p — —g.

Clause subsumption (CS) is a popular method for reducing the size of the
search space by removing clauses for which more general variants have already
been inferred. More formally, a clause C may be deleted from the search space
if there exists a smaller clause that generalizes a subset of C’s literals. The rule
(CS) is given by:

3 Note that it is customary to set-up a term ordering > such that s = T = L for any term s.
y p g y
Hence, any unit clause [p]* with p # | and p # T, represents an oriented equation p ~ T. Similarly,
a negative unit clause [p], with p # L, represents an oriented equation p ~ 1.

68

Chapter 4. The Leo-III System

/
cv(C D €S

if Do = C’ for some substitution 6. This rule is sound as, again, clauses are only
removed from the search space. Again, only a restricted form of higher-order
matching is employed by Leo-III for the implementation of rule (CS).

4.2.2. Defined Equalities

99 __ 9

Next to the use of the interpreted equality connective (referred to as prim-
itive equality), equality predicates can be defined in HOL. Popular examples of
defined equalities are

AX; AY; VPy;.PX = PY (1)
and
AX: AY; YRy NZ:.RZZ —RXY 2)

which are known as Leibniz equality and Andrews equality [And02a], respec-
tively.

Both variants support cut-simulation [BBKO09] and might, hence, hinder
proof search due to free set variables that are subject to primitive substitution.
Leo-III scans for the above definitions of equality predicates instantiates them
with primitive equality:

CVIPs|TvIPHH" CVI[Pss)ff
(LEQ) (AEQ)
C{AX.s=X/P}V[s~1]" C{AX.AY.X =Y /P}

Note that infinitely many different equality predicates can be defined in
HOL. A simple syntactic recognition of these predicates is thus necessarily in-
complete. These rules have originally been developed in the context of LEO-
IT [BS13]]. In Leo-III, however, the user can specify whether these rules are
applied as replacing inferences or as standard, generating, inferences (the latter
is used by default).

(LEQ) and (AEQ) are sound since they are specific instances of primitive
substitution rule (Prim).

4.2.3. Choice
The axiom scheme of choice is, for every type 7, given by

HET(OT)'VR)T'(EIX‘E-PX) = P (EP) 3)

69

Chapter 4. The Leo-III System

This axiom scheme postulates the existence of an operator E that chooses an el-
ement satisfying a given predicate, if such an element exists. Leo-III is designed
as an ATP system for HOL with choice. To that end, S(TT o)t is a primitive
choice operator for type T that satisfies the above property. However, instances
of (3) might also be postulated directly within HOL problems. These instances
allow cut-simulation [BBKQ09|] and hence might impede proof search. Follow-
ing LEO-II, Leo-III keeps track of user-defined choice functions using a set CF
where initially CF = {E(TT o)t | T € T}. Corresponding choice instances are
removed from the search space by rule (ACD):

[PX]TV[P(f P

(ACD)

where, as a side-effect, the set of choice functions is augmented by CF := CFU f.
This is obviously sound as (ACD) only removes clauses from the search space.

In order to enable reasoning with (primitive or user-defined) choice opera-
tors, Leo-III instantiates concrete choice instances for given choice operators and
predicates:

'V [s[E 1]]*
[t XV (en)"

where E € CF or E € fv(C) is a free variable to the clause, fv(E) C fv(C) and X
is a fresh variable. Rule (ACI) instantiates choice with subterms that represent
either concrete choice operator applications (if £ € CF) or potential applications
of choice (if E is a free variable to the clause). In contrast to LEO-II, Leo-III
supports choice operators as interpreted constant symbols and hence does not
need to provide fresh uninterpreted constant symbols for each type, serving as
choice operators, on-the-fly (i.e. during application of (ACI)).

Rule (ACI) is sound as it introduces specific instances of the axiom of choice,
which is a theorem in the logic addressed by Leo-III, to the search space.

(ACD)

4.2.4. Heuristic Instantiation

Prior to clause normalization, Leo-III might instantiate universally quantified
variables. Experiments with TPS suggest that early instantiations of such vari-
ables with complex terms might improve proof attempts in some cases [ABIT96].
In Leo-III, instantiation of universally quantified variables in formulas is captured
by a general heuristic instantiation rule (Heulnst):

CV [s[VXr.u] ~t]* v € Heu®
CV[s[u{v/X}] ~t]*

(Heulnst)

70

Chapter 4. The Leo-III System

where Heu” is a (possibly empty) set of closed terms of type 7 that is a parameter
to the rule.

Currently implemented heuristics include exhaustive instantiation of finite
types such as o, oo and ooo as well as partial instantiation for otherwise in-
teresting types. Examples for the latter class include (where T and the 7’
are some types): ot"---t! (predicate/relation types), oTT (equality/inequality),
7(o7) (choice terms), and 7770 (instances of if-then-else). Additionally, an ex-
perimental syntactical detection of finite types is incorporated into Leo-III. The
recognized types can then be exhaustively instantiated.

Also, recent applications of Leo-III for studies in theoretical philosophy sug-
gest that it might be fruitful to include means for externally specifying certain
terms that are deemed meaningful or relevant for the reasoning task at hand. That
way, the user can give hints to the reasoning system which terms could be consid-
ered for instantiation during proof search by (Heulnst). In practice, this usually
includes terms that are too complex to be enumerated by primitive substitution in
reasonable resource bounds.

4.2.5. Function Synthesis

Function synthesis denotes the generation of syntactical representations of func-
tions that meet a given specification. The general formulation of this problem
has many applications in e.g. program synthesis [KMPS10]], software and hard-
ware verification and invariant discovery. In the context of automated reasoning,
a strong connection between reasoning and function synthesis has already been
highlighted in the 1980s [Gre81, MWS&0]. In particular, powerful function syn-
thesis mechanisms have been developed for utilization by SMT systems such as
CVC4 [B™11] and Z3 [DMBO0S].
Function synthesis tasks can be regarded as validity problems of the form

Iy, VXq, . -V P[F, X @

where F' is the function symbol that is conjectured to have the property repre-
sented by the predicate meta-variable P. Such conjectures are also called synthe-
sis conjectures [RDK 15| and are, in the refutational setting of Leo-III, trans-
formed by initial negation and subsequent Skolemization to a formula

VFys,..q, . —~P[F,sk'] (5)

where the sk’ are fresh Skolem terms of appropriate type. The task is thus to
show the unsatisfiability of the negation of the desired property for function F.

71

Chapter 4. The Leo-III System

Let C be a set of clauses produced by clausification of the above formula (3)).
Leo-III scans for clauses C € C of the form

1<j<n

C=CVIFsT T iy oy [F gl S)i ©6)

that represent a specification of a function F by explicit enumeration of its input-
output pairs.

Since these input-output pairs are represented by negative equations, they de-
note unification problems that are tackled using built-in unification procedures.
However, even for simple problems, such an approach fails. Consider the spec-
ification of a function F;; where F a = b and F b = a for some constants a,, b, .
The negated, clausified conjecture of the existence of such an function reads

C=[Fa~b]"V[Fb~a

When solved individually, both unification literals results in solutions that
do not establish the unsatisfiability of the clause. When regarding both literals
simultaniously, the unification task cannot be solved (note that the formula is
only valid in Henkin semantics with choice, but counter-satisfiable if the axiom
of choice is not valid):

1. When solving the first literal, pre-unification will result in a solution
o ={AX,.b/F}. Applying o results in the clause simp(Co) = [b ~ a]'.

2. When solving the second literal, pre-unification will result in a solution
0 ={AX,.a/F}. Applying o results in the clause simp(Co) = [a ~ b].

3. When regarding both literals for unification simultaniously, pre-
unification will fail as no syntactical unifier ¢ exists such that (F a)o =
bo and (F b)o = ao.

In order to remedy this situation, Leo-III can try to synthesize a function
given an according goal specification. The idea is as follows: In a higher-order
setting, a function can simply be constructed by a choice term that specifies the
function’s properties. These properties are, as outlined above, given by the de-
sired input-output relations of the function symbol. A corresponding choice term
that represents these input-output relations can be constructed by an enumeration
of all explicitly given function value cases. This term can be regarded a (par-
tially defined) if-then-else term. The resulting inference rule that approximates
function specifications given by clauses (6) is given by:

CIVIF ST = e)y oy [Famd T)
C{AXT.eZu Ny (Njor X7 = 59) — Z=14) [F |

(FS)

72

Chapter 4. The Leo-III System

The term
AXT.ez,. \ ((/\Xj:sk’/) —>Z:tk) %)
k=1 j=1
instantiated by rule (FS) roughly corresponds to a nested if-then-else term of the
form

if (X'=sVIA . AX"=5s1") then ¢!
else if (X! =s>'A...AX"=s%") then 2

else if (X! =s™A...AX"=5"") then ™

where the X/, 1 < Jj < n, are the parameters of the function, the ki1 <k<
m, are the concrete argument for each X/ such that ¥ is produced as result of
the function. In the swapping function example, the so generated term can be
expressed as

if (X =a) then b
else if (X =b) then a

where X is the single parameter of the function substituted for F. This conditional
is then given by a specific instance of (/) with m =2 and n = 1, i.e. the choice
term

AX,.eZ,.X=a—Z=b)NX=b—Z=aq)

This example is revisted in §5.1]as example[E7] where also a complete refutation
is presented.

Leo-III employs rule (FS) if plain unification fails for a set of unification
constraints. In general, this rule tremendously increases the search space but can,
however, enable Leo-III to solve hard problems. In a way, rule (FS) converts the
syntactical problem of finding a suitable function instance into a semantic search
problem for discharging the hypothesis that the conjectured function instance (the
choice term) actually exists. In conjunction with rule (ACI), this enables Leo-III
to solve problems for which otherwise no function instance could be derived
(within reasonable resource bounds).

In contrast, in first-order reasoning and SMT solving, concrete closed func-
tion representations are synthesized. This requires more involved and special-
ized techniques [RDK™ 15| [KKKST3] TKTT] that usually pose additional restric-
tions on the synthesis conjectures or the search space. As an example, popular

73

Chapter 4. The Leo-III System

synthesis techniques require the synthesis conjectures to be a single invocation
property [JK11]. The here presented approach does not pose such restrictions.
Nevertheless, the refutation-based synthesis method [RDK™ 15]] as employed by
CVC(C4 is strongly related to this approach. The main difference is that Leo-III
does not validate the existence of a concrete function instance but rather exploits
a choice operator for that purpose.

Rule (FS) is sound as it simply instantiates the universally quantified variable
by a concrete term. In particular, if no such function instance exists, rule (ACI)
guards against unsound conclusions.

Additionally, Leo-III supports improved reasoning with injective functions.
Leo-III scans for occurrences of injectivity axioms and, for each recognized in-
jective function fy ¢, postulates the existence of a left-inverse function f%‘},". As an
example, if f is an unary function, the formal relation is given by fi"V (f X) =X
where X; is a variable of type 7. This is captured for function symbols of any
arity by the following rule:

FX Xy X X X XL Z X X Y = Z)

- - - - (INJ)
[fval.“Xzfl Xz+1 S (fX] X")ZX’]&

where fi“" is a fresh Skolem constant and the X/, 1 < j < n, are variables of
appropriate type. The premise expresses that f is injective in its i-th argument.

This rule is sound as every injective function in known to be left-invertible.
The practical benefits of including rule (INJ) into Leo-III are discussed in §5.1|
where also an example is presented (cf. example [E2). A similar technique is
implemented by Z3 [DMBOS]].

4.2.6. Pattern Unification

A central operation within higher-order ATP systems is unification of A-terms.
Unification procedures are frequently invoked during proof search and constitute
a notable share of the overall computational effort, and hence also influence the
effectivity and efficiency of the reasoning system. As depicted in higher-
order unification is undecidable and produces, in general, infinitely many uni-
fiers for a given unification task. In practice, unification procedures of HO rea-
soning systems usually base upon Huet’s unification algorithm [Hue75]] which
performs well enough for most applications. However, it has been observed by
Miller [Mil91a] that there exists a subclass of higher-order unification problems
for which unification is indeed decidable and unitary, i.e. there is a procedure to
find a most general unifier if such a unifier exists. This class of A-terms is called

74

Chapter 4. The Leo-III System

higher-order patterns, or simply patterns. They allow for a simple unification
algorithm and, as it turns out, occur very often in practice [Mil91al |[Nip91]].

A higher-order pattern is a A-term s € A; in B-normal form for which the
following property holds: Every free variable F; € fv(s) of s only occurs in sub-
terms ¢ <s of the formt = F Xiél , where the X' are n)-equivalent to distinct bound
variables.

Higher-order pattern unification is known to have linear time complex-
ity [Q1a96]]. However, the linear time algorithm by Qian is based on a special
imperative term representation and seems overly complicated for a practical uti-
lization by Leo-III. Leo-III implements a variant of pattern unification that is
based on a formulation by Nipkow [Nip93|] with minor modifications concerning
the representation of free and bound variables. Although this variant has expo-
nential run time in worst case, it is of great value for many HO reasoning systems,
including Isabelle/HOL as it performs quite well in practice for many inputs.

Leo-III prefers HO pattern unification to plain pre-unification whenever pos-
sible. If a unification task is, however, not in the pattern fragment, standard
higher-order pre-unification is used. The control of unification during proof
search is described in more detail in §4.3.2

4.3. Proof Search

The proof search is organized as a sequential procedure that iteratively saturates
the set of input clauses with respect to the inference rules from §3|and §4.2]until
the empty clause is foundE] Since in most cases the number of clauses that can be
generated during proof search is not finite, the actual enumeration of inferences
is limited artificially using time resource bounds (often called the timeout) that
can be configured by the user. If the proof search exceeds the specified timeout,
the system terminates even if the empty clause was not found and report that it
is unknown whether the initial set of clauses is inconsistent or not. See §4.3] for
details on the system’s result output format.

For the remainder of this section, it is assumed that the input problem has
already been parsed and translated to an internal representation of typed A-terms.
This input, denoted 7, is assumed to be a finite sequence I = I,,... of well-
typed l-termsE] Additionally, a problem-specific signature X is generated during

4 Recall that a clause is said to be empty if it is the empty set or only consists of flex-flex
unification constraints, see the remark in

5 Note that the input can be regarded a finite sequence without loss of generality since it is
assumed that the input problem statements are of finite size and, hence, only contain finitely many
formulas.

75

Chapter 4. The Leo-III System

interpretation of the input (cf. §4.1). Note that I may only consist of a subset
of those formulas contained in the input problem due to preceding procedures
such as relevance filtering. Nevertheless, if a set of clauses constructed from /
can be shown unsatisfiable during proof search, then any super set containing /
is evidently unsatisfiable and hence so is the input problem.

The overall proof search procedure consists of three consecutive phases (in
that order):

1. Pre-Processing. Prior to saturation, the input formulas are pre-
processed to a fully Skolemized Bn-normal clausal normal form. In
addition, methods including definition expansion, simplification, minis-
coping, replacement of defined equalities, and clause renaming are ap-
plied.

2. Saturation. Saturation is done using a sequential loop procedure simi-
lar to the given clause algorithm as used by the E prover [Sch02].

3. Proof reconstruction. If the empty clause was inferred during satura-
tion and the user requested a proof output, a proof object is generated
using backwards traversal of the respective search subspace. Proofs in
Leo-III are presented as TSTP CNF refutations [Sutl1Q] in THF format.

The first two aspects are discussed in the following. The presentation of the proof
reconstruction algorithm as well as the resulting proof’s syntactical representa-
tion is postponed until §4.5]since it does not strongly relate to the actual proof
search described in this section.

4.3.1. Pre-Processing

Pre-processing is a key procedure in modern ATP systems that modifies the input
problem in such a way that it is somehow simpler, smaller or better suited for
the subsequent saturation. Typically, pre-processing includes a transformation of
formulas into a particular normal form and the elimination of redundant informa-
tion. The goal of the former is to allow a uniform treatment of identical formulas
(with respect to the normal form) by choosing a certain syntactical representative.
The latter reduces the size of the resulting search space. However, pre-processing
can also increase the size of the initial set of formulas by augmenting the problem
with additional information that seems relevant to the search process. This may
include heuristic insertion of theory axioms or instantiation of specific formulas
that are already contained in the problem. Finally, during pre-processing, char-
acteristics about the problem itself may be collected for later utilization. Such

76

Chapter 4. The Leo-III System

information can for example be used for selecting specialized search strategies
or relevance filtering techniques.

For hard reasoning tasks, the right choice of pre-processing techniques is
often the key for finding the solution. Leo-III uses the following functions that
operate on formulas or clauses:

expandDefs(¢) returns a formula ¢’ that is generated by replacing all defined
constant symbols in ¢ by their respective definition.

propSimp(¢) applies the simp simplification procedure from Fig. 2|to ¢ and
returns the result simp(¢).

heuristicInstances(¢) applies rule (Heulnst) to ¢ and returns all in-
stances. For each type T € T, the particular sets Heu® of instantiations
used in Leo-III are:

Heu’ ={T,L},

Heu”’ ={AX,. T, AX,. L,AX,. X,AX,. X},

Heuw” :={AX,.AY,.T,AX,.AY,. L, AX,.AY,.X,AX,.AY,.Y,
AX,. AY,. =X, AX,. AY,.~Y,...},

Heu’® ={AX;. T,AX;. L},

Heu’™™ = {AP,. AX;.AY;.ite PX Y},
Heu® ") := {AP,;.€% P,AP,;.£% —P}

Here, only the sets Heu?, Heu®” and Heu??? are exhaustive enumerations
of instances of the respective type. Leo-III hence eliminates universal
quantifiers for such types by exhaustive instantiation. The remaining
instances are purely heuristic and do not eliminate the original univer-
sal quantification. The instances AX;. T and AX;. | of Heu®" represent
canonical instances of the full and empty set of elements of type 7, re-
spectively. Finally, Heu’®** and Heu®(®® contain an abstract if-then-else
term and two instances of choice terms, respectively.

miniscope(¢) applies miniscoping [NWOI] to the formula ¢ and returns the
result.

cnf(¢) exhaustively applies all clausification rules from CN'F to ¢ and re-
turns the resulting clause set. By default, Leo-III uses definitional
clausification [NWO1]] as opposed to plain CNF calculation.

convertDefinedEqs () applies the rules (LEQ) and (AEQ) to the clause ¢
and returns all results. Note that both rules do not, by default, replace the
original clause but merely add instances of primitive equality. Hence, it
holds that t € convertDefinedEqs(¢).

1iftEq(r) applies rule (LiftEq) to clause # and returns the result.

77

Chapter 4. The Leo-III System

Figure 3: Pre-processing procedure of Leo-III. The input is a list / of well-typed
formulas. The procedure returns a set of proper clauses U in 371-normal form
that is equisatisfiable to /.

U :=90
while not empty(/) do
T :=0
¢ := head(l)
I = tail(l)
if ¢ is a conjecture then
¢ =0
endif
¢ = propSimp(expandDefs(¢)Lﬁn)
T := {¢}U heuristicInstances(¢)
T := Uer cnf(miniscope(t))
T := U,er convertDefinedEqs(t)
T := {simplify(liftEq(s))|r €T}
T := T UU,er detectInjectivity(¢)
U := UU{t€T|not trivial(s)}
end
return U

simplify(z) applies the normalization rules (DD), (DR) to ¢ as well as the
simplification routine simp and returns the result.

detectInjectivity(s) applies rule (INJ) to ¢ and returns the result, if appli-
cable.

trivial(s) returns true if and only if # can be shown to be tautological using
(TD1) and (TD2).

Note that the input of this procedure is a list of formulas /. For standard
list operations the following functions are used: empty (L) is a predicate that is
true if and only if L is the empty list, head (L) returns the first element of L and
tail(L) gives a list that is constructed from L by removing its first element.
Syntax errors and parsing errors are handled prior to pre-processing, in particular
each formula in 7 is assumed to be well-typed in the following. Leo-III aborts its
proof search early if any syntax error occurs.

Fig. [3| displays the pre-processing procedure implemented by Leo-III. The
pre-processing routine works as follows: Each input formula ¢ is successively

78

Chapter 4. The Leo-III System

transformed into an equisatisfiable set of clauses. Each of these sets is processed
by multiple normalization procedures and the results are aggregated into the final
input set U that is subject to subsequent saturation. Since Leo-III is a refutation-
based theorem prover, the conjecture, if existent, is negated prior to further pro-
cessing (cf. lines 6-8). Given an input formula @, first every defined constant
symbol occurring in ¢ is expanded and straight-forward simplification techniques
are applied to the result. A miniscoping procedure minimizes the number of de-
pendencies of existentially quantified subformulas which, in turn, will in some
sense simplify the Skolem terms introduced later. The resulting formula is then
exhaustively clausified using definitional clausification [NWO1, WSKB16] in or-
der to reduce the number of resulting clauses. Additionally, further heuristically
determined instances of ¢ are considered for clausification (cf. line 10). As a next
step, recognized defined equalities are instantiated by primitive equality (cf. line
12). Also, each of the clauses is scanned for occurrences of injectivity specifica-
tions (cf. line 14). If such a function is found, a fresh function symbol (serving
as left-inverse) of appropriate type is generated, added to X, and a corresponding
axiom included to the result set. Finally, the partial pre-processing result for ¢
is constructed by again simplifying the intermediate clauses and removing the
contained tautologies (cf. lines 13,15).

The output of the above pre-processing procedure is a set U of proper
clauses in fn-normal form. Currently, pre-processing in Leo-III does not in-
clude aggregation of statistical data or other forms of characteristic informa-
tion about the input problem. However, recent experiments suggest that vari-
ous analysis methods for such information can fruitfully be employed for im-
proving search heuristics [FB16, [KU15a, [LISK17, IGKU17|] and relevance fil-
tering [USPVOS, IWTWD17|]. Recent work experiments with suitable represen-
tations of Leo-III’s proof certificates as data types for utilization in learning or
optimization procedures [Ziel8]. However, concrete improvements to Leo-III
using these procedures remain further work.

4.3.2. Saturation Procedure

A calculus does not define the order in which the inference rules should be ap-
plied, i.e. any arbitrary (chaotic) application scheme of inference rules is, in the-
ory, suitable. For completeness, however, it needs to be ensured that every pos-
sible inference is eventually generated by the application scheme (cf. notion of
fairness). In practice a class of loop procedures often referred to as given-clause
algorithms [Sch02] has been established for saturating a set of clauses with re-
spect to a set of inference rules.

79

Chapter 4. The Leo-III System

In these saturation procedures, the clausal search space is structured using
two sets U and P of unprocessed clauses and processed clauses, respectively.
Initially, P is empty and U contains all clauses generated from the input problem.
Intuitively, the algorithm iteratively selects an unprocessed clause g (the given
clause) from U. If g is the empty clause, the initial clause set is shown to be
inconsistent and the algorithm terminates. If g is not the empty clause, all infer-
ences involving g and (possibly) clauses in P are generated and inserted into U.
The resulting invariant is that all inferences between clauses in P have already
been performed.

Most current saturation-based ATP systems implement a variant of the given-
clause procedure. Two particular shapes of this algorithm have been popular-
ized in the past, called the Otter loop and the DISCOUNT loop. Each proce-
dure is thereby named after the first well-known ATP system that implemented
it [McC94||IDKS97]]. While both variants share the same iterative approach, they
differ in the way how simplification inferences are applied. Otter loops usually
use various different subsets of the search space for different simplification pro-
cedures. In contrast, the DISCOUNT loop only employs simplifications induced
by P and g.

Leo-III uses a variant of the DISCOUNT loop that has its intellectual roots
in the E prover. Hence, the general layout of Leo-III’s saturation algorithm is
quite similar to the one of E. Nevertheless, some modifications are necessary to
address the specific requirements of reasoning in HOL (as opposed to first-order
logic with equality in the E prover). The concrete saturation procedure of Leo-
IIT is displayed in Figure |4} its components as well as the differences between
E’s DISCOUNT loop are discussed in the following. It is assumed that the
pre-processed clauses (see above) have been added to U prior to the saturation
procedure invocation.

The saturation loop works as follows: A clause g is heuristically selected and
simplified with respect to P (lines 5,7). Note that since simp also applies simpli-
fication using unit clauses, simplification with respect to P may create non-CNF
clauses even if g was initially in clause normal form. Non-CNF results are rein-
serted into U for later selection whereas all other (non-redundant) results are used
for backward simplification of P (lines 16,18). Finally, the generated inferences
are normalized, unified (if possible) and simplified using only inferences that are
particularly efficiently implemented (lines 20-22).

Additionally to the internal reasoning capabilities of Leo-III, the employ-
ment of external ATP systems is tightly integrated into the proof loop procedure.
At every iteration of the main loop it is checked whether any previous invoca-
tion of external reasoners was successful (line 2-4), i.e. if any external reasoner

80

Chapter 4. The Leo-III System

Figure 4: Saturation procedure of Leo-III. The input of this procedure is a set U
of clauses that originate from pre-processing (cf. Fig.[3). The algorithm succeeds
and terminates if the empty clause is derived. The saturation loop is externally in-
terrupted and a failure result is returned if a user-specified time limit is exceeded.

while U # 0 do
if checkExternal() then
return success; initial U is unsatisfiable

endif
g = selectBest(U)
U :=U\g

g = simp(g,P)
if not clauseNormal(g) then
U :=UU cnf(g)
else if empty(g) then
return success; initial U is unsatisfiable
else if choiceSpec(g) then
registerChoiceFunction(g)
else
if not redundant(g,P) then
P := P\{p€P|redundant(p,{g})}
submit(PU{g})
T := {peP|simp(p,{g}) #p}
P := (P\T)U{g}
T =T U generate(g,P)
T := Uer cheapSimp(cnf(unify(s)), P)
U := UU{te€T|not trivial(s)}
endif
endif
end
return failure;

was able to establish the unsatisfiability of the submitted clause set. Fresh proof
obligations for external reasoners are heuristically produced and submitted (line
17). Checking for external results as well as submitting fresh proof obligations
is non-blocking and therefore does not stall the internal saturation loop.

The functions used within the saturation procedure are:

selectBest(U) heuristically selects a clause from U and removes it from

81

Chapter 4. The Leo-III System

this set.

simp(g,P) exhaustively applies all normalization rules to g where potential
side premises come from P. This includes the rules (DD), (DR), (RW),
(PSR) and (NSR). Note that g is the only clause that is being modified
during this operation.

cheapSimp(7,P) similarly applies a subset of normalization rules that are
implemented particularly efficiently, including (DD), (DR) and (RW).

clauseNormal(g) returns true if and only if g is in clause normal form (i.e.
cannot be further normalized with respect to CN F).

empty(g) returns true if and only if g = [J (recall that g may also consists
only of flex-flex unification literals).

choiceSpec(g) returns true if and only if g is a specification of a choice
operator, i.e. if rule (ACD) can be applied.

registerChoiceFunction(g) adds the specified choice operator repre-
sented by g to the set of registered choice functions CF as described
in @7

redundant(g,P) returns true if and only if g can be shown redundant with
respect to P using (CS), (TD1) and (TD2).

trivial(s) likewise returns true if and only if g can be shown to be tautolog-
ical using (TD1) and (TD2). Similar to cheapSimp, trivial is a spe-
cialized variant of redundant that uses only a efficiently implemented
subset of the redundancy detection rules. In particular, it is independent
on the size of P.

generate(g,P) applies all generating inferences where g is the main premise
and potential other premises come from P. This includes the rules
(Para), (Fac), (Prim), (PBE), (NBE), (PFE) and (NFE). Additionally,
if enabled, rules (LEQ), (AEQ), (ACI) and (FuncSpec) are applied.

unify(s) applies unification rules to ¢. If unification literals are recognized
as higher-order patterns, pattern unification is employed. Bounded
higher-order pre-unification is applied if the unification literals are non-
patterns.

cnf(T) exhaustively applies all clausification rules from CA F to every clause
t € T and return the union of all results.

checkExternal() returns true if any previously submitted external prover
call terminated with a helpful result, i.e. if the unsatisfiability of the
submitted clause set was established. This operation is non-blocking,
hence it returns false if there is no such answer available yet.

submit(7') requests the invocation of every registered external reasoning sys-
tem on the clause set 7. The maximal number of parallel externals

82

Chapter 4. The Leo-III System

calls is limited (and configurable by the user) and hence submit might
simply do nothing if that limit is exceeded or a call on T is otherwise
deemed unnecessary (cf. §4.4). Depending on the characteristics of
the systems, the actual transmitted proof obligation might differ from
T. For example, it may be necessary to encode T to a first-order proof
obligation, to eliminate polymorphic symbols from the problem or to
explicitly axiomatize THF language constructs that are not supported
within the target prover’s language.

There are several differences between the procedure in Fig.] and first-order
DISCOUNT loop variants. Most of these differences are due to two main char-
acteristics of higher-order saturation: Firstly, since formulas can occur within
subterm positions and, in particular, within proper equalities, many of the gen-
erating and modifying inferences may produce non-CNF clauses albeit having
proper clauses as premises. This implies that, during a proof loop iteration, po-
tentially every clause needs to be re-normalized after almost every application
of inferences. Secondly, since higher-order unification is undecidable, unifica-
tion procedures cannot be used as an eager inference filtering mechanism (e.g.,
for paramodulation and factoring) nor can they be integrated tightly into the in-
ference generation operations as done in first-order procedures. Even if higher-
unification was decidable, it could not be used as a filtering mechanism for the
generating inferences. This is due to the fact that if a unification constraint cannot
be solved syntactically, it might still be solvable semantically modulo extension-
ality (which is also undecidable).

These aspects are reflected within Leo-III’s saturation loop in several loca-
tions. At every iteration of the loop the freshly generated clauses potentially
need to be re-clausified before being inserted into U (line 21) since rules such as
(Prim), (Para), (Fac), (PBE) and (NBE) may generate non-proper clauses. Also,
the simplification procedures (including rewriting) may introduce non-proper
clauses (line 7). Even if a clause C was simplified before being inserted into
U, it may be the case that further rewrite rules (between formulas) have been
generated before C was selected by selectBest and hence rewriting, again, may
require re-normalization of the result with respect to CA'F (lines 8,9).

Unification is included into the proof loop as an explicit procedure, detached
from the application of the generating inferences (line 21). If unification con-
straints that were introduced to freshly created clauses by generate are higher-
order patterns, pattern unification is used to solve the constraint. Otherwise, a
higher-order pre-unification procedure is used. As opposed to the first-order case,
clauses that contain unification literals that could not be solved are not discarded

83

Chapter 4. The Leo-III System

but nevertheless inserted into the search space. This is necessary in order to re-
tain completeness. However, as discussed below, certain search strategies might
change this behavior for practical considerations.

The saturation loop does not necessarily need to find the empty clause as
defined in first-order theorem proving, but rather a clause which contains only
negative flex-flex literals (cf. §3.1). Given a clause C of the form

C=x's' oy v vixT s~y)

where the X’ and Y’ are free variables, it is known that there always exists a
substitution ¢ such that Co only contains solved unification constraints [Hue72,
Hue73a] and hence can be simplified to [J.

4.3.3. Search Control

Even though the saturation procedure presented in the previous section brings
a certain amount of structure to the proof search process, there are several pa-
rameters to the saturation loop that have significant influence on the success
rate of the reasoning system. It is well-known that clause selection, i.e. the
process of selecting the next clause to be used by the saturation loop, is one
of the most crucial points [Sch02]. It is not surprising that major effort has
been invested in enhancing and improving clause selection techniques, involving
sophisticated multi-priority selection strategies [Sch(02], syntax-guided heuris-
tics [SM16] and, recently, the employment of machine learning and Al related
techniques for generating good selection methods [FB16} [LISK17| JU18]. Be-
sides clause selection, there are further parameters that influence the effectivity
of the ATP system: Relevance pruning is used the eliminate irrelevant facts prior
to proof search [MP09, BGK™ 16, [PUTS], literal selection can be used to restrict
the number of inferences generated during a single proof loop iteration, and so-
phisticated redundancy detection methods try to reduce the search space during
saturation [Sch02]].

In a higher-order setting, there are even more aspects that need to be han-
dled for practical applications (cf. challenges from §4.1). Higher-order infer-
ences such as paramodulation and factoring exhaustively generate all possible
conclusions from its premises without any effective syntactical restrictions. In
first-order theorem proving, unification procedures can be used as a filter routine
for such inferences. Furthermore, some inference rules may generate infinitely
many conclusions. We hence need to find suitable strategies to prevent an ex-
plosive growth of the search space while, at the same time, retaining reasoning
effectivity.

84

Chapter 4. The Leo-III System

In Leo-III, adjustment of search control parameters can be done quite flexi-
bly due to the strict separation of the saturation loop, the inference rule applica-
tions, and their control.

Clause selection. As pointed out by Schulz [Sch02], clause selection is of par-
ticular importance for theorem proving systems built around variants of the DIS-
COUNT loop. This is due to the fact that unprocessed clauses are truly passive
and do not contribute to the proof search at all until selected. Clause selection in
Leo-III is inspired by E’s usage of multiple priority queues aligned in a weighted
round-robin scheme [Sch02]]. In contrast to clause selection in E, clause selection
functions in Leo-III consist of arbitrary lexicographical combinations of primi-
tive clause orders. Primitive clause orders roughly correspond to the notion of
evaluation functions from E. Furthermore, the use of explicit priority functions
by E which prefer certain classes of clauses is subsumed by the above approach
since priority functions can be seen as special primitive clause orders. A cor-
responding prioritization of clauses is then implemented by using the respective
clause orders as first element in the lexicographical composition of the clause
selection function. Of course, each clause selection function itself defines an
ordering on clauses that can again be used for constructing more complex selec-
tion functions. This is, however, currently not exploited by Leo-IIl. The most
important clause order primitives available in Leo-III are:

Age: Leo-III assigns each clause a unique monotonously increasing number
id(C) to each generated clause C. This information can be used to define
a clause ordering that simply prefers older clauses to newer ones: Let
C Sage D whenever id(C) < id(D).

Literal count: Intuitively, smaller clauses, that is clauses with fewer literals,
should be preferred as the proof search process is aimed to infer the
empty clause OJ which is the smallest possible clause. Furthermore,
smaller clauses generate fewer consequences and, if only containing one
literal, can be used for unit simplification procedures. To that end, let
¢ SlitC()unt D if and Only if |C‘ < |,D‘

SOS: The set of support search strategy was developed in the 1960s by Wos
et al. [WRC635] for improving the performance of saturation procedures
in first-order theorem proving. Informally, the set of support (SOS) is
a set of clauses that contains every clause which is derived from infer-
ences where at least one premise is contained in the SOS. Initially, only
the conjecture is in the set of support. The SOS search strategy then
restricts proof search to only allow inferences where at least one clause
is contained in the set of support. In order to simulate this behavior,

85

Chapter 4. The Leo-III System

86

Leo-IIIs offers the clause ordering <gos where C <gos D if and only if
C is contained in the SOS. ~gog effectively partitions the set U in two
distinct subsets.

Symbol weight: Symbol counting can be used to prefer clauses with fewer
symbols. This is due to the fact that clauses with fewer symbols have
fewer positions and hence generate fewer consequences. In E, vari-
ables, function symbols and predicate symbols can be assigned different
weights which are then added and result in the weight of the clause. In
HOL, there is no strict separation between formulas and terms, hence
in Leo-III there are only two parameters to this ordering: A weight for
non-variable symbols and a weight for variables. Formally, for a symbol
weight order weight(wvyar, Wrun) it holds that C Syejeny(D if and
only if w(C) < w(D), where

Wyar,Wfun)

w(C) =Xpecw(?)
w([s = 1]%) = w(s) +w(t)
w(AX.t

=
—~
v T
-
S N N N N N
=
—
NS
+
=
~—~
N

Conjecture relative symbol weight: Similar to symbol weight, conjecture rel-
ative symbol weight prefers clauses with fewer symbols. Additionally,
SconjRelWeight(wyar,wiun,c) (akes a real multipler ¢ > 0 which is multiplied
to the weight of function symbols that also occur in the conjecture. Usu-
ally, c is chosen such that 0 < ¢ < 1 in order to prefer clauses in which
relevant symbols from the conjecture occur. This order is a simplified
variant of Schulz’ RefinedWeight as implemented in E [Sch02].

Prefer goals: Negative literals can be regarded as goals to be solved e.g. by
unification. Sgoals prefers goals by having C Sgoais D Whenever 1 —

l(\:c\‘ <1- I\TJ‘ for non-empty clauses C and D. It is extended to empty
clauses by having [J <g0als C, for every clause C.
Prefer non-goals: Analogously, <;onGoats prefers goals by having C < onGoals

D whenever 1 — et <1- “DD“

el for non-empty clauses C and D. Again,

empty clauses are always smaller.
Groundness: Ground clauses may be utilized by simplification methods and
tend to generate fewer consequences. To that end, have C Sground P

whenever C is ground.

Chapter 4. The Leo-III System

The last three clause orders correspond to frequently used priority functions
within E. Further clause orders can easily be added to Leo-III. Formally, the
above primitive clause orders correspond to total preorders (or preference rela-
tions). Every total preorder < defines an equivalence relation ~ with C ~ D
whenever C < D and D < C. Equivalent clauses C ~ D can be seen are identical
with respect to the clause order < (e.g. having the same number of literals etc.).
By convention, a clause C is strictly smaller than D with respect to a given clause
ordering <, denoted C < D, whenever C < D butnot C ~ D.

Concrete clause selection functions are then constructed by lexicographical
combinations of the above clause order primitives in Leo-III. For some index set
T'andij €l for1 < j<n,n>1, alexicographical combination (S;,...,<;,)
again defines a (strict) total preorder (S, venrSin) given by

C (i oSin) D if and only if either C <;; D or C ~;; D and C <(

§i27"'!§in)

For the border case <(<,), let C <(¢,) D if and only if C <;, D. Currently
implemented clause selection functions within Leo-III includeﬂ

o (SicCount gcoaneIWeight(.)): Prefer small clauses that also carry few sym-
bols or symbols contained in the conjecture.

® (Sgoalss Sweighi(.)): Prefer clauses that have many negative literals and
carry few symbols.

o (<ponGoalss Sweight(.)): Prefer clauses that have many positive literals and
carry few symbols.

o (<s0s, 5COHdeWeight(_>): Prefer clauses that originate from inferences

with the conjecture (the set of support) and additionally carry few sym-

bols or symbols contained in the conjecture.

(Sage): Prefer early clauses unconditionally.

These clause selection functions are mostly inspired by work of Schulz and oth-
ers in the context of E [SM16,ISS15]]. It is easy to see that the selection process
is fair if S,ge is included into the portfolio, as every clause will be eventually
selected. The exact combinations of clause orderings originate from experimen-
tation with Leo-III of a problem set from CASC-J8 [Sutl6a]. There is certainly
a lot of room for improvement, in particular for identifying clause orders involv-
ing higher-order features such as order of argument’s types, nesting of formulas,

6 Every clause selection function in Leo-IIT uses Sage as last, implicit, primitive clause ordering
to break ties in favor of older clauses. Since clause ages are unique, every resulting clause selection
function is total and strict.

87

Chapter 4. The Leo-III System

Figure 5: Round-robin clause selection within Leo-III. The C; ; are the unpro-
cessed clauses from U ordered with respect to clause selection function f;. Up
to wy, clauses are selected from the same queue until selectBest () advances to
the next clause selection function fi+| modn-

. N [51.1IC1,ZIC1.31 I] f
Saturation Se\ectl?est() / - [CUICZ'ZICZBI l] f,

2" e [cmlcnlzlcnj[l] .

Clause Queues

Loop

variables at head position etc. A structured approach for generating and evalu-
ating improved selection functions remains further work; cf. current discussions
about this topic [Sch17]].

A weighted clause selection function is then a pair (f,ws) where f is a clause
selection function and wy € N is a weight. The weights are used by Leo-III to
prefer certain selection functions in a round-robin selection procedure. Figure 3]
displays a schematic presentation of Leo-III’s clause selection procedure. Each
invocation of selectBest() selects the smallest clause of U with respect to
the current weighted clause selection function, removes this clause from U and
returns the result. If n selection functions are used, the selection process works
as follows: If (fi,wy,) is the current selection function, wy, successive calls to
selectBest() use f; for selecting the next clause. After wy, calls, the next
call to selectBest() uses fi11 modn fOr wg, , ... selections. This process is
continued until the empty clause is found or the reasoning process is otherwise
terminated.

Premise selection. Premise selection is increasingly relevant for reasoning in
practical relevant applications, e.g. in mathematical reasoning and reasoning in
large knowledge databases. For many small and medium sized problems, even
relatively simple approaches can already significantly increase the reasoning per-
formance. The idea of relevance goes back to Robinson who identified pure
literals to be of no avail in a first-order resolution reasoning process [Rob635].
Here, premise selection focuses on the selection of axioms prior to proof search.

Leo-III implements a relevance filtering mechanism due to Meng and Paul-
son [MPO9|] which produces fair improvements for small and medium sized prob-
lems. Inclusion of an higher-order adaption of a SInE selection routine [HV11]

88

Chapter 4. The Leo-III System

is ongoing work. The latter approach seems to be promising as observed by the
major improvement in the performance of Satallax 3.2 that is, at least partly, due
to a SInE-like axiom selection [Sutl7al.

Restriction of inferences. Leo-III uses several heuristics to restrict the number

of inferences, including a higher-order term ordering called computability path

ordering (CPO) [BJR15]. While these restrictions sacrifice completeness in gen-

eral, an evaluation in §6|confirms that these approaches are indeed practical.
The restrictions implemented in Leo-III are:

As pointed out in §4.T] unification cannot be used as filtering procedure
for paramodulation and factoring inferences. If however an unrestricted
application of such rules is allowed, every type-correct combination of
subterms from every literal of all premises generates a conclusion, lead-
ing to an tremendous explosion of the search space. In contrast, LEO-II
is based on resolution and hence only allows top-level combinations of
literals which results in a much smaller set of conclusions.

To mitigate this situation, Leo-III uses a filtering procedure that can be
regarded an under-approximation of unifiability. Intuitively, this filter
predicate permits paramodulation and factoring between two terms if
the deterministic unification rules (Decomp), (Bind) or (Triv) can be
applied at least once to the resulting unification literal or either side
contains a variable at head position. This restriction however sacrifices
completeness of Leo-III but seems to be reasonable for practical appli-
cations as later evaluations indicate. The filtering mechanism can be
disabled by the user using a command-line parameter.

In order to guarantee termination of higher-order pre-unification, Leo-
IIT limits the search depth of the unifier enumeration procedure. The
depth of a node in the search graph is hereby defined as the number
of subsequent applications of imitation and projection bindings on the
current search branch. It turns out that a reasonable small search depth
of eight suffices for almost all unification tasks originating from TPTP
problems. Of course, this parameter may be changed by the user if re-
quired. Since Leo-III implements pattern unification, it can additionally
be expected that plain (pre-)unification is only used in comparatively
rare cases.

The implementation of the Huet’s higher-order unification procedure
employed by Leo-III is originally due to Tomer Libal. It has been sub-
stantially reworked and reimplemented in order to guarantee termination
and support polymorphic HOL by the author. In particular, the imple-

89

Chapter 4. The Leo-III System

Table 1: Intensity levels of primitive substitution (Prim) within Leo-III. For every
intensity level i, the set S of symbols serves as carrier set for the approximating

bindings gBﬁi used by (Prim), where T € 7T is the goal type for the binding.

Level i | Description | Symbols §'

0 Primitive substitution disabled | @

1 Logical connectives {—,V,T,L1}

2 Further connectives {=H,#"| T =oupu forsome u € 7}
3 Problem-specific symbols {c € X | goal(ty(c)) =0}

4 Locally bound variables {X €efv(C) | goal(ty(X)) = o}

90

mentation of a single unification procedure call returns an infinite lazy
stream of unifiers that can be stored and re-used later on if necessary,
e.g., for iterative deepening approaches. This provides the possibility of
eliminating or at least mitigating the incompleteness source due to the
search depth limit; but is not yet exploited by Leo-III. Additionally, it
is planned to augment Leo-III’s pattern unification procedure with spe-
cialized treatment of regular patterns [Lib15].

Leo-III classifies several intensity levels for applications of primitive
substitution by rule (Prim). As described further above, exhaustive ap-
plication of (Prim) is infinitely branching and leads to a search space
explosion if not restricted. The intensity levels of Leo-III allow to con-
trol the concrete connectives and constant symbols that are used to con-
struct general bindings by (Prim). Table[I] displays the intensity levels
of Leo-III and their associated sets of constant symbols used for primi-
tive substitution. Leo-III is configured to use the set S := ;S for a
given intensity level i which is, by default, set to one. The exact set of
symbols used for primitive substitution be configured more fine-grained
by the user if necessary.

Leo-III implements a variant of the higher-order term order
CPO [BJR135]. The induced ordering is used to orient the sides of equa-
tional literals as well as determine the maximal literals of a clause. This
information can be used by Leo-III to select only a subset of all literals
(and their sides) to be eligible for paramodulation and factoring infer-
ences. Since CPO originates from research in higher-order termination,
it is not clear whether the properties of the ordering actually suffice for
being used for some variant of a higher-order superposition equivalent
and hence no completeness guarantees have been established yet. As for
the previously discussed restrictions, the conducted evaluations seems

Chapter 4. The Leo-III System

however to confirm the practical benefits of the orderings’ employment.

Extensionality and unification. As already sketched in §4.1] the difference be-
tween syntactical unification and semantic proof search disappears in extensional
HOL. In principle, every invocation of a unification procedure could be consid-
ered to be a separate new proving attempt that unfolds to an independent proof
search for syntactically or semantically discharging the unification constraint.
Since a complete proof search procedure is anything but an efficient subroutine
for unification, such a solution is far from practical.

Leo-III tackles this problem by interleaving unification and extensionality
inferences at the proof search level, preferring syntactical unification whenever
possible. This is in contrast to LEO-II where extensionality inferences are hard-
wired into its monolithic and fairly complex unification procedure. In Leo-III ex-
tensionality inferences and unification inferences are strictly separated routines.
There are multiple benefits of approach:

The unification procedure is simpler, faster and more maintainable.
Application of extensionality inference rules can be explicitly controlled
in a fine-grained fashion.

e Extensionality principles can even be completely disabled, effectively
turning Leo-III into an ATP system for elementary type theory (ETT).
This can be handy e.g. for experiments where no extensionality infer-
ences are desired or known to be unnecessary.

The interplay between unification and extensionality is tackled as follows in Leo-
III: Every occurrence of equivalence between formulas is replaced by proper
equality during parsing (if not disabled for experiments in ETT or similar frag-
ments). Hence, equivalence is regarded as a defined notion (or syntactic sugar) in-
stead of a language primitive. First, unification (or pattern unification) is applied
to every negated equality literal, regardless if the equality is between formulas or
non-Boolean terms. If unification fails, a dedicated routine that combines the de-
terministic unification rules (Triv), (Bind) and (Decomp) is exhaustively applied
to the clause. The resulting clause is then eligible for extensionality inferences
and the potential results and added into the search space for further processing.
This way, the unification procedure is applied as far as possible avoiding early
search space explosions caused by excessively generating extensionality infer-
ences.

Strategy scheduling. As discussed further above, Leo-III uses various heuristic
restrictions that are intended to increase the reasoning effectivity. Most of these
restrictions can be adjusted using various parameters, where each combination of

91

Chapter 4. The Leo-III System

such parameter settings may have a strongly different behavior on a given prob-
lem or problem set. An abstraction of the uniform search approach that uses a
fixed parameter setting is the notion of a search strategy and the employment
of strategy scheduling [RV03, Wol98||]. A search strategy can be seen as a con-
crete combination of search parameter settings, usually including a time limit
that defines the time the ATP system will spend executing proof search using that
particular search parameters. Strategy scheduling means here the execution of
a portfolio of different search strategies, in parallel or sequentially, on a single
input problem. The first strategy, if any, to solve the problem then contributes the
overall solution of the ATP system.

In the context of Leo-III, strategy scheduling allows to use both incomplete
but often effective search strategies and complete but often ineffective approaches
to yield a combination that yields a complete and hopefully effective overall
search approach. As an example, such a complete fallback strategy could disable
all above presented search restrictions such as ordering constraints. Leo-III cur-
rently implements a simple variant of strategy scheduling that allows a sequential
execution of different search strategies during a single invocation. However, the
support for strategies in Leo-III is still rudimentary and requires more develop-
ment work in order to result in a robust benefit to its reasoning effectivity.

4.4. External Cooperation

In the tradition of the cooperative nature of the LEO prover family, Leo-III col-
laborates during proof search with external reasoning systems, in particular, with
first-order ATPs such as E [SchO2]], iProver [KorO8|] and Vampire [RVO2|] as
well as SMT solvers like CVC4 [B™11]]. Unlike LEO-II, which translates proof
obligations into untyped first-order languages, Leo-III, by default, translates its
higher-order clauses to (polymorphic or monomorphic) many-sorted first-order
formulas.

Leo-III accumulates higher-order clauses during proof search and repeat-
edly invokes all cooperating systems on the generated proof obligations. For that
purpose, various translation mechanisms from HOL to different variants of first-
order logic are implemented. If any external (first-order) reasoning system finds
the submitted proof obligation to be unsatisfiable, the original HOL problem is
unsatisfiable as well and a proof for the original conjecture is found.

The integration of external cooperation into the reasoning process of Leo-III
is described in The translation techniques that are used for cooperating
with first-order systems are sketched in An evaluation of the effect of
external cooperation within Leo-III is given in §6.1}

92

Chapter 4. The Leo-III System

Figure 6: Invocation of external reasoning systems during proof search. The
solid arrows denote data flow through the respective modules of Leo-III. A dotted
line indicates use of auxiliary information. Postponed calls are selected by the
I/O driver after termination of outstanding external calls.

External External

Reasoner Reasoner
Admit
4 ¢
I :
‘—| 1/0 Driver |T

Y
@fﬁa"b P Encoder

No

Postponed Calls

Submit

H Request
Saturation | Reaquest |~ 4o0)

Loop

4.4.1. Utilization during Proof Search

Leo-III’s saturation procedure may, during any loop iteration, invoke external rea-
soning systems for discharging proof obligations that originate from its current
search space state. To that end, Leo-III includes an encoding module that trans-
lates its higher-order clauses to polymorphic and monomorphic typed first-order
clauses. While LEO-II relied on cooperation with untyped first-order provers,
Leo-III exploits the relatively young support of types in first-order ATP systems
using the associated TPTP language dialect TFF. By making use of TFF’s type
system, the translation of higher-order proof obligations does not require encod-
ing types as terms, e.g. by type guards or type tags [BBPS16l]. This approach
reduces clutter and hence promises more effective cooperation.

Cooperation within Leo-III is by no means limited to first-order ATPs. Mul-
tiple different systems, including first-order and higher-order ATPs and model
finders, can be used simultaneously provided that they comply with some com-
mon TPTP language standard. Currently, Leo-III supports encoding and output
of proof obligations to four different TPTP dialectsﬂ

1. TFO: Monomorphically typed first-order logic [SSCB12]
2. TF1: Polymorphically typed first-order logic [BP13bl]
3. THO: Monomorphically typed higher-order logic [SB10]

7 Note that the TPTP TF0O (THO) language has generally been referred to as TFF (THF) prior
to the development of its extension to polymorphism. Sometimes TFO (THO) is also called TFFO
(THFO0).

93

Chapter 4. The Leo-III System

4. THI: Polymorphically typed higher-order logic [KSR16]

Figure[6]displays a schematic diagram of the interaction between Leo-IIT and
external reasoning systems. During the saturation, the control of Leo-III is peri-
odically requested to submit a new external reasoning task. The generated proof
obligations originate from the current set of processed clauses P. The decision of
whether the control will admit the cooperation request is a predicate involving the
current workload of the external systems, the current time, the time of the last ad-
mitted call and a base frequency that can be specified by the userﬂ This predicate
is designed in such a way that, for each employed external reasoner, a coopera-
tion request is always admitted if the system would otherwise be idle or the last
admitted request was made long enough in past (with respect to loop iteration
count or actual time). Note that an admitted cooperation request does not neces-
sarily lead to an immediate invocation of the respective system. Leo-III limits the
number of parallel open requests (that is requests where the external reasoner is
still running) per registered cooperating system to some number in order to avoid
swamping the CPU with hundreds of parallel processes. As a consequence, if the
current limit is already reached, admitted cooperation requests are inserted into a
collection of postponed requests. If an external call is completed, some element
of this collection is sent immediately without further requests from the satura-
tion loop. The selection strategy of postponed requests balances between picking
most recent requests and those which have been delayed for the longest time.
This approach tries to mediate between situations where early (small) clause sets
are easier to solve for external reasoners and situations where difficult higher-
order reasoning steps are necessary for enabling the external systems to establish
unsatisfiability.

4.4.2. Translation to First-Order Logic

In Leo-III, translation of higher-order clauses to first-order logic consists of var-
ious independent steps that can be flexibly combined and configured. As a first
step, regardless of the target logic, language features that are not supported by
the cooperating system are eliminated from the problem. Then, proof obliga-
tions are converted into polymorphically typed first-order formulas by eliminat-
ing all higher-order constructs such as anonymous functions, partial applications,
variables at function positions and higher-order types [MPOS, BBPS16]]. Subse-
quently, these polymorphic first-order formulas are translated to monomorphic

8 By default, every 15th loop iteration will trigger an external cooperation call (assuming that it
has not been triggered by further conditions).

94

Chapter 4. The Leo-III System

first-order logic by heuristic monomorphization [Boh12, IBBPS16]]. The result-
ing typed first-order problems may be reduced to untyped first-order logic using
appropriate type encodings [BBPS16] as well. Leo-III however refrains from this
effort since many of the usual cooperating first-order provers meanwhile natively
support monomorphic types.

Of course, each intermediate result of the sketched translation pipeline may
already be given to an appropriate external reasoning systems. As an example, an
obvious approach would be to use first-order ATP systems that already support
polymorphic types. This way the expensive and incomplete monomorphization
routine can be eliminated from the translation process. However, experiments
with relevant provers indicate that currently available first-order ATP systems for
TF1 are still less effective for cooperation than using sophisticated TFO ATPs in
conjunction with manual monomorphization.

Similarly, there are multiple techniques for eliminating anonymous functions
(A-abstractions) from the problem. It is not generally clear what approach, if any,
is superior in practice. On the contrary, an evaluation in the context of Isabelle’s
Sledgehammer tool suggests that all approaches have reasonable advantages and
disadvantages, strongly depending on what cooperating system is used [SBP13].

Each translation step used by Leo-III for interacting with first-order ATPs is
briefly outlined next. An evaluation of different cooperating ATP systems as well
as different encoding techniques employed by Leo-III is presented in §6.1]

Elimination of unsupported language features. The TPTP THF (THO) syntax of-
fers several beneficial syntax features that allow a more concise formulation of
problem statements. Unfortunately, some of these language features are not
widely accepted or known in the respective community and are therefore only
supported by a few ATP systems. These includeﬂ

e [f-then-else conditionals given by formulas of the form
$ite_f(p,fl,f2),

o let-bindings given by formulas and terms of the form
$let_tf(local_defs,fl,f2) and $let_ff(local_defs,tl,t2),
respectively, and in the context of higher-order cooperating systems

e choice and description operators given by terms @+ [X:ty]: t and
@- [X:ty]: t,respectively, and

9 Note that some TPTP languages currently undergo some modifications for simplification and
uniformity. This, in particular, includes the use of the combinator connectives (e.g. ! ! etc.) in THF.
It is possible that the presented syntax examples are in this context not syntactically or semantically
valid anymore.

95

Chapter 4. The Leo-III System

e combinator variants of usual connectives such as universal quantifica-
tion, choice and equality, given by !! @ t, @+ @ t, and @= @ t, re-
spectively.

Leo-III comes with a data base of known reasoning systems and their capabili-
ties [SWSB17] and decides per employed cooperating system whether specific
language features in the problem to be submitted need to be eliminated. In the
case that if-then-else conditionals are not supported, an appropriate axiomatiza-
tion for a freshly introduced conditional predicate is included in the problem.
Local let-bindings are simply unfolded if not recognized by the target system.
For choice and description terms, an associated fresh operator is postulated to-
gether with an higher-order specification of that operator. If the target system
is first-order, this axiom is then converted to a first-order formula by the usual
translation process. Leo-III does not distinguish internally between prefix appli-
cations of connectives and the standard syntax. After parsing and interpretation
(cf. §4.T), these cases are handled uniformly by the following translation proce-
dures.

Elimination of higher-order features. ~Additional to the eponymous use of higher-
order quantification, there are several further language constructs in HOL that
cannot be directly expressed in first-order logic. This includes

1. higher-order quantification as in VP,;.Pa — P b,
higher-order arguments that can be passed as function arguments, e.g.

apply fvr Xz, _

3. variables at head position, i.e. terms of the form X s’ for some variable
X,

4. partially applied functions that can be used as proper terms, e.g. as f =
apply f,

5. formulas within terms as in fi, (s, <— 1,),

6. terms as formulas, i.e. terms in which some terms ¢, serve as formula as
well,
e.g. 5o < (s, =1,), and

7. anonymous functions by A-abstraction as in AX;.AY;. f X.

All of the above higher-order features, except for occurrences of anonymous
functions, can be eliminated by using two additional operators hApp and
hBoo@] that re-introduce the strict separation of formulas and terms [MPO8,

10 The names of the operators are chosen here to coincide with the actually implemented trans-
lation in Leo-III. This translation, in turn, follows Meng and Paulsons naming convention within the

96

Chapter 4. The Leo-III System

Rey98all. hApp is a binary polymorphic first-order logic function symbol of type
fun(a, B) x @ — B where fun is a new sort symbol of arity two, fun(a,) repre-
senting the type of functions from type « to type 3. hBool is a predicate symbol
of type bool — o where bool is a new type reflecting terms of Boolean type (i.e.
terms that are used as formulas).

Intuitively, hApp serves as explicit application operator such that terms
st! ... 1" are translated to hApp(...(hApp(s,i!),...),i") where s and the i’
denote the translations of s and the ¢/, respectively. Hence, function applica-
tion is encoded by successive applications of hApp where its first argument is
an encoded function symbol of type fun(z,v), for some types 7,v, and the
second argument of type T is the argument to the passed function. Analo-
gously, higher-order function types are represented by appropriate left-nesting,
e.g. fun(fun(t, V), i) represents the higher-order type u(vr).

Higher-order terms s, of Boolean type that occur as proper subterms are en-
coded as terms Spoo1 Of a dedicated type bool which is distinct from o [JPQ9]. If
such a term is then used as (top-level) formula, the meta-predicate hBool con-
verts it to a first-order formula hBool(s). Within Boolean typed subterms, logical
connectives are replaced by so-called proxy symbols [Boh12]. Additional axioms
relate these proxy symbols with the properties of the underlying connective.

When disregarding anonymous functions, the above presented techniques
already convert a HOL problem to a polymorphically typed first-order problem.
However, in order to allow higher-order equivalent reasoning within the first-
order reasoner some more information needs to be included [Ker94]. An example
of built-in reasoning principles of HOL is functional and Boolean extensionality.
Extensionality axioms need to be stated explicitly for each constant symbol in the
context of first-order logic. In order to enable full higher-order reasoning, appro-
priate extensionality axioms need to be added to the resulting problem. Similarly,
comprehension principles require additional explicit axioms [Ker94].

Leo-III does not include any of these axioms related to higher-order reason-
ing principles into the translated problem. This is due to the fact that the idea
underlying Leo-III is that higher-order reasoning is done by Leo-III internally,
whereas generated (first-order) consequences are sent to external provers for dis-
charging. Also, rigorously augmenting a problem with such axioms dramatically
increases its size and may potentially reduce the effectivity of first-order reason-
ers.

implementation of Sledgehammer. hApp is also often denoted @, whereas hBool is also referred to
as B [MPOS]|. There are certainly many more naming variants originating from concrete translation
implementations.

97

Chapter 4. The Leo-III System

Elimination of anonymous functions. In HOL, functions can be constructed us-
ing A-abstraction. These functions have no direct equivalent in FOL. There are
at least two different popular techniques in use for eliminating anonymous func-
tions:

1. Elimination of anonymous functions by A-lifting [Joh83] proceeds by
successively replacing A-abstractions by fresh function symbols. The
problem formulation is then augmented with appropriate definitions of
the introduced function symbols, sometimes also referred to as super-
combinators. This process is related to defunctionalization [Rey98a]
and used in various applications in functional programming, program-
ming languages and compiler theory.

2. Another possibility is to use a small but complete set of combinators and
replace the anonymous functions by adequate applications of such com-
binator terms. The use of combinators has early roots and goes back
to Schonfinkel and Curry [Sch24| |Cur30, Bar81]]. The use of Curry
combinators may, however, increase the size of the problem quadrati-
cally [PJ87].

In addition to the two techniques, there exists an extended set of combinators due
to Turner [[Tur79] that aims at further decreasing the size of the resulting output.
However, use of Turner combinators seems to be of no major improvement in
practice [MPOS]].

Curry combinators are used by metis [HurO3]], LEO-II relies on A-
lifting [BS13]], and Isabelle’s Sledgehammer system allows to configure which of
the above elimination techniques (of a combination of both) is used and chooses
heuristically if not specified by the user [SBP13]. Leo-III uses, by default, a
translation scheme using Curry combinators but also supports A-lifting. This
setting can also be changed for each cooperating system.

Monomorphization. Since Leo-III is designed to cooperate with typed external
reasoning systems, the translation of proof obligations does not include encod-
ing of types, as done in LEO-II. It is possible, however currently not planned,
to extend Leo-III to use encoding mechanisms for polymorphic and monomor-
phic types to reduce the polymorphically typed first-order problem to untyped
first-order logic [BBPS16|]. The proposed methods involve adding type argu-
ments, type tags or type guards [MPOS, BBPS16] to each formula and term
of the problem in order to retain soundness. The number of necessary typing
atoms can however be dramatically reduced using monotonicity inference mech-
anisms [[CLS11,[BBPS16]. These sophisticated encoding techniques are, for ex-
ample, successfully used by Isabelle’s Sledgehammer system [BBPS16].

98

Chapter 4. The Leo-III System

Leo-III makes use of so-called heuristic monomorphization [Boh12]] which
generates a monomorphically typed problem from a polymorphic input problem.
This approach is quite pragmatic: Universally quantified type variables are suc-
cessively instantiated with heuristically chosen ground types and the results are
merged into a single problem. It is strongly related to research in compilers for
translations between different programming languages [TO98]]. In the context
of automated reasoning, monomorphization is known to be necessarily incom-
plete [CLO7, [BP11]] and may increase the size of the problems representation by
magnitudes [CLO7|] as the number of ground types eligible for instantiation is
infinite.

Nevertheless, heuristic monomorphization can be used to exploit the native
type support in external reasoning systems and proved to be of great value in
practice [BBPS16, ISBP13] for bridging between various logic formalisms used
by different reasoning systems. Moreover, it enables provers to “’detect unprov-
ability of small problems much faster than before” [BBPS16] in the context of
the Sledgehammer system. If the cooperating system supports polymorphic first-
order logic, the monomorphization process is not required and will not be exe-
cuted by Leo-III.

4.5. Proof Output

The output of Leo-III depends on whether or not the conjecture could be found
to be a theorem. In the latter case, this might be due to one of several reasons:
Either the conjecture is, de facto, not a theorem and hence it is not possible to
find a sound derivation of the empty clause. Another possibility is that sources of
incompleteness within Leo-III makes the saturation procedure terminate prema-
turely without establishing any validity result. Finally, the saturation procedure
of Leo-III can diverge and, eventually, forcefully terminate if a given resource
limit is exceeded. All of the above scenarios can also occur if no conjecture
but only a collection of axioms is given in the input problem. For the result
output format, Leo-III rigorously implements the machine-readable TSTP result
standard [SutlQ] and hence outputs appropriate SZS ontology values [SutOS]].
The use of the TSTP output format allows for simple means of communication
and exchange of reasoning results between different reasoning tools and, conse-
quently, eases the employment of Leo-III within external tools (e.g., the Syste-
mOnTPTP infrastructure [SutI7b]). Figure [7] displays a schematic template of
Leo-III's output. The first 15 lines print statistical information about the proving
attempt which are not captured by existing TSTP standards and are hence printed
as comments. Here, fx and feeciive denote the total time and the time spent with-

99

Chapter 4. The Leo-III System

Figure 7: Schematic template of Leo-III's proof output. All but the lines starting
with % SZS denote additional information that is not captured by TSTP standards.
The output enclosed in <. > are placeholders for the concrete values.

% Time passed: <ty>

% Effective reasoning time: <feffective™

% Solved by strategy<...>

Axioms used in derivation (<npx>): <axiom list>
No. of inferences in proof: <...>

No. of processed clauses: <...>

No. of generated clauses: <...>

% No. of forward subsumed clauses: <...>

% No. of backward subsumed clauses: <...>

No. of ground rewrite rules in store: <...>

No. of non-ground rewrite rules in store: <...>
% No. of positive (non-rewrite) units in store:
No. of negative (non-rewrite) units in store: <...>
No. of choice functions detected: <...>

No. of choice instantiations: <...>

SZS status <result> for <problem>

SZS output start CNFRefutation for <problem>
<proof>

SZS output end CNFRefutation for <problem>

o® o° o°

o°

o° o°

d® o° o° of
A
\%

o°

o°

out parsing, respectively, by Leo-III on the input problem <problem>. Further
information include the number of used axioms nax, the number of processed
and generated clauses and the number of subsumed clauses.

The result status value <result> used in the proof is a textual standardized
representation of a SZS result ontology value. However, only a subset of all
possible SZS results are printed by Leo-I1I:

Theorem is printed, if a problem containing a conjecture was found to be a
theorem.

ContradictoryAxioms is printed, if a problem containing a conjecture was
trivially found to be a theorem because its axioms are inconsistent.

GaveUp is printed, if Leo-III was not able to establish a result value due to
incompleteness sources and hence terminated on its own accord.

Timeout is printed, if Leo-III was not able to establish a result value yet, but
was terminated due to violation of time limits.

100

Chapter 4. The Leo-III System

Unsatisfiable is printed, if a problem without conjecture was found to be
inconsistent/unsatisfiable.

Inappropriate is printed, if a problem uses syntax features that are not sup-
ported by Leo-III (e.g., arithmetic operations).

Forced is printed, if Leo-III was terminated by external sources.

SyntaxError isprinted, if a problem contains syntactical errors and can there-
for not be parsed correctly.

TypeError is printed, if a problem uses conflicting type information.

InputError is printed, if a problem is otherwise malformed or missing essen-
tial information (e.g. explicit type information for constant symbols).

Error is printed, if any internal error occurred during execution of Leo-III.
This is, in general, an implementation flaw and does not imply any state-
ment on the quality of the input problem.

Currently, Leo-III is not capable of printing results that indicate non-validity
of a given conjecture (e.g. CounterSatisfiable). Novel to the list of possible
return values for the Leo prover family is ContradictoryAxioms. Up to the
author’s knowledge, no other (higher-order) ATP system currently checks the
consistency of the generated proof on-the-fly. In Leo-III, this is implemented
using a simple traversal of the generated proof object: If the negated conjecture
is never used within the generated refutation, the axioms must be inconsistent
and hence ContradictoryAxioms is returned. This feature can help to clarify
errors within the problem’s formalization as it points out a potential weakness
of the given axioms. The implementation comes with small-to-none costs at run
time as only one single traversal of the proof object is conducted.

Additional to the above described result value, Leo-III produces machine-
readable proof certificates (cf. the output between ”% SZS output start” and
7% SZS output end” in Fig[/) if the empty clause could be derived and such
a certificate has been requested (using the -p command-line option). The proof
certificate is an ASCII encoded, linearized, directed acyclic graph (DAG) of in-
ferences that refutes the negated input conjecture by ultimately generating the
empty clause. The root sources of the inference DAG are hereby the given con-
jecture (if any) and all axioms that have been used for the refutation.

The proof output records all intermediate inferences, with the exception of
modifying inferences (simplifications) that effectively did not change the clause.
The representation again follows the TSTP format and records the inferences us-
ing annotated THF formulas. While the clause itself is encoded as THF formula
using disjunctions, the information about which inference and which premise
clause generated the result is recorded in the annotation field. In the case of

101

Chapter 4. The Leo-III System

Table 2: Annotations used within Leo-III proofs and their corresponding calcu-
lus rules. Annotations for structural rules or specialized routines may have no

calculus equivalent (marked with —).

Annotation Calculus rule(s) Additional Information
neg_conjecture — Negates the original conjecture.
miniscope — Applies miniscoping as described in
simp (Simp), (DD), :@
(TD1), (TD2),
(Triv), (Bind)
cnf All of CNF —
paramod_ordered | (Para) —
eqfactor_ordered| (Fac) —
prim_subst (Prim) Substitution is given as additional
output.
func_ext (PFE), (NFE) —
bool_ext (PBE), (NBE) —
pre_uni All of UN'T Unifier is given as additional output.

pattern_uni
replace_leibeq

simplifyReflect
rewrite
instance

choice
funcspec

(LEQ). (AEQ)

(PSR), (NSR)
(RP), (RN)
(Heulnst)

(ACI)
(FS)

Unifier is given as additional output.
Substitution is given as additional
output.

Substitution is given as additional
output.
Substitution is given as additional
output.

primitive substitution and unification inferences, the applied substitutions are in-
cluded as well. Table Q] contains an overview over the annotations that are used
within Leo-III proofs. For each annotation, the corresponding inference rules
of the underlying calculus are given. The verbose proof object can be reduced
with the option -proofcompression. This mode skips less informative non-
branching steps in the proof and compresses them into a sequence of inference
applications.

Due to the fine granularity of Leo-III proofs, it is often possible to verify
them step-by-step using external tools such as GDV [Sut06]. In fact, many proofs
found by Leo-III without external cooperation can successfully be verified by

102

Chapter 4. The Leo-III System

GDV. Note that, however, when using external cooperation it is more likely that
Leo-III proofs cannot be verified this way. This is due to the proof reconstruction
procedure of Leo-III which includes those formulas as inference parents that were
used as premises of the inference. For external prover calls all (relevant) clauses
of the search space are sent to the external system and can hence be seen as
potential premises relevant to the inference. As a consequence, Leo-III over-
approximates and outputs all submitted clauses as inference parents. This in turn
makes it quite hard for external systems to verify the whole proof as the proof
step contains more (potentially useless) formulas and only outputs a very general
big-step inference.

This situation can be mitigated in parts by inspecting the proofs produced by
the external systems and extracting which submitted clauses were actually used
in the given certificate. Another possibility is to translate the external proof into a
Leo-III refutation and to integrate it in the remaining proof object of Leo-III. The
latter approach seems preferable as it produces self-contained and therefore more
trustworthy proofs. However, it is debatable if the development and implemen-
tation of such translations is possible (or feasible) when considering that Leo-III
is able to cooperate with nearly all available first- and higher-order systems and
that these systems partly use completely different proof calculi and proof output
formats.

Examples of Leo-III proofs are given at Appendix [C| An analysis of the
verifiability of these proofs is given in §6.4]

4.6. Reasoning in Polymorphic HOL

Interactive theorem proving systems for higher-order logic such as Is-
abelle/HOL [NWPO02] and Coq [Paulll] are based on expressive type systems
that extend simple types (as used by most higher-order ATP systems) with e.g.,
polymorphism, type classes, dependent types and further type concepts [Pie02].
Expressive type systems also allow to structure knowledge in terms of reusabil-
ity [Tho97].

There exist increasingly many reasoning systems for first-order logic with
rank-1 polymorphism, starting from SMT solvers such as Alt-Ergo [BT08] and
CVC4 [BT11], tableaux based ATP systems such as Zenon [BCHI3], up to su-
perposition based ATP systems including Zipperposition [Crul5] and Pirate (that
is, SPASS with polymorphism) [Wan14]]. Some of these systems already support
a recent extension of the TPTP typed first-order format TFF to rank-1 polymor-
phism [BP13b], called TF1, as input format. However, in a higher-order set-
ting there are, up to the author’s knowledge, no stand-alone automated theorem

103

Chapter 4. The Leo-III System

provers that natively support polymorphism. Hence middleware techniques such
as monomorphization [BBPS16] are still required to enable a fruitful interaction
between these higher-order reasoning systems and proof assistants (cf. §4.9.3).

The only exceptions concerning automation of polymorphic HOL
are HOL(y)Hammer [KUI15b] and the tptp_isabelle mode of Is-
abelle/HOL [NWPO02] that schedule proof tactics within HOL Light [Har09|] and
Isabelle/HOL, respectively.

Since version 1.1, and the substantially improved in version 1.2, Leo-III
supports reasoning in first- and higher-order logic with rank-1 polymorphism.
The support for polymorphism has been strongly influenced by the recent de-
velopment of the TH1 format for representing problems in rank-1 polymorphic
HOL [KSR16] extending the de-facto standard THF syntax [SB10] for HOL. The
TF1 language is closely related to TH1 and can, since it is a fragment of THI,
also be used as an input format for Leo-III.

4.6.1. Adjustments to Leo-II1

The existing term and type data structures of Leo-III are already expressive
enough to represent THI problems (cf. §4.8.1). Although currently not ex-
ploited, these data structures can capture full System F whose unrestricted use
would, however, render the system inconsistent [[Coq94]. Nevertheless, conser-
vative extensions to higher-rank polymorphism — beyond TF1 or TH1 — would
already be supported on a syntactic basis.

The adaption of Leo-III to TH1 reasoning did not require modifying the gen-
eral proof loop as presented in Fig[] This is primarily due to the strict separation
of the loop and its underlying abstraction layers. On the control layer, however,
careful modification of most of the inference control mechanisms were neces-
sary. Here, careful handling of (free) type variables and employment of type
unification were added. Additionally, on the lowest abstraction layers (the infer-
ence rule implementations) these aspects need to be considered as well. Also, an
implementation of type unification for simple types with type variables is added.
Three particular changes or additions are surveyed in the following.

Unification. Central to the polymorphic adaption of Leo-III’s calculus is the no-
tion of type unification. Analogous to the unification of two terms s and ¢ that
returns, if existent, a substitution ¢ such that so = t0, type unification between
two types T and v yields a substitution ¢ such that 7o = v o, if such a substitution
exists. Such a type substitution ¢ is then called most general type unifier (mgtu)
of 7 and v. Type unification can formally be described as a rewrite procedure;
the type unification algorithm employed by Leo-III is given by the transforma-

104

Chapter 4. The Leo-III System

Figure 8: Type unification by transformation.

(t=1:U,0) — (U,0) (TyDelete)
(a=71:U,0) — (U{t/a},co{t/a}) (TyBind)

if a ¢ fv(7)
) =¢(w)=U,0) — (ui=v;:U,o0) (TyDecomp)
(i=>n=vi=>wn:Uo0o) — (1=viiTh=Vv,::U,0) (TyFunDecomp)

tion system displayed in Fig.[8] Here, the type unification problem is represented
as a tuple (U, o) where U is a list of unsolved type equations (the double colon
concatenates list entries, the empty list is denoted []) and o is a type substitu-
tion. Since unification on types is essentially a first-order unification problem,
it is decidable and unitary, i.e. yields a unique most general unifier if one exists.
More precisely, if 7,V € Ty are monotypes, 7T and v are unifiable if and only if
(t=v:[],id) —* ([],0), where id denotes the identity substitution and o is
some type substitution. In particular, it then holds that mgru(7,Vv) := o is a most
general type unifier of T and v.

Intuitively, whenever a calculus rule requires two premises to have the same
type, in the polymorphic adaption it suffices that the two terms’ types are unifi-
able. For a concrete inference, the type unification is then applied first to the
clauses; followed by the standard inference rule itself.

Skolemization. In the context of polymorphic HOL, Skolemization needs to be
adapted to account for free type variables in the scope of existentially quantified
variables. As a consequence, Skolem constants that are introduced e.g. during
clausification are polymorphically typed symbols sk that are applied to the free
type variables o followed by the free term variables X, yielding the final Skolem
term (sk & X?), where sk is the fresh Skolem constant. A similar construction is
used for general bindings that are employed by primitive substitution or projec-
tion bindings during unification.

4.6.2. External Cooperation

The use of external cooperation for polymorphically typed HO clauses is straight-
forward due to the nature of the existing encoding framework (cf. §4.4). Recall
that the translation of (monomorphic) proof obligations first eliminates higher-
order constructs by using polymorphic first-order operators. Using this transla-
tion pipeline, polymorphic HO clauses can be dealt with in two different ways:
The clauses can be translated directly into polymorphically typed first-order

105

Chapter 4. The Leo-III System

Figure 9: Cooperation schemes for polymorphic problems. Polymorphic prob-
lems can be reduced to monomorphic HOL by heuristic monomorphization
(Mono.) or, alternatively, be translated directly to polymorphic first-order for-
mulas for further processing.

| 1/0 Driver |

problems. Here, only the higher-order constructs are eliminated using the usual
techniques. The result then contains not only polymorphic first-order auxiliary
functions introduced by the translation, but also the polymorphic symbols from
the original problem. Regardless of the source of polymorphism in the first-order
problem, the result is then transformed into monomorphic first-order logic using
heuristic monomorphization as usual.

Another possibility is to do heuristic monomorphization first, yielding
monomorphic HOL clauses. In this case, the resulting clauses can then be trans-
lated using the usual encoding procedure to first-order clauses, or be directly sent
to external HO reasoners (without any further translation). The differences be-
tween both approaches have been highlighted in the context of the Sledgehammer
system [BBPS16].

A schematic representation of the possible encodings for external coopera-
tion is displayed in Fig.[9] Leo-III uses, by default, the first encoding variant that
is sketched above. Currently, external prover cooperation for TH1 is functional
albeit experimental. In particular for large problem inputs (e.g., produced by
Isabelle/HOL’s Sledgehammer tool) the current monomorphization procedure
needs to be improved.

Examples of reasoning with Leo-III in polymorphic HOL are displayed at
Additionally, a detailed evaluation of Leo-III’s reasoning strength on TH1 prob-
lems is conducted in §6.2]

106

Chapter 4. The Leo-III System
4.7. Modal Logic Reasoning

One long-term goal of Leo-III is to provide means for reasoning within (and
about) non-classical logics including, e.g., free logic, quantified conditional
logic, and quantified modal logic. Non-classical logics have many topical ap-
plications in mathematics, computer science and beyond. In particular, quan-
tified (multi-)modal logics [BvBWO06|] which can be fruitfully applied in the
context of artificial intelligence, computational linguistics and rule-based rea-
soning. They also play an important role in various areas of philosophy, in-
cluding ontology, (computer-)ethics, philosophy of mind and philosophy of sci-
ence. Many challenging applications, however, as recently explored in meta-
physics [BWP16, BWWP17,|[EB17], require quantified and in particular higher-
order quantified modal logics (HOMLs). But even for first-order non-classical
logics only few implemented systems are available, and the situation is even
worse for higher-order quantified logics. There are numerous ATP systems for
propositional modal logics[rl For (first-order) quantified modal logics, how-
ever, only few reasoning systems exist. Well-known exceptions are MleanSeﬂT_zl
MleanTA GQML [TCMO2[], MleanCoP [Ott14] and f2p-MSPASS [HSO00]
that each support a different restricted subset of semantic variants of first-order
modal logic. In particular, the development of ATP systems for HOMLs is still in
its infancy, hence impeding more complex computer-assisted studies of relevant
topics.

To overcome this situation, Leo-III bridges the above gap by providing native
mean@fer flexible reasoning within every normal higher-order quantified modal
logic. This is realized using a shallow semantical embedding approach [BP13a]
in which formulas of modal logic are identified with specific terms of classical
higher-order logic such that a notion of modal validity can be defined within HOL
that coincides with the desired modal logic semantics.

A difficulty of quantified modal logic automation is that there exist multiple
different notions of semantics, most of which usually used in different application

1T A list of modal logic systems is curated by Renate Schmidt atwww. cs .man.ac.uk/~schmidt/
tools,

2 MleanSeP can be downloaded at www . leancop.de/mleansep

13 MleanTAP can be downloaded at www. leancop.de/mleantap

14The fact that modal logics as such can be translated to classical logic is well known [BVB07,
BP13a]. Nevertheless, the translation process is cumbersome, error-prone and needs to be done
manually by the user prior to the use of an ATP system for classical logic. The expression “native
means” here highlights the fact that no such translation process or embedding procedure is necessary
when using Leo-III for reasoning in HOMLs. Earlier experimental results of Benzmiiller et al. used a
dedicated external pre-processing system [Ben15bl[BR12], this is not necessary anymore in Leo-III.

107

www.cs.man.ac.uk/~schmidt/tools
www.cs.man.ac.uk/~schmidt/tools
www.leancop.de/mleansep
www.leancop.de/mleantap

Chapter 4. The Leo-III System

domains. The exact semantics of a given quantified modal logic can be regarded
a product of multiple individual semantical parameters, including:

(i) Modal axiomatization: What properties hold for each modality?

The properties range from axiom scheme K alone to the strong assump-
tions of logic S5, and any intermediate system (cf. the modal logic
cube [BvBWO06]).

(i) Quantification semantics: What are the domains of quantified vari-
ables?
Usual choices include so-called cumulative, decreasing, constant and
varying domain semantics.

(iii)) Rigidity: Is the meaning of a symbol the same in every possible world?
Possible choices include rigid and world-dependent constant symbols.

Also, there exist different choices for logical consequence relations, including at
least so-called local and global consequence [BvBWO06]. When taking all possi-
ble parameter combinations into account this amounts to more than 120 different
HOMLs (cf. further below).

As of version 1.2, Leo-III is capable of reasoning within all such HOMLs
without the use of any external pre-processing tools. This is in contrast to other
special-purpose modal logic reasoning systems that are limited to a small number
of semantic variants. This makes Leo-III the first ATP system to natively support
full higher-order modal logic reasoning for a large range of modal logics.

In this section, higher-order (multi-)modal logic (HOML) is sketched infor-
mally together with an overview of its many different semantic variations. Sub-
sequently, a semantic embedding procedure for HOML into HOL is discussed.
This procedure is included into Leo-III as a pre-processing module, and enables
its extensive modal logic reasoning capabilities. Finally, an extension of the
standard TPTP THF problem input syntax is presented. This augmented syn-
tax is designed for formulating HOML problems as well as specifying modal
semantics in which these problems are to be evaluated. The here presented pro-
cedure for modal reasoning support is based on earlier work [GSB17, [WSB16|]
and originates from the study of embedding methods for various non-classical
logics [BP13al, Ben15c].

Related approaches to generic theorem proving for various propositional
modal logics include the tableau-based theorem systems LoTReC [dC01], MeT-
TelL2 [TSK12] and tableau workbench [[AGQ9]. However, it is unclear whether
these approaches scale for first-order or higher-order quantified modal logics.

108

Chapter 4. The Leo-III System

Table 3: Popular modal axiom schemes and their corresponding frame condition

Name Axiom scheme Condition on ' | Meta-logical specification of '
K | O —t) — (Os — O%) — —
B s — Ols symmetric Fwyv—rivw
D Ois —s Ols serial Fv.riwy
/M Ois —s s reflexive rww
4 Ois — O0's transitive (ri wyAry u) —sriwu
5 Ols — OOl euclidean (ri WYAH w u) —rivu

4.7.1. Higher-Order Modal Logic

Higher-order multi-modal logics (HOML) can, roughly speaking, be regarded an
extension of classical higher-order logic, augmented with a set of modal operators
[0, commonly denoting necessity, i € I, for some index set 1. The dual operators
!, denoting possibility, can then be defined as usual for normal modal logics by
taking ¢’ := AX,. ~0'=X.

Semantics of HOML is given by an appropriate adaption of Henkin seman-
tics for HOL to Kripke semantics (also referred to as possible world seman-
tics) [BvBWOG]|. Here, the semantics of the modal sentences (s, and {'s,, for
some formula s,, is defined in terms of accessibility relations between possible
worlds, where each possible world w is associated an individual HOL frame D,,
and interpretation function Z,,. The remaining (non-modal) sentences are inter-
preted as usual. The resulting notions of models for HOML are a generalization
of those of (first-order) quantified modal logic [Goll1] to full higher-order quan-
tification. Note that an important aspect of modal logic is that (s, can be de-
rived whenever s, is a valid formula (this is called necessitation). Nevertheless,
s, — O's,, is in general not a theorem of HOML. Additionally, in normal modal
logics, is it agreed upon that the box operators [respect the axiom scheme K
from Table 3| Further properties of [J can be required, depending on the appli-
cation scenario (cf. §4.7.2]below).

A thorough introduction to modal logics and its intricate structure can be
found in the literature [BvBWO06, |Gar16]].

4.7.2. Semantics Variations

Higher-order quantified modal logic can be equipped with many different seman-
tics. This is due to the existence of various subtle but meaningful variations in
multiple individual facets of which each combination potentially yields a distinct
modal logic. Many of those variations have their particular applications, hence
there is no reasonably small subset of modal logics to which a system should be

109

Chapter 4. The Leo-III System

restricted. This, of course, poses a major challenge to theorem proving systems
for modal logics. Leo-III does, however, admit such a diverse reasoning capa-
bility for modal logics and in fact supports every normal modal logic. In con-
trast, popular other ATP systems for (first-order) quantified modal logics such as
MleanCoP, MleanSep and MleanTab only support a comparably small subset of
all possible variants. The most prominent semantic facets that can be adjusted
are surveyed in the following.

Modality Axiomatizations. The most common variation for a concrete modal
logic at hand is the choice of the [J-operator’s axiomatization. A subset of pop-
ular axiom schemes is displayed in Table 3] It is a well-known fact that certain
modal logic formulas correspond to first-order accessibility relation conditions
(particularly the so-called Sahlqvist formulas [Sah75])), also displayed in Table[3]

Modal logic systems (denoted by bold-faced names) consist of one or more
axiom schemes. As an example, modal logic K only consists of axiom scheme
K. More complex systems are then constructed by adding further axiom schemes,
e.g. M consists of K and M; S4 consists of K, M and 4; and S5 consists of K, B,
M and 5. As an example, the modal logic is usually chosen to be S4 or S5 when
used in an epistemic context.

In a multi-modal logic, the choice of a specific axiomatization can be made
for every different [J-operator independently.

Quantification semantics. An intuitive, unrestricted, definition of HOML models
yields so-called varying domains semantics. Here, we have the situation that
denotations from D,, that exist at a particular world w may not exist in another
world v. This is often called the actualist interpretation of quantification [Goll 1]
and states that everything there is (actually) exists, i.e., that there are no merely
possible things.

This setting may however not be adequate for all applications of modal logic,
in particular in computer science, and is also criticized in the context of meta-
physics from so-called possibilist positions. The here proposed variant of con-
stant domain quantification assumes that the frames of all worlds coincide, i.e.
D,, = D, for all worlds w and v.

The remaining two settings of cumulative domains and decreasing domains
are intermediate variants that assume that a frame D,, is a superset resp. subset
of D, whenever w is connected to v by the accessibility relation.

All of the above variants co-exist and there is still an ongoing dispute about
the desired notion of quantification in modal logic [Will3},[Stal2]].

Rigid and flexible constants. A further dimension of modal logic semantics deals
with the dependency of the denotation of constants on the current world: In a so-

110

Chapter 4. The Leo-III System

Figure 10: Bird’s eye perspective of the automated embedding process

! Logi : € ,
5 Specification _ [“Semantical = Axioms etc.
i Analysis |
= —— Parsing | _
HOML Problem . Hou
Problem H Problem Encodlng | Problem

Representation

called flexible setting, two interpretation functions Z,, and Z, at different worlds
w Z v may assign a constant symbol different denotations (except for the logical
connectives such as -, V, etc. which are always denoting as usual). In a rigid
setting, however, the interpretation functions at every world coincide, i.e. it holds
that Z,,(c) = Z,(c) for all worlds w,v and all constants ¢z, T € T. Aspects of
rigidity play an important role for applications in paraconsistent reasoning and
when dealing with vagueness.

Consequence. There is no single meaningful notion of consequence in modal
logics. At least two versions of consequence relations have been discussed in the

literature [FEMYS]], including those often referred to as global and local conse-
quences,):I‘%Ilgtﬁ]]d and \:}Q’f)all,m, respectively. For brevity, the exact definitions are

omitted here.

4.7.3. Automation of HOML in Leo-III

Automation of HOML within Leo-III is realized using an indirection: The key
is to find equivalent formulations of HOML sentences in classical HOL. Recall
that this translation has, in particular, to preserve the necessitation inference rule
(from s infer [J's) while not, in general, validating s — (I's for any formula s,,.
In order to capture this non-trivial behavior of the modal operators, the relevant
fragments of HOML’s Kripke semantics are encoded into HOL. To that end, all
logical connectives of HOML as well as relevant meta-logical notions such as va-
lidity (in HOML) are encoded first. Subsequently, the original modal problem is
reformulated using the previously encoded (meta-)logical notions and a transla-
tion scheme for HOML terms. The result of this embedding process is a problem
formulation using only constructs of classical HOL as can, hence, be dealt with
using any common HO ATP system.

Embedding scheme. The key idea of the translation is that formulas of HOML s,,
are encoded as HOL predicates on possible words. To that end, possible worlds

111

Chapter 4. The Leo-III System

Table 4: Embedding of modal logic connectives and meta-logical notions in
HOL

Lifting HOL abbrev. | HOL term

o] D;Hw) ASg AW, V. =(FW V)VSV

[—00] Top (o) ASg AW, ~(SW)

|—\/0‘>0%0.| VO”(OI'L)<0“) ASG.ATg.lW#. (S W) \/ (T W)

|'I—I1 ‘I HCO’T AIPTA)O-)MW“ VXT PXWwW
o(07) e~ APy 5 AW, VX, ~(ciw X W)V (PX W)
glonal validyoy) | ASe.¥Wu.SW

:%-?E)al&/[L Aa(o[.l) ASs.S Wactual

are included to the problem as explicit objects of a fresh type p. The translation
of s, is then a predicate s,,, on worlds. This encodes the idea of Kripke-semantics
that the truth-value of a sentence is no longer intrinsic to the sentence itself, but
also dependent of the world it is evaluated in.

The translation of HOML problems proceeds by first translating the gen-
eral HOML constructs, i.e. encoding the semantics of HOML connectives etc.,
followed by the embedding of the actual problem itself. The translation is for-
malized as a function [.] from HOML terms to HOL terms. It is extended to also
denote the encoding of HOML types to HOL types in the following.

For the first part, for each modal index i € I, an accessibility relation ré“ u
between possible worlds is postulated. Depending on the desired axiomatization
of [I', additional restrictions (axioms) of 7' are postulated. These restrictions (cf.
Table [3) make use of the correspondence between modal axiom schemes and
accessibility relation properties [BvBW06]. HOML types are embedded by:

[vel:=[vl7]
[0] :=ou
(7] := T if 7 is base type and (x)

where (*) only applies if in a world-dependent constants context. For rigid con-
stants, only type o is translated to a predicate type. The logical connectives of
HOML can be encoded as displayed in Table[d] The abbreviations of the respec-
tively embedded connectives are written in bold face symbols. The encoding of
universal quantification depends on whether this quantification is intended to be
using constant domain or varying domain semantics (the latter case subsumes

112

Chapter 4. The Leo-III System

cumulative and decreasing domain semantics). Here, I1°>® and IT'»" denote the
translation of the modal logic quantifier for constant domains and varying do-
mains, respectively. The predicate eiw (for exists-in-world) guards against quan-
tification over objects that do not exist in the world at hand. The setting of cumu-
lative and decreasing domains is implemented by adding appropriate restrictions
of the eiw predicate used in the definition of IIV7,

The translation of the original problem then recursively replaces the compo-
nents of the original HOML formula by the embedded HOL equivalents:

[ee]i=ci) [Xe| =X [AXesv]:=A[Xe] [sv] [seovitc] = [sesv]]

Finally, the notions of HOML validity resp. consequence is encoded with aid of
two further meta-logical definitions valid,) and A, (). Both function sym-
bols are grounding terms of type ol (i.e., embedded formulas of HOML) to type
o (formulas of HOL) and assert that the respective formula is valid. The differ-
ence between these two notions is that the first one encodes global consequence
semantics while the latter can be used to encode local consequence. The defi-
nitions of both operators are displayed in Table [d Here, wycqal is a fresh world
constant.

Details on the embedding procedure and the underlying theoretical consid-
erations can be found in previous work [GSB17,[BP13al].

Utilization within Leo-III. The refutation process and associated operations re-
main unchanged by this approach since the problem encoding is automatically
done in a pre-processing step, transparent to the underlying reasoning modules.
A schematic invocation of this pre-processing step is displayed at Fig. [I0] The
input of this translation pipeline is a modal problem statement formulated in a
language specifically created for HOML. After parsing, the meta-logical contents
of the problem statement (the semantical specification, cf. further below) are pro-
cessed. This produces HOL encodings of corresponding logical and meta-logical
notions of HOML. In a second step, the problem itself is embedded as sketched
above. The results of this pre-processing operation is then passed to Leo-III just
like any regular (non-modal) problem input.

Since the syntax of HOML is a conservative extension of that of clas-
sical HOL, the THF representation language can easily be augmented by in-
troducing the modal operators $box and $dia as new primitive connectives,
representing the modal connectives [] and ¢, respectively (in a mono-modal
settings). For example, the HOML formula VX;.[0(p X) then corresponds to
I [X:$1i] : ($box @ (p @ X)) in the proposed syntax extension. For
multi-modal logics, there exist analogous operators that are additionally given

113

Chapter 4. The Leo-III System

Figure 11: Layout of a general modal logic problem. The first statement (11. 2 -
4) specifies a concrete modal logic, the remaining statements (11. 6 - 8) formulate
the problem itself. The (name;) serve as syntactic identifier for that statement,
a (role;) (usually set to axiom or conjecture) tells the reasoning system how
to interpret the (formula;) formulated in the presented augmented THF syntax.
Lines starting with % are comments.

% Begin of logic specification

thf((namey), logic, ($modal := [
$constants := (const_spec), $quantification := (domain_spec),
$consequence := (conseq_spec), $modalities := (modal_spec)]
)) -

% End of logic specification, begin of problem statement

thf({name;), (role;), (formulaj)).

thf((name,), (role,), (formula,)).

an index as first argument and the formula as second argument. The remaining
syntax coincides with standard THF and is described in the literature [SB10]].

As mentioned earlier, there is no single semantics of quantified modal log-
ics. As a consequence, there is additional need for explicitly stating the se-
mantical setting in which a problem is to be assessed by the reasoning system.
This is realized by including a meta-logical specification into the problem header
which is represented as an input statement of type logic that assigns the de-
sired semantics for each discussed semantic dimension (cf. §4.7.2). A prototyp-
ical specification statement is displayed in Fig.[TT} The identifiers $constants,
$quantification and $consequence specify the exact semantical settings for
the rigidity of constant symbols, the quantification semantics and the conse-
quence relation, respectively. Finally, $modalities specifies the properties of
the modal connectives by means of fixed modal logic system names or, alterna-
tively, a list of individual modal axiom schemes. The valid parameter values are
given in Table[5]

The remaining placeholders of Fig. (name), (role) and (formula), are
standard and given by the TPTP language definition [Sutl7bl]. This logic spec-
ification approach was fostered in earlier work [WSB16| and subsequently im-
proved and enhanced to a work-in-progress TPTP language extension proposal
Due to the flexibility of the semantics specification of this input syntax and the

15 See|http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.htmll

114

http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html

Chapter 4. The Leo-III System

Table 5: Semantic specification parameters. The parameter placeholders, writ-
ten in angles (-), refer to the values for the logic specification of Fig.
The names of the modal logic system parameters (such as $modal_system_K
or $modal_system_S5) refer to the respective systems from the modal logic
cube [BvBWO6]. The individual modal axiom schemes names (such as
$modal_axiom_T or $modal_axiom_5) are named similarly.

Parameter Valid values

(const_spec) $rigid, $flexible

(domain_spec) $constant, $varying, $cumulative, $decreasing
(conseq_spec) $local, $global

$modal_system_X for

Xe {K, KB,K4,K5,K45,KBS,D,DB,D4,D5,D45,T,B,S4,55,55U}

(modal_spec) or
[$modal_axiom_X;, $modal_axiom_X,, ...] for

x; € {T,B,D,4,5,CD,C4,C}

flexibility of Leo-III’s underlying semantical embedding approach, Leo-III also
supports multi-modal logics, user-defined combinations of rigid and non-rigid
constants and different quantification semantics for each type.

Fig. displays an example modal logic formula that is an instance of a
corollary of Becker’s postulate [Bec30]. It essentially expresses that everything
that is possibly necessary is, in fact, necessary. It is known from the literature,
that Becker’s postulate is indeed valid in S5 modal logics but not in any weaker
logic systems. Even without this knowledge, Leo-III can be used to experimen-
tally reproduce these results. To that end, each semantic setting can be formulated
as logic specification and then assessed by Leo-III.

Experiments show that the automation approach presented above is indeed
competitive with modal logic reasoners that are specifically implemented for that
purpose [GSB17,BR13]]. An example of modal logic reasoning within Leo-III is

displayed in §5.3]
4.8. Implementation Details

Data structure choices are a critical part of a theorem prover and permit reliable
increases of overall performance when implemented and exploited properly. Key
aspects for efficient theorem proving such as term representations and indexing
data structures have been an intensive research topic and have reached a convinc-

115

Chapter 4. The Leo-III System

Figure 12: A corollary of Becker’s postulate formulated in modal THF, repre-
senting the formula VP,_,,VF,_,,VX,3G,_,, (OOP(F (X)) = OP(G(X))).

thf(s5_spec, logic, ($modal := [
$constants := $rigid, $quantification := $constant,
$consequence := $global, $modalities := $modal_system_S5 1)).
thf(becker,conjecture, (! [P:$i>$0,F:$i>$i, X:$il: (? [G:$i>%$i]:
(($dia @ ($box @ (P @ (F @ X)))) => ($box @ (P @ (G @ X))))))).

ing degree of maturity within first-order ATP systems [SRVO1]. In the context of
the Leo-III prover, quite some effort was invested into designing appropriate data
structures for HOL reasoning procedures. While their development is still far
from being as mature and optimized as their first-order counterparts, the current
data structures seem suited for practical applications.

A collection of basic data structures and algorithms for the implementa-
tion of higher-order reasoning systems has been isolated from the implemen-
tation of Leo-III into a dedicated framework called LEOPARD (Leo’s Parallel
Architecture and Datastructures) [WSB15]] which is freely available at GitHubFE]
This framework provides many useful stand-alone components, including a term
data structure for polymorphic A-terms, unification and subsumption procedures,
parsers for all TPTP languages and further utility procedures and pretty printers
for TSTP-compatible system output.

In the remainder of this section, some implementation aspects of Leo-III and
LEOPARD are highlighted.

4.8.1. Term Data Structure

In automated reasoning systems, terms are the most general and common pieces
of information that are accessed, manipulated and created by most routines of the
reasoning system. It is therefore not surprising that the internal representation of
terms is a crucial detail which has direct consequences on the efficiency of the
whole system.

Leo-III implements a combination of term representation techniques that
aims at providing terms that admit an expressive typing system, efficient basic
term operations and reasonable memory consumption. This is in contrast to the
usual curried representation of A-terms which comes with a major drawback for

16 Details about the LEOPARD system can be found at https://github.com/leoprover/
LeoPARD.

116

https://github.com/leoprover/LeoPARD
https://github.com/leoprover/LeoPARD

Chapter 4. The Leo-III System

automation: There are many logical procedures where the head symbol of a term
needs to be accessed or the individual arguments of an application need to be
examined in the left-to-right reading order (e.g. unification or matching proce-
dures). However, in a naive curried representation of a A-term the head symbol of
a term is deeply buried under several layers of applications. Hence for each head
access a linear number of traversal operations need to be performed. A similar
observation holds for left-to-right argument traversal.

To overcome this weakness of a classical term representation, Leo-III uses a
so-called spine notation [CPO3|], which imitates first-order-like terms in a higher-
order setting. Here, terms are either type abstractions, term abstractions or appli-
cations of the form f - (sy;s2;...) where the head f is either a constant symbol,
a bound variable or a complex term and the spine (s;;s2;...) is a linear list of
arguments that are, again, spine terms. Note that if a term is $-normal, f cannot
be a complex term. This observation led to a internal implementation distinction
between f-normal and (possibly) non-f3-normal spine terms where the first kind
has an optimized representation whose head having only associated a reference
to an integer representing the constant symbol or variable.

Additionally, the term representation employs explicit substitu-
tions [ACCL90]. In a setting of explicit substitutions, substitutions are
part of the term language and can thus be postponed and composed before
being applied to the term. This technique admits more efficient f-normalization
and substitution operations as terms are traversed only once, regardless of the
number of substitutions applied.

The term data structure implements a locally nameless representation us-
ing de Bruijn-indices [Bru72]]. In the setting of polymorphism, types may also
contain variables. Consequently, the nameless representation of variables is ex-
tended to type variables [KRTU99]. The definition of De Bruijn indices for type
variables is analogous to the one for term variables. In fact, since only rank-1
polymorphism is used, type indices are much easier to manage than term indices.
This is due to the fact that there are no type quantifications except for those on
top level. One of the most important advantages of nameless representations over
representations with explicit variable names is that ¢-equivalence is reduced to
syntactical equality, i.e. two terms are @-equivalent if and only if their nameless
representation is equal.

The techniques presented here are to some varying degree used by state-of-
the-art reasoning systems, such as Teyjus AProlog [NM99]| (which is based on ex-
plicit substitutions of the Suspension Calculus [Nad99])), the logical frameworks
TWELF [PS99]], Beluga [PD10], and the interactive Abella prover [GacOS]|]. Nev-
ertheless, the combination of techniques for term data structures presented here

117

Chapter 4. The Leo-III System

is, up to the author’s knowledge, unique in the context of higher-order ATP sys-
tems.

The type abstraction mechanism (A. s) is due to Girard and Reynolds,
who independently developed a polymorphically typed A-calculus today widely
known as System F [Gir72| [Rey74]. Note that Leo-III does not exploit the full
typing flexibility of the presented term and type language. This is due to the fact
that unrestricted use of polymorphism renders the underlying system inconsis-
tent [[Coq94|] and hence of no use for an employment within an ATP system.

Term sharing. Terms are perfectly shared within Leo-III, meaning that each
term is only constructed once and then reused between different occurrences.
This not only reduces memory consumption in large knowledge bases, but also
allows constant-time term comparison for syntactic equality using the term’s
pointer to its unique physical representation. For fast basic term retrieval op-
erations (e.g. head symbol, subterm occurrences) terms are kept in -normal
n-long form.

B-normalization schemes. Leo-IIl comes with a number of different f3-
normalization strategies that adjust the standard leftmost-outermost strategy with
different combinations of strict and lazy substitution composition resp. normal-
ization and closure construction. This research is motivated by previous obser-
vations that suggest that there is no single best normalization strategy [SB15].

4.8.2. Indexing Techniques

Indexing data structures are used, in particular in first-order theorem proving,
for speeding up queries regarding terms, literals or clauses with respect to cer-
tain query relations. Employment of indexing methods improve the efficiency of
operations that are frequently invoked by the reasoning system, such as finding
unifiable terms or subsumed clauses subsumption [SRVO1].

In higher-order theorem proving, there exist only few indexing data struc-
tures. This is due to the fact that most operations used for generating and main-
taining term or clause indexes are not decidable, e.g. computing the most specific
generalization or higher-order unification. For the latter case, however, there ex-
ists an indexing approach for the restricted unification fragment of linear higher-
order patterns which uses substitution trees in a setting of contextual modal type
theory [P1e09]]. In practice, the algorithms used by this indexing approach are
very complicated and require considerable adaption work for the term language
used by Leo-III. Additionally, this technique seems not to be very effective in
practice [PPO3].

118

Chapter 4. The Leo-III System

Following LEO-II, term indexing mechanisms for low-level operations are
available in Leo-III [TBO6, [Stel4]. These operations include subterm re-
trieval, symbol-based look-up queries for occurs checks and improvements of
B-normalization procedures by early term subtree cutoffs. In contrast to LEO-II,
head symbol indexing is not required anymore due to the efficient (constant-time)
head symbol access in the term representation presented above.

Additionally, Leo-III uses a higher-order adaption of feature vector index-
ing [Schl13]]. It is used to reduce the number of matching tests during the sub-
sumption procedure of Leo-III. The adapted feature vector index has limitations
when indexing terms with variables at head positions but nevertheless seems suit-
able in practice. A formal, more thorough investigation about its practical bene-
fits in this setting is further work.

4.8.3. Management of External Reasoners

Automated reasoning systems such as theorem provers or model finders signif-
icantly differ in scope and supported language features. While projects such as
TPTP [Sutl/b] and SMT-LIB [BET16] provide a widely accepted infrastructure
for automated reasoning systems within their domain, including standard lan-
guage representations for input problems and generated outputs (e.g. proof ob-
jects), not all of the postulated representation languages are supported by a given
system.

Knowledge about a system’s supported logic and language features within
that particular representation language is of special importance to Leo-III which
is designed to cooperate with such systems, in particular first-order ATP systems,
during proof search. Since it is of no importance which (first-order) prover is
employed as long as it supports input and output according to TPTP standards,
Leo-III can cooperate with any reasoning system that a user may register (e.g.
via command-line options). Nevertheless, depending on the features of the ATP
system, the mode of cooperation between Leo-III and that system differs in terms
of necessary translations of higher-order proof obligations (cf. Fig.[J).

In earlier work [SWSB17], the use of a dedicated descriptive artifact that
enumerates a system’s capabilities (e.g., its supported logics) was sketched such
that Leo-III can decide during run-time how to communicate with that exter-
nal system. Internal representations of capability objects for external reasoning
systems such as CVC4, E, iProver, Vampire, Nitpick, Isabelle and Satallax are
included into Leo-III and used during proof search for identifying the concrete
mode of cooperation per system. Static capability description files for the LEO-

119

Chapter 4. The Leo-III System

IT and Leo-III prover can be accessed at the Leo-III project Website{T_Tl Alterna-
tively, Leo-III supports the - caps switch to print its capability description on the
command-line.

4.9. Additional Features

Additional to the capabilities that have been discussed above, the Leo-III systems
provides further, more pragmatically motivated, features. In the spirit of its pre-
decessor LEO-II, Leo-III also provides an guided mod that allows experienced
users to guide the proof search. Also, Leo-III can be used via a graphical user
interface (GUI) that aims at the tight integration of ATP system invocation to a
sophisticated what-you-see-is-what-you-get text editor. Furthermore, in order to
contribute to the well-justified collaboration of interactive and automatic theorem
proving systems, Leo-III has been integrated into Isabelle/HOL’s Sledgehammer
system [BN10b,IBBP13|]. These and further aspects are described in more detail
in the following.

4.9.1. Interactively Guided Refutation

Leo-III is layed-out as an automated theorem prover, i.e. it searches for a refuta-
tion of the input problem without any user interaction. As pointed out in
this involves the use of various heuristics for e.g. the selection of clauses, the
selection of literals within clauses and the restriction of certain inferences. These
heuristics, however, may also misdirect the proof search for certain problems,
thus hindering or slowing down a successful refutation attempt. On the other
hand, expert knowledge of humans may supersede syntactic heuristics in some
cases. This is why Leo-III includes a so-called guided mode that allows users
to influence the otherwise fully automatic refutation process by e.g. producing
certain inferences by hand or preferring clauses that would otherwise nevelpj] be
selected.

This guided mode is enabled by a range of commands that an expert may
use to analyze the search space and heuristic evaluations, inspect certain clauses
and their properties, manually apply inferences to existing clauses and to alter

17See http://inf.fu-berlin.de/~1lex/leo3/#downloads,

18 LEO-II called this interactive, but since interactive theorem proving system offer far more
functionality and, more importantly, a quite different motivation and aim, the analogous mode of
Leo-IIT is called ”guided” to emphasize the difference.

190f course, the clause selection heuristics of Leo-I1I are fair and, in theory, every clause will be
selected after an arbitrary but finite amount of time. This may, however, in practice not happen within
specified time resource limits.

120

http://inf.fu-berlin.de/~lex/leo3/#downloads

Chapter 4. The Leo-III System

Table 6: Commands for Leo-III’s guided mode

Command | Effect
sig Print the current signature.
queue Print a summary of all clause queues.
peek Print the clause that will be selected next and the queue id from
which it is selected from.
eval Print the priority value of <c1> for the heuristic evaluation func-
tion associated with <queue> (lower is better).
§ take Enqueue <c1> for selection. All clauses enqueued by take are
E selected before any clause from the regular queues.
% sleep Skip the next <n> iterations of the proof loop before asking for
2 user interaction again.
§ insert Insert <c1> from temporary clause store into the unprocessed set
2" (if not already member of that set).
- remove Remove <c1> from every queue or from the processed set (if al-
ready selected before).
vars Print all free variables occurring in <c1>.
typeVars | Printall free type variables occurring in <c1>.
trivial Inspect if <c1> is trivially true.
redundant | Inspectif <c1> can be shown redundant with respect to the current
processed set.
para Apply paramodulation with <c11> (using <lit1> for rewriting)
into <c12> (selecting <1it2>).
fac Apply factoring to <c1>, selecting <lit1l>and <1it2>.
primsubst | Apply primitive substitution to <cl>, substituting <var> by an
§ approximating binding for <atom>.
5 funcext Apply functional extensionality rules to <c1>
E boolext Apply Boolean extensionality rules to <c1>
= unify Exhaustively apply all (pattern/pre-)unification rules on <c1>.
cnf Exhaustively calculate the CNF of <c1>.
simp Simplify the clause <c'1> with all simplification rules that do not
depend on other clauses.
rewrite Rewrite <c11> using unit clause <c12>.
write Write the current processed set as TPTP problem to <path> using
2 <format> (default: thf).
b= pretty Display the internal representation of <c1>.
= | tptp Display the TPTP THF representation of <c1>.
help Print a help message or help to a specific commands.
exit Terminate Leo-III.

121

Chapter 4. The Leo-III System

the search space traversal. See Table[6]for a complete list of available commands
within Leo-III’s guided mode. The parameters to each command are explained
within the commands description as typewriter font identifiers, as in <c1>. Here,
parameters of the form <cl> denote specific clauses (identified by their unique
numeric id), <lit> denote literal indexes (starting at 0) where <atom> denotes
an numeric id of a signature entry. All other parameters are strings. The invo-
cation of a command may generate one or more new clauses that are stored in a
temporary set. A user may choose to insert specific clauses to the unprocessed
set using insert. Only clauses contained in the unprocessed or processed set
may be used for executing inferences.

Of course, the guided mode of Leo-III can also be used for educational pur-
poses, e.g., for lectures on theorem proving. However, admittedly, using this
mode is quite technical and requires some expert knowledge. In order to fully
exploit the educational possibilities of Leo-III, the user interface as well as the
documentation would need to be improved and adapted to the target audience.

4.9.2. Editor Front-end for Leo-IIl

Automated theorem proving systems are, from the perspective of usability and
user experience aspects, not as mature, robust and well-developed as current
proof assistants like Isabelle/HOL. Usage of such ATPs still require a consid-
erable amount of (partly system-related) expert knowledge and tedious legwork
for formulating input problems correctly and, in some cases, interpreting error
messages and problem reports.

In order to mitigate this drawbacks, a graphical user interface (GUI) has been
developed that serves as a text editor for logical problems as well as communi-
cation and invocation platform for ATP systems. The GUI has been developed
in the context of an university project that has been co-supervised by the author.
The text editor offers eager syntax checking with in-place error reporting, syn-
tax highlighting for the problem formulation and, natively included, means for
invoking ATP systems on the hereby produced problem within the GUI. It has
been primarily developed for use in conjunction with Leo-III but is not fixed to
any one system. However, it requires the provers to comply with TPTP standards.

4.9.3. Integration to Isabelle/HOL

Isabelle/HOL is an interactive theorem prover for higher-order logic. It offers,
among many other features, a subsystem called Sledgehammer [BN10b,[BBP13|]
that bridges between the realm of interactive theorem proving on the one side
and the fully automated theorem proving approach on the other side. That is, a

122

Chapter 4. The Leo-III System

user may, at any point within the construction of a proof, call the Sledgehammer
system to have many different ATP systems trying to solve the current goal auto-
matically. If this succeeds, a proof (method) may be reconstructed from the proof
output of one the successful ATP calls. This approach proved very effective in
practice [PB10].

In order to foster the use of powerful higher-order ATP within proof assis-
tants, Leo-III 1.2 has been integrated into Isabelle/HOL’s Sledgehammer system
(as of Isabelle/HOL 2018). The integration itself has mainly been of simple im-
plementation work since most of the routines that were used to integrate LEO-II
could be reused. Also, since Leo-III is maximally compatible with TPTP spec-
ifications, standard routines for generating TPTP problems and parsing TSTP
proofs could be employed. Although a more extensive evaluation of this integra-
tion is future work, first experimental results look promising (cf. §6).

4.9.4. Further Minor Features

Leo-III supports various additional functionality regarding aspects of which not
all are directly connected to proof search itself. Features utilizing Leo-III as a
useful pre-processing tool include plain syntax and type checks for any TPTP
language up to THI, translation from any TPTP language to THF syntax and
the translation of higher-order problems to (polymorphically) typed first-order
problems in TFF syntax using the encoding displayed in §4.4] Leo-III offers a
dedicated mode for checking for inconsistencies within an input problem’s ax-
ioms. Here, the problem’s conjecture is dropped internally (if existent) and the
remaining problem consisting of type definitions, definitional declarations and
axioms is saturated. If the empty clause can be derived without use of the prob-
lem’s conjecture, the axioms are obviously unsatisfiable and Leo-III will report
so. Regardless of the use of the consistency mode, an occurrence check of the
(negated) conjecture in a proof derivation is always enabled in Leo-III (see dis-
cussion of CAX values in §@) Nevertheless, it is possible that a derivation of the
empty clause is found by Leo-III which uses the conjecture although there ex-
ists a derivation that does not include it. For such (speculative) cases, the above
consistency mode can be tried. The usefulness of such an option is confirmed by
an evaluation of inconsistencies within the TPTP library (cf. discussion of CAX
values in §6). A more complex approach for detecting inconsistencies in (first-
order) theories is presented by Schulz et al. [SSUP17]. It can be expected that
such a specialized technique finds more inconsistencies than the simple routine
described above. The detection of contradictory axioms within Leo-III does not
aim at providing such a powerful routine but merely a pragmatic sanity check

123

Chapter 4. The Leo-III System

Table 7: Command-line options for pre-processing features of Leo-III

Parameter

Options

Effect

--syntaxCheck

--typeCheck

--toTHF

- -toTFF

--filterAxioms

--consistency

none

none

mono or
poly

mono or
poly

none

none

Perform a syntax check on the input problem. Re-
turns SUCCESS if the problem is a syntactically valid
TPTP problem statement, SyntaxError otherwise.

Perform a type check on the input problem. Returns
SUCCESS if the problem is well-typed, TypeError
otherwise.

Translate the input problem to an equivalent TPTP
THF problem statement. If mono is specified (de-
fault), the result will consist of plain THO for-
mulas (this may require heuristic monomorphiza-
tion if polymorphic parts are contained within the
input problem). If poly is specified, polymor-
phic constructs (TH1 features) are kept. Returns
SUCCESS and the translated problem as SZS output
if successful.

Similar to --toTHF, but higher-order features of
the problem are additionally encoded into first-order
logic using explicit application operators and some
lambda elimination technique (SKI combinators by
default).

Applies relevance filtering to the input problem and
returns SUCCESS with an SZS output containing only
the relevant parts of the input problem as result.

Performs a proof search on the input problem with-
out considering the conjecture (if existent). Returns
Unsatisfiable if successful.

that can be executed with almost no runtime penalty. Due to the flexible co-
operation scheme implemented by Leo-III it is comparably simple to include a
(higher-order) counter-model finder such as Nitpick that could then be executed
in parallel to the actual proof search to check the axioms for (in-)consistency.

An overview of these features together with their corresponding command-
line parameter is displayed in Table[7}

124

Chapter 5. Application Examples

5. Application Examples

In this chapter, a survey of various application scenarios of Leo-III is presented.
Leo-III is primarily targeted at reasoning within classical higher-order logic as
specified by the TPTP THF (THO) standard Nevertheless, as described in more
detail before, the Leo-III ATP system can also be applied to further reasoning
tasks. This includes reasoning in (typed and untyped) first-order logic, polymor-
phic HOL as well as various higher-order quantified modal logics. This makes
Leo-III, up to the author’s knowledge, to the most widely applicable theorem
proving system. Additionally, due to the flexibility of its cooperation mecha-
nisms, Leo-III can also be employed as a meta-prover. These application scenar-
ios are exemplarily discussed in the context of small case studies that focus on
interesting aspects of Leo-III's reasoning capabilities.

This chapter is organized as follows: Examples from classical higher-order
reasoning are given in §5.1] This includes equality reasoning, reasoning with
choice and applications of Leo-III’s function synthesis techniques. Subsequently,
applications of Leo-III on polymorphic reasoning tasks are studied in §5.2]
Modal logic reasoning examples are then presented in §5.3] Finally, meta-prover
capabilities of Leo-III are sketched in §5.4]

All of the proofs that were generated by Leo-III on problem examples from
§5.1]have been verified by GDV; see §6.4for a more thorough discussion.

5.1. Higher-Order Reasoning

In the context of higher-order reasoning, challenging problems as well as the cor-
responding proofs that are found by Leo-III are studied. Most of the following
problems have previously not been solved by any other HO ATP system. The
problems displayed here are chosen in order to demonstrate some reasoning fea-
tures that are specific to Leo-III. A more thorough evaluation of the effectivity of
Leo-III is then presented in §6.1]

In the following, roman font is used within surveyed proofs by convention
for denoting reasoning steps of Leo-III that can be seen as direct applications
of the corresponding calculus rules. Sans font is used when referring to an in-
ference step of Leo-III that typically includes multiple (low-level) calculus rules

! The TPTP infrastructure requires THF reasoners to assume Henkin semantics with choice.

125

Chapter 5. Application Examples

which are nevertheless bundled for pragmatic reasons (e.g., clausification and
unification).

Throughout the application examples, the X' denote fresh free variables of
appropriate type.

Equational reasoning. There are many hard and interesting problems that require
equational reasoning. Four problems as well as their proofs generated by Leo-III
are exemplarily discussed in this setting.

El Surjective Cantor Theorem. Cantor’s Theorem states that, given a set A,
the power set of A has a strictly greater cardinality than A itself. Despite
being of fundamental importance to elementary set theory, it allows a most
elegant application of higher-order formalism and a suitable case study for
higher-order reasoning. The core argument of the proof can be formalized
as follows:

~fou VY. X, fX =Y (1

This formula states that there exists no surjective function f from a set to its
power seﬂ encoded using only primitives of HOL such as quantification
about functions and sets. Due to the the use of surjective functions this
particular argument is also referred to as surjective Cantor theorem.

Let E; denote formula from above. The proof of E; that found by
Leo-III contains applications of functional extensionality, Boolean exten-
sionality, primitive substitution as well as non-trivial higher-order pre-
unification. The proof is given below; the Skolem symbols sk' and sk*
used therein have type ott and 1(o1), respectively.

CNF(—E,),LiftEq: C: [sk! (sk* X') ~ X%
PFE(C)): Cy: [sk! (sk* X1) X2 ~ X! X2t
PBE(Cy): Cy: [sk! (sk* X1) X2 v [X! X2,
Cy: [sk! (sk* X3) XH)TF v [X3 x4t
1

Prim(C3,GB;),),CNF: Cs: [sk! (sk* (AZ;. ())) X2t v x5 X2t

(
sk (sk? (AZ. -

Prim(C4,GB,,),CNF: Cq: E 2))) X4 v [x6 x4
Fac(Cs),UNI: Cr: [sk! (sk* 22— vklzz))) (sk* AZ.— sklzz))]
Fac(Cg), UNI: Cs: [sk! (sk* AZ,.~(sk! ZZ)) (sk* AZ,.~(sk' Z Z))]T
Para(C7,Cg), Triv: O

2 Note that, without loss of generality, only the (power) set of objects of type 1 is considered.
Also, given a type T, sets A of objects of type 7 are represented in HOL as predicates x; of type o7,
also known as the characteristic function of A, hence the type of f and Y in formula (E])

126

E2

Chapter 5. Application Examples

The unifier o¢, calculated by UNI for producing C; is given by (analo-
gously for Cg):

oe, = {sk2 (AZ.~(sk" 2 2)) /X2, AZ, . 5k" zz/xS}

Together with the substitution o¢, = {1Z,.~(X’ Z)/X'} generated by ap-
proximating —,, by (Prim) on Cs, the free variable X' in C; is instantiated
within the refutation procedure by o¢, o o¢, (X') = 1Z,. ~(sk' Z Z). Intu-
itively, this instantiation encodes the so-called diagonal set of sk', given by
{x|x ¢ sk'(x)}, as used in the traditional proofs of Cantor’s Theorem.

This problem is part of the TPTP problem library as problem SET557"1.p
and can be solved by most HOL ATP systems, excluding Isabelle/HOL.
The full proof of Leo-III is displayed at Appendix Note that Leo-III
implements an optimized variant of factorization that allows factoring two
literals with different polarity if one of that literals is flexible. Formally, this
step can be derived by instantiating the flexible head by an approximation
of negation via primitive substitution, followed by regular factorization (the
literals now have the same polarity after re-clausification). The above proof
explicitly displays the primitive substitution of negation while the proof
of Leo-III incorporates the contracted variant (cf. inferences 199 and 18

in[CI).

Injective Cantor Theorem
Another argument for the proof of Cantor’s Theorem can be formalized
using the concept of injectivity instead of surjectivity:

_‘Elfl(m)~vxma Yo . fX=fY —X=Y 2)

Here, the existence of an injective function from a set’s power set to the
original set is negated. This particular version of the argument is referred
to as the injective Cantor theorem.

While both formulas can be used to express the same fact, only the surjec-
tive variant can commonly be automatically solved by contemporary HO
ATPs. Leo-III is, however, able to automatically prove both the surjective
as well as the injective cantor theorem in a few seconds.

Let E; denote formula @) from above. Similar to the proof of E|, Leo-III
applies functional extensionality, Boolean extensionality and unification
procedures to E>. However, unlike to the surjective case, this refutation
makes use of Leo-III's capability to infer the existence of left inverses for
injective functions. Using this inverse function (denoted sk> below), the

127

Chapter 5. Application Examples

E3

remaining proof follows an analogous diagonalization approach as for E;.
The introduced Skolem symbols sk! and sk* are of type 1(ot) and ott,
respectively.

CNF(—E,), LiftEq: Co: [sk! X!~ sk! X2 v (X! ~ X2%
PFE(Cy): Cr: [sk! X'~ sk! X2 v [X! X3 ~ X2 X3
INJ(Co): Cy: [sk? (sk' X*) ~ X4
PFE(Cy): C3: [sk? (sk! X*) X ~ X4 XO]®
Para(C3,Cy): Cy: [sk! X!~ sk! X2 v [X! X3 ~ X4 X3ty
[sk? (sk' X*) X7 ~ X2 X3
UNI(Cy): Cs: [sk? (sk1 X7 X3)) (X6 X3) = X7 X3 (X6 x3)|*

PBE(C3): Ce: [sk> (sk! X4) XS]ﬁv[X“ X
Prim(Cg,GB,),),CNF: Cq: [sk? (sk' (AZ;.~(X0 2))) XO)TF v [X6 X3]fF
Fac(C7),UNI, CNF: Cs: [sk? (sk' AZ,.—~(sk* Z Z)) (sk' AZ,.~(sk* Z 2))]7
Para(Cs,Cs),UNI,CNF: Co: [sk? (sk! AZ,.~(sk> ZZ)) (sk! AZ,.~(sk* Z Z))|*
Para(Cy,Cg), Triv: |

This problem is part of the TPTP library as problem SY0037”1.p and
could, up to the author’s knowledge, not be solved by any existing HO
ATP system. This is probably due to the fact that the above proof requires
a sort of non-analytic variable instantiation that introduces the left inverse
of f. In contrast, in the proof of the surjective Cantor theorem the clausifi-
cation procedure explicitly introduces a Skolem functions that can be used
to reason about the pre-image of a given function (ultimately leading to
the contradiction). Leo-III is able to infer the existence of an left inverse
to f by its special treatment of injective functions (cf. §4.2.5). Neverthe-
less, such an inverse function could also be postulated by using appropriate
choice instantiations but still the generation of such an instance by a general
purpose routine seems challenging in practice. The full proof of Leo-III is

displayed in Appendix

Pigeonhole principle.

The well-known pigeonhole principle can be stated as follows: Suppose
there are n holes and more pigeons than holes. If every pigeon is assigned
a hole then there is at least one hole that is assigned to two pigeons. An
exemplary instance is given by the following problem that assumes 4 pi-
geons and 3 holes. The original (propositional) formalization goes back to
Cook [[Coo76]. The formalization used here is due to Chad Brown.

3

The exact invocation of Leo-Ill for generating this proof was

”leo3 SY0037”1.p -t 60 -p --sos”.

128

Chapter 5. Application Examples

Let pigeon and hole be two new types and let p;igmn, 1 <i <4, be the

four distinct pigeons, i.e., it holds that p’ # p/ whenever i # j. Let further
h{lole, 1 < j <3, be three holes and phhole(pigeon) the function assigning pi-

geons to holes. Given that VP, o). (P h' AP h* AP h?) — YXpore. P X,
denoted « in the following, it holds that there exist two different pigeons
Xpigeons Ypigeon» X 7# Y, such that X and Y are assigned the same hole by ph.
Note that, as pointed out further below, x already implies that there are at
most three holes.

After pre-processing, the problem E3 consists of the following clauses:

Co: [XP ATy xRy [t R2)F v [x! X2)%
Ci: [pt=p?0

Cr: [pt=pIT

Cy: [p'~p*T

Cs: [pPP~p|T

Cs: [p*~p*IT

Co: [p>=pYl

C7: [ph X3 ~ ph X4]ﬁ \Y, [X3 ~ X4]tt

A proof for Ej3 is found by Leo-III in approx. 40s and consists of 172
inferences. Due to its large number of inferences required, the refutation is
not displayed here However, it should be pointed out that the generated
proof consists of various non-trivial reasoning steps, including:

e A large number of paramodulation and (pattern) unification infer-

ences.

e A large number of equational simplification steps using (RP), (RN),
(PSR) and (NSR).

e Instantiation of negation by (Prim) on Cy, followed by (Fac) , produc-
ing

Cs: [XO XAV [XE AV [XO B2V [XO B ~ (X X7)]T.

e Instantiation of primitive equality by (LEQ) on Cg, (Triv) :
Co: [XT ="V [XT ~ K% v X ~pd)H
Note that this clause follows from * alone and asserts that there exist
at most three pigeonholes.

e Postulating the existence of a left-inverse function sk' of type
pigeon(hole) to ph:
Cro: [sk' (ph X®) ~ X8|

41t can, however, be found at www.alexandersteen.de/phd/|under section ”Application ex-
amples”.

129

www.alexandersteen.de/phd/

Chapter 5. Application Examples

E4

This function can then be used to derive a contradiction when assign-
ing two pigeons to one hole while assuming that ph is injective.

As can be seen, the proof uses a broad variety of different inference pro-
cedures. The success of Leo-III for this example can be traced to the use
of sophisticated equational simplification procedures that use positive and
negative unit equations to reduce the search space. Furthermore, this proof
exploits Leo-III’s capability to recognize injective functions and, in turn,
uses the so inferred existence of a corresponding left-inverse.

The above presented problem is part of the TPTP library as problem
MSC00771.003.004.p. It can currently not be solved by any system other
than Leo-III.

Function approximation using if-then-else

The following problem conjectures the existence of a function /4 such that
h(0) =1, h(1) =0 and A(2) = 1 using an axiomatization of if-then-else.
The goal is to find the if-then-else term that expresses this function 4. This
problem is considered hard since it requires the ATP system to approximate
step-by-step the correct if-then-else function that is functionally equivalent
to h. It originates from the PhD studies of Martin RienerE]

Let ite be a constant of type 1110 that denotes the conditional (if-then-else)
operator. Let further be zero and s the constants representing the number
zero (of type 1) and the successor function (of type 11), respectively. The
problem E4 is then stated as follows:

(VX,Y1,Z,. X —iteXYZ=Y A

VX, Y, Z,.~X —ite XY Z=Z A 3
YN,.s N #N) —

3H,,.H zero = s zero AH (s zero) = zero AH (s (s zero)) = s zero

Roughly speaking, an axiomatization of a conditional operator and a spec-
ification of the desired function % is given. An reasoning system can now
use the axiomatization of ite to derive a concrete conditional term express-
ing h. Leo-III finds a proof for the above problem in approx. 6s:

5 The problem and its origin is described in more detail at Martin Riener’s web site under https :
//www.logic.at/staff/riener/hol-problems/.

130

https://www.logic.at/staff/riener/hol-problems/
https://www.logic.at/staff/riener/hol-problems/

Chapter 5. Application Examples

CNF(—E4): Co: |
: [ite X* X X0 ~ X0t v [x4] Y,
Cy: [s X7 = X)W,
: [X® zero ~ s zero] T v [X8 (s zero) ~ zero] T v
(X8 (s (s zero)) ~s zero] ¥
Para(Cy,C3),UNI: Cy: [ite (X° zero) (X'0 zero) (X!! zero) ~ s zero] /T v
[ite (X? (s zero)) (X0 (s zero)) (X! (s zero)) ~ zero] 7 v
(X! (s (s zero)) =~ s zero] v [X? (s (s zero))]/f
Para(Cy,Cy),UNI: Cs: [X!0 zero ~ s zero]f v
lite (X? (s zero)) (X0 (s zero)) (X' (s zero)) ~ zero] 7 v
(X' (s (s zero)) = s zero] T v/ [X? (s (s zero))]7T v
[X? zero]f
Prim(C;,GB,): Cs: [ite (—X'?) X3 X4 ~ X14]t v/ [X12]fF
Para(Cg,Cs),UNI: C7: [X!0 zero ~ s zero]/T Vv [X!! (s zero) = zero] /T v
[X!0 (s (s zero)) =~ s zero] T v [~ (X3 (s (s zero)))]7 v
[-(X13 zero)] v [=(X"3 (s zero))|*
UNI(C7),CNF: Cg: [X!3 (s (s zero))]® v [X!2 zero]* v [X!3 (s zero)] 7
Fac(Cg), Triv: Co: [X13 zero]* v [X13 (s zero)]/T v
[(X13 (s zero)) ~ X3 (s (s zero))]

ite X! X2 X3 ~ X2 v [X!]TF;

LEQ(Cy), Simp,

CNF: Cio: [s zero ~ zero]* V/ [s (s zero) ~ s zero]*
NSR(C;,Cp): Ci1: [s (s zero) ~ s zero]*

NSR(C»,Cqy): O

In this refutation, an general instance of if-then-else is approximated by
clause C4 using projection bindings and subsequently refined using primi-
tive substitution (cf. clause Cs) and further applications of paramodulation
and unification.

The problem is part of the TPTP library as problem NUNO25”1.p. The
proof is displayed in Appendix[C.3] Similar problems are NUN®23"1.p and
NUN024~1.p. They vary in the number of specified function input-output
pairs. All of these variants can be solved by Leo-III in approx. 5s while
only the slightly simpler version (NUN023"1.p) can be solved by further
ATP systems. There exist, however, even simpler variants of these three
problems that additionally include a witness term. Here, the problem is
merely to verify that the given witness term is indeed a correct solution to
the problem. These versions can be solved by any current HO ATP system.

Choice problems. Increasingly many HOL ATP systems natively support rea-
soning with choice, that is, handling of an interpreted symbol 61?(01), for each

131

Chapter 5. Application Examples

type 7, that chooses an arbitrary element satisfying a given predicate (if such
an element exist). Leo-III adapted the choice handling from its predecessor and
augmented the reasoning process with heuristic instantiation of free variables
with special functions including choice. These instances can help to find refuta-
tions where otherwise the proof search would require deeply nested, complicated
chains of primitive inferences.

ES5

E6

132

Existence of choice.
Let 7 be a type. An instance of the axiom scheme of choice for type T can
be stated as follows:

3ez(or)- VPor. (X7 PX) — P (e P))

It postulates the existence of a function (the choice function) that, given
a predicate p,r, produces an element c; such that p ¢ — if such an object
exists.

Of course, every ATP system that supports reasoning with choice should
be able to prove this fundamental assumption for any given type 7. It is
nevertheless included to demonstrate Leo-III’s proof mechanisms for han-
dling choice. The proof below exemplarily shows the validity of (@), the
axiom of choice for objects of type 1. To that end, let E5 denote this choice
instance. The introduced Skolem constants sk' and sk> are hereby of type
ot(1(o1)) and 1(1(o1)), respectively.

CNF(—Es): Co: [sk' X! (sk® X1)]Y;
Cy: [sk! X2 (X2 (sk! X2)))F
ACD(Cy): Co: [sk' X3 X4 v [sk! X3 (e2,.5k' X3 Z)|%
Para(Cy,Cp): Cy: [sk! X3 X4 v
[sk! X3 (e7,.sk' X3 Z) ~ sk! X% (X? (sk! X2))]7F
[
[

UNI(C3): Cy: [sk! gt X4
Para(Cy,C4): Cs: [sk! X! (sk®> X1) ~ sk! gt X4
UNICs): O

The key inference here is that the subterm X? (sk! X?) of clause C; is used
for the application of (ACD) to produce the necessary concrete AC in-
stance.

This problem is part of the TPTP library as problem SYN997~1.p and can
be solved by most (but not all) current HO ATP systems. The full proof of
Leo-III is displayed in Appendix [C.4]

Special choice function
A more challenging problem regarding choice functions is given in the

Chapter 5. Application Examples

following: There is an operator that chooses an element not satisfying the
supplied predicate, if such an element exists. It is formalized quite similarly
to the previous problem:

Hel((,l).VPm. (EXI. -P X) — P (e P) (5)

In order to solve this problem, an instance combining a choice operator
with negation needs to be inferred. Since this includes non-trivial primitive
substitutions, the problem is more difficult to solve than the version further
above.

Making use of its heuristic instantiation routine during pre-processing,
Leo-III can solve this problem quite easily. Let, for that purpose, E¢ denote
the formula from equatlon 5) above. The introduced Skolem constants sk’
and sk are hereby of type o1 and 1, respectively.

Heulnst(—Eg): Cp: [-VPy.(3X,. P X) — —P (¢Z,.-P Z)|"
CNF(Co): Cy: [sk! sk

Cy: [sk! (SZL (sk' Z))|*
ACD(C,),CNF: C3: [sk' X]ﬁv[skl (ez,.~(sk! 2))]TF

O

The rest of the proof is then analogous to the proof of @) from exam-
ple [E3] above. The key aspect within the given proof of Leo-III is the in-
stantiation of the universally quantified variable (referred to by e in (@)
by AX;.€Z,.~(X Z). This instantiation is generated by Leo-III using its
heuristic instantiation routine as described in §4.2]

This problem is part of the TPTP library as problem SY0548"1.p. It was
studied in the context of Tableau calculi for higher-order logic [Bacl0].
Other state-of-the-art systems including LEO-II, Isabelle/HOL and Zip-

perposition are currently not able to solve this problem. The full proof of
Leo-IIT is displayed in Appendix[C.3]

Function synthesis. Problems conjecturing the existence of functions with given
properties are often very difficult for current HOL ATPs as they cannot be solved
with sophisticated unification alone but regularly require the addition of suitable
choice terms to the search space.

Leo-III features a novel procedure that allows the synthesis of simple func-

tions based on given input-output specifications (cf. §4.2). Although this proce-
dure may dramatically increase the search space, there are some problems that

133

Chapter 5. Application Examples

can be solved using this technique that could not be solved before by any ATP
system.

E7

134

Swapping function
A simple yet challenging problem for current ATP systems is given by the
following conjecture:

vxlaybafll'(fX:Y)/\(szX) (6)

This formula, denotes E7 in the following, postulates the existence of a
function f;, that, given two elements a,, b,, swaps its input. More formally,
it holds that fa=b and f b =a.

Leo-III can make use of its synthesis procedure for functional specifica-
tions and, as a consequence, generates the following proof where sk! and
sk* are again Skolem functions introduced by Leo-III, each of type 1:

CNF(—E7),LiftEq: Co: [X! sk! ~ sk?]ff v [X! sk? ~ sk!]f

Fac(Cp), UNI: Cr: [sk!' ~ sk?)ff

FuncSpec(Cy): Cr: [eZ,.(Z= sk? A (sk! = sk> — Z = skl)) ~ sk?)ff v
[eZ,. ((sk2 =sk! —Z=sk>)NZ= skl) =~ sk!]ff

ACD(C,),CNF,UNI: C5: [€Z,. (Z = sk* A (sk! = sk* — Z = sk')) ~ sk?]* v
[sk? ~ sk!]®

Para(C3,Cy),Triv: Cq4: [€Z;. (Z =sk> A (sk! = sk? — Z = skl)) ~ sk2]tt

Para(Cy,Ca), Triv: Cs: [€Z,. ((sk* = sk! — Z=sk®)NZ = sk') ~ sk']}

ACD(Cp),CNF,UNI: Co: [€Z,. ((sk* = sk — Z=sk*) NZ = sk!) ~ sk!]* v
[sk? ~ sk!]®

Para(C,Cy), Triv: Cy: [€Z,. ((sk* =sk! — Z=sk*) NZ = sk!) ~ sk'|%

Para(C7,Cs), Triv: |

The specification of the desired function is supplied by clause Co. It is
used to generate the concrete function description satisfying the specifica-
tion, if existent. The hereby produced instance is given by AX.€Z,. ((X =
sk' — Z = sk*) A (X = sk> — Z = sk')). Using this instance, and the
fact that sk # sk, the contradiction is then inferred by using the choice in-
stantiation procedure described further above and a number of subsequent
paramodulation steps.

This problem is part of the TPTP library as problem SY0519~1.p. This
problem remained unsolved since TPTP v4.1.0 (released approx. in 2009)
and can now be solved by Leo-III. The full proof of Leo-III is displayed in

Appendix [C.6]

E8

Chapter 5. Application Examples

Function specification

Example [E4] postulated the existence of a function with a given specifica-
tion using a formulation of an if-then-else operator. Although this problem
is hard as it is, it technically still includes redundant information that should
not be necessary for an ATP system to find a proof to the conjecture. This
is because the HOL semantics targeted by Leo-III is Henkin with choice
(which is also assumed by default by the TPTP THF standard). Hence, the
validity of the problem should not be depending on the explicit postula-
tion of an conditional operator ite (cf. (3))) since such a function can easily
defined via choice.

Consequently, an even more reduced (and complicated) problem can be
formulated analogously to E4, however leaving out the axioms of the con-
ditional operator:

VN,.sN#N —s
JH,,.H zero = s zero AH (s zero) = zero AH (s (s zero)) = s zero

@)

Let Eg denote this modified variant of the problem.

Leo-III solves Eg in under 4s, even faster than the presumably simpler
variant from example Since the proof is again quite long and rather
technical, it is not surveyed here in full length. The functional specification
derived from Leo-III’s synthesis method is analogous to the one described
in example[E7] The full proof output of Leo-III is displayed at Fig.

5.2. Polymorphic Higher-Order Reasoning

Another application of Leo-III is reasoning in rank-1 polymorphic higher-order
logic. Leo-III is compatible with the recent TF1 and TH1 extensions of first-order
and higher-order syntax, respectively, from TPTP. Two problems are exemplarily
presented in this section. A comprehensive evaluation of Leo-III’s reasoning
capabilities in polymorphic HOL is subsequently analyzed in §6.2}

E9

Cantor’s Theorem, revisited

The use of polymorphism allows more general and more reusable formal-
izations of knowledge. In this example, Cantor’s (surjective) Theorem from
example [E/|is generalized to not depend on a certain type that is used to
specify the type of the sets and functions. Consequently, the type 1 is re-
placed by a type variable «, using an explicit type quantification.

135

Chapter 5. Application Examples

E10

The remaining formalization is then analogous to problem E; from exam-

ple[ET}
va._‘a‘f‘()aa.vY()a.EIXa.fX =Y (8)

A proof of this conjecture is generated by Leo-III in less than 3s and is
similar to the monomorphic one. A new aspect here is the generation of a
fresh Skolem type skt that serves as a witness to the abstract type variable
a. As a consequence, the introduced Skolem symbols sk! and sk? are now
of type o(skt)(skt) and (skt)(o(skt)), respectively. After clausification, the
proof is identical to the previous one.

The full proof of Leo-III is displayed in Appendix [C.8] The injective case
is analogous and therefore omitted here.

Finiteness of Booleans

Another interesting problem originates from the HOL Light core li-
brary [Har09]. It introduces the notion of sizes of sets, relates it to finite-
ness and then postulates the finiteness of the set of Booleans.

The problem is formalized as followsﬂ Let num denote a type for (natu-
ral) numbers. Let further hasSize, finite, card be three constants of type
Va.o(num)(oa), Ya.o(oa) and Va.num(oa), respectively. Intuitively,
hasSize denotes a predicate that, given a set S and a number n, is true iff S
is finite (represented by finite) and has a cardinality (represented by card)
equal to n. Let additionally univ be a polymorphic constant symbol of type
Vo.oo that represents the universe of all objects of the given type argu-
ment. Using this symbol, the size of the universe of Booleans is postulated
to have size 2. Formally, the relevant facts for this problems are encoded
as two axioms A' and A%

Al =Y. VX, Yaar- hasSize o X Y = (finite c X Acard o X =)

A% :=hasSize o (univ 0) 2
The problem Ej is then encoded as follows:
(A' AA%) — finite o (univ o))

Leo-III finds a proof for this problem in under 2s. The generated proof is
straight-forward but requires multiple applications of type unification for

6 For reasons of legibility, the problems’ formulation is slightly simplified.

136

Chapter 5. Application Examples

paramodulation inferences between clauses with (free) type variables.

CNF(=E1g): Cp: [(finite o' X') A (card ! X! = X?) ~ hasSize o' X' X?]%;

[
Cy : [hasSize o (univ o) 2]%*;
C,: [finite o (univ 0)]7
PBE(Cy): C3: [(finite a! X") A (card o' X! = X?)]* v [hasSize a! X! X?]7
CNF(C3): C4: [finite o X%\ [hasSize o' X! X?]ff
Para(Cy,C3),
TyUNI: Cs: [finite 0 X']* \ [hasSize o (univ 0) 2 ~ hasSize o X! X?]7

UNI(Cs): Cg: [finite o (univ 0)]*
Para(Cg,C,),
Triv: (]

This problem is part of the most recent TPTP library as problem
SEV485~1.p. The full proof of Leo-III is displayed in Appendix [C.9]

5.3. Modal Logic Reasoning

The semantical embedding approach allows the employment of common HOL
ATP systems for reasoning in (and about) many different modal logics. The uti-
lization of an ATP system for that purpose involves, however, quite technical em-
bedding procedures that need to be performed prior to the reasoning process. As
described in Leo-III offers an automation of this embedding process such
that it can be applied to modal logic problems without any extra effort or technical
issues. In this section, this claim is supported by giving several modal example
problems and outlining how Leo-III handles these problems. Modal logic K with
rigid constants and constant domains as well as a global consequence relation is
assumed if not stated otherwise.

Ell Barcan formula
One of the most prominent controversial consequence of the possi-
bilists’s interpretation of modal logic semantics (constant domain quan-
tification semantics) is the validity of all instances of the Barcan Formula
(BF) [Menl6]. For type t, the instances are given by

vX,.OpX — OVX,.p X (10)

where p,; is some predicate symbol. As an example, the validity of (BF)
gives so-called Possibilia debatable traits, e.g., that the mere possibility of
the existence of an object with some given property implies the actual ex-
istence of those object having possibly that property. On a model theoretic

137

Chapter 5. Application Examples

level, there is a strong connection between (BF) and properties of the re-
spective frame classes in which it is valid. In particular, (BF) is valid if and
only if the modal logic frames are non-increasing (a detailed discussion
can be found in relevant literature on modal logic [EM9S])).

Modal logic problems can be formalized using the proposed modal THF
input language as described in The above (BF) instance can, for
example, be encoded as follows:

(! [X:$1i]l: ($box @ (p @ X))) => ($box @ (! [X:$i]: (p @ X)))

Let E{; denote the Barcan Formula instance in the context of de-
creasing domain semantics. Let further [.| be the embedding operator,
as sketched in §4.7] that encodes modal logic problems into equivalent
HOL problems. Leo-III can prove E{; in under 3 s[] The proof is pre-
sented below. Let, as introduced before, the bold identifiers (e.g. V) denote
the respectively lifted connectives or constant sybmols of the modal logic
problem. In order to clarify the embedding process, the expansion of the
embedded modal logic formula into the final HOL formula is displayed
step-by-step as equation x below the refutation. The auxiliary symbols
valid, [J, etc. that are used by the embedding process have been introduced
further above (cf. . The symbols sk', sk? and sk> are Skolem symbols
of type U, u and t, respectively.

Embed([-E(;]): Co: [r X! X% — (eiw' X3 X2 — eiw! X3 X1)|t;
Cy: [valid (VX,.0 (pX) — O (VX,.p X))|7
= (VWy. (VX (eiw! X W) — Wy (r WV — pX V)
— Wy (tW V) — VX, (eiw' X V) — pX V)]T

CNF(Co): Cy: [r X! X2V feiw! X3 X2 v [eiwt X3 X4
CNF(Cy): Cs: [p sk sk?)f

Cy: [eiw® sk sk?]®

Cs: [rsk! skz}“,

[
[
[
[
Ce: [eiw® X* sk v [rsk! X217 v [p X* X%
Para(Cy,Cp),UNI: C7: [r X! sk?]T v [eiw® sk X%
Para(Cs,Cs),UNI: Cg: [eiw' X* sk!]TF v [p X* sk?]®
Para(C7,Cg),UNI: Co: [rsk' sk [p sk sk?|t
Para(Cs,Co), Triv: Cyo: [p sk> skt
Para(Cy0,C3), Triv: O

7TheLeo-HIoptionsusedare: --assume-modal-domains decreasing --assume-modal-system K -p.
Rigid constants and global consequence are used by default, if not overridden using further
command-line arguments.

138

EI2

Chapter 5. Application Examples

The proof uses straight-forward paramodulation and unification proce-
dures. Note, however, that the initial formula E;; is translated by [.] into
multiple formulas that not only contain the lifted equivalent of (BF) but
also additional meta-logical information about the semantic context. The
clause Cy here represents the fact that the quantification semantics assumes
decreasing domains (cf. for a more detailed explanation). Without
this information, the refutation could not be found.

The expansion of clause C; by « is justified by the embedding process of
modal logic formulas into HOL. In this example, the embedding proceeds
as follows:

(x) valid (vVX,.0 (pX) — O (VX,.pX))
= valid (AW, VX,.eiw' X W — O (pop X) W) — O (VX;.p X))
= valid ((AW,.VX;.eiw' XW — O (p X) W)
— O (AW, VX, . eiw' X W — p X W))
= valid (AW, (VX;.eiw' X W — O (pX) W)
— O AW, VX eiw' X W — pX W) W)
= valid (AWy. (¥X;. (eiw' X W) — Wy (" WV — (pX V)
— Wy (FW V) — VX, (eiw! X W) — pX W))
=YWy (VX (eiw' X W) — VW . (rWV — (pX V)))
— Wy ((rW V) — VX, (eiw' X W) — pX W)

Note that p,,; represents the embedded variant of the HOML symbol p,;
and has hence a more complex type that the original predicate symbol. It
is, after embedding, also dependent on a possible world of type u at which
it is evaluated.

The Barcan Formula instance is part of the QMLTP library [RO12] as prob-
lem SYMOO1+1. p. The full proof of Leo-III is displayed in Appendix [C.10]

Converse Barcan Formula
The counterpart to the previous modal logic example is the so-called Con-
verse Barcan Formula (CBF). For type 1, the instances are given by

OVX,.pX — VX,.OpX (11)

where p,; is some predicate symbol. There exists an equally strong con-
nection to modal model theory as for (BF): (CBF) is valid in a modal frame
if and only if its domains are non-decreasing.

139

Chapter 5. Application Examples

Similar to (BF), Leo-III can use its embedding mechanism to generate a
proof for the above instance. Due to the inherent flexible nature of the em-
bedding approach, the semantic context can easily be adapted for this ex-
ample to use cumulative domain semantics (instead of decreasing domain
semantics as in[E11)[]

Let E;» denote the above instance of the Converse Barcan Formula
in the context of cumulative domain semantics. Let again [.| denote the
embedding operator. The intermediate embedding steps are analogous to
[ET1] and therefore omitted. Leo-III finds a proof for this problem in under
3's. The symbols sk', sk*> and sk® are Skolem symbols of type i, 1 and L,
respectively.

Embed([-E2]): Co: [VWy., Vi, Xo.r WV — (eiw' X X —s eiw' X V)]%;
Cro [YWy. Wy (kW V) — VX, (eiw! X V) — pX V)
— VX, (W' X W) — W r WV — pX V))]Tf
CNF(Co): Co: [r X X2V eiw! X3 X1V [eiw! X3 X2
CNF(Cy): Cy: [p sk? sk,
Cy: [eiw! sk? skt
Cs: [rsk! sk3]%;
Ce: [eiw' X> X4 v [rsk! X4 v [p X3 X4t

O
The proof is similar to the one of E;; with the difference that now Cy pos-
tulates cumulative domain semantics. After clausification, the refutation
continues analogously to[ET]]

The Converse Barcan Formula instance is part of the QMLTP library
as problem SYMO02+1.p. The full proof of Leo-III is displayed at Ap-

pendix [C.T1]
5.4. Leo-III as a Meta-Prover

The architecture of Leo-III allows for an employment as a so-called meta-prover.
Meta provers are systems that typically do little to none reasoning on their own,
but instead invoke different theorem proving systems (possibly with different pa-
rameter settings) and collect their results. The use of meta-prover systems is
practically justified because different ATP systems have different strengths and

8TheLeo—HIoptionsusedare: --assume-modal-domains cumulative --assume-modal-system K -p.

140

Chapter 5. Application Examples

weaknesses (in particular, when being based on different proof calculi), and of-
ten perform particularly well on certain classes of problems while being outper-
formed by other provers on other classes of problems, and vice versa.

As described in §4.4] Leo-III is designed to integrate external reasoners into
its own internal proof procedure. While this integration was primarily designed
to incorporate first-order provers (and, possibly, further specialist reasoners),
higher-order systems can also be included into the cooperation scheme. Hence,
when including various (first- and higher-order) external reasoning systems Leo-
III can be run purely as a meta system coordinating these provers and translating
proof obligations for them, similar to Isabelle’s Sledgehammer [BN10bl]. Addi-
tionally, axiom selection methods and pre-processing techniques of Leo-III can
be used prior to invocation of the external systems. Since Leo-III is not primarily
designed as meta prover, the cooperation mechanisms for this kind of employ-
ment are not as optimized as in dedicated meta prover systems. As an example,
sophisticated strategy scheduling or parameter selection schemes are missing in
Leo-III.

141

Chapter 6. Evaluation

6. Evaluation

In order to quantify the performance of Leo-III in the context of current state-
of-the-art higher-order ATP systems, an extensive evaluation based on various
benchmarks is presentedﬂ Special attention is given to the identification of the
impact of Leo-III’'s paramodulation calculus as opposed to the resolution-based
approach used by its predecessor LEO-II.

For the evaluation, three benchmark data sets are used:

TPTP THO (2463 problems) is the set of all monomorphic higher-order
(THO) problems from the TPTP library [Sutl7b] v7.0.0 that are anno-
tated as theorems. The TPTP problem library is a de-facto standard for
the evaluation of ATP systems and is also used as benchmark selection
basis for the yearly CADE ATP System Competitions (CASC) [Sut16b].
The problems originate from various problem domains and sources. The
TPTP THF problems in particular fostered the development of current
higher-order ATPs, including LEO-II and Satallax.

TPTP THI (442 problems) is the subset of all rank-1 polymorphic
higher-order (TH1) problems from the TPTP library v7.0.0 that are an-
notated as theorems and do not contain arithmetic. The problems consist
mainly of HOL Light [HarQ9]] core exports and Sledgehammer transla-
tions of various Isabelle theories [JMO3]].

OMLTP (580 problems) is the subset of all mono-modal benchmarks
from the QMLTP library [RO12]| (version 1.1). Since each problem may
have a different validity status for different semantics of modal logic,
all mono-modal problems (and not only those marked Theorem) are se-
lected. More precisely, for native modal logic reasoners, the original
problem statements from the QMLTP are used. For Leo-III, the bench-
mark data results from embedding the QMLTP problems into modal
THF as described in

The evaluation measurements were taken on the StarExec cluster [SST14]] in
which currently each compute node is a 64 bit Red Hat Linux (kernel 3.10.0)
machine featuring a 2.40 GHz Intel Xeon quad-core processors and a main mem-
ory of 128 GBE] For each problem, every prover was given a CPU time limit of

1 All raw measurement data can be accessed at|http://alexandersteen.de/phd/|
2 See https://www.starexec.org/starexec/public/about. jsp|for more information.

143

http://alexandersteen.de/phd/
https://www.starexec.org/starexec/public/about.jsp

Chapter 6. Evaluation

Table 1: Detailed result of the 2463 TPTP THO benchmark measurements

Systems Solutions SZS Results Avg. Time [s] X Time [s]
Abs. | Rel. | THM | CAX | GUP | TMO | CPU | WC | CPU | WC
Leo-III 2053 83.39 | 2045 8 15 394 | 1539 5.61 | 31490 11508

Satallax 3.2 2140 86.89 | 2140 0 2 321 1226 1231 | 26238 26339
Satallax 3.0 1972 80.06 | 2028 0 2 433 | 17.83 17.89 | 36149 36289
LEO-II 1788 72.63 1789 0 43 603 584 596 | 10452 10661
Zipperpos. 1318 53.51 1318 0 360 785 260 273 3421 3592
Isabelle/HOL 0 0] 2022 0 1 440 | 46.46 33.44 | 93933 67610

240 s (CASC default time limit) and unrestricted memory usage.

Depending on the benchmark data set, different ATP systems are used for
comparison. This is simply due to the fact that not all ATP systems are applicable
for all different data sets. For the QMLTP data set, native modal logic ATP sys-
tems are also used. The following theorem provers are employed in one or more
measurements: Isabelle/HOL 2016 (THO/TH1), Satallax 3.0 (THO), Satallax 3.2
(THO), LEO-II 1.7.0 (THO), Leo-III 1.2 (THO/TH1/QMLTP), Zipperposition 1.1
(THO), MleanCoP 1.3 (QMLTP).

The evaluation results are presented separately for each benchmark data set
in the following. The results for TPTP THO, TPTP TH1 and QMLTP are pre-

sented in §6.1 §6.2]and §6.3] respectively. Additionally, in §6.4} the quality of
Leo-IIT’s proofs is assessed on the basis of the case study problems from §5}

6.1. Higher-Order Reasoning

The TPTP THO benchmark suite seems suitable as a primary indicator for the
overall performance analysis of HOL ATP systems. The collection of THF prob-
lem is meanwhile quite diverse and contains problems from various application
domains. The effectiveness of Leo-III on this problems set is compared against
other state-of-the-art ATP systems in terms of problems solved and runtime.
Also, the impact of external cooperation with first-order provers on Leo-III’s
reasoning capabilities is analyzed in more detail.

One problem (SYN®36"7.p) has been excluded from the benchmark data set
since it is flawed in the sense that its include directives are disorganized and hence
cause errors in all tested ATP systems.

System Performance. Table|[I]displays each system’s performance on the TPTP
THO data set. For each system the absolute number (Abs.) and relative share
(Rel.) of solved problems is displayed. Solved here means that a system is

144

Chapter 6. Evaluation

Figure 1: Number of solved problems per system for the TPTP THO data set
B with proof
“ Without proof

2,000 |- 2557 yosss
k) sr777
1555

s

15550

s

1555

s

o

7555

A

15550

s

7555

s

) vs777
s

15550

s

1257

s

A

75558

s

75558

s

1555

00 7550

" Satallax 3.2 Leo-III Satallax 3.0 LEO-II Zipperpos. Isabelle
ATP system

Number of solved problems

able to establish the SZS status Theorerrﬂ and also emits a proof certificate that
substantiates this claimEl All results of the system, whether successful or not,
are counted and categorized as THM (Theorem), CAX (Contradictory Axioms),
GUP (GaveUp) and TMO (TimeOut) for the respective SZS status of the returned
resultEl Additionally, the average and sum of all CPU times and wall clock (WC)
times over all solved problems is presented.

Using external first-order cooperation Leo-III successfully solves 2053 of
2463 problems (roughly 83.39 %) from the TPTP THO data set. This is 735
(35.8 %) more than Zipperposition, 264 (12.86 %) more than LEO-II and 81
(3.95 %) more than Satallax 3.0. The only ATP system that solves more prob-
lems is the most recent version of Satallax (version 3.2) that solves 2140 prob-
lems, which is approximately 4.24 % more than Leo-III. Even if solutions with-
out explicit proofs are counted, Leo-III would still have slightly higher number
of solved problems than Satallax 3.0 and Isabelle/HOL with 25 (1.22 %) and 31

3 More precisely, an ATP system can establish the SZS result Theorem or any of its sub-value ac-
cording to the SZS ontology. In particular, the SZS result Contradictory Axioms is a more specialized
kind of Theorem and is hence counted towards solved problems.

4 Similar restrictions are also implemented at the CADE ATP system competition (CASC).

5 Note that GaveUp is used here as representative for similar SZS results that indicate that an
ATP system terminated on its own accord before exceeding the resource limits (e.g. the timeout)
without establishing a useful result. ATP system results of type Unknown and Inappropriate are
therefore counted under GaveUp. Similarly, the SZS results indicating a termination due to resource
constraints (ResourceOut, MemoryOut and TimeOut) are simply referred to as TimeOut throughout
the evaluation.

145

Chapter 6. Evaluation

(1.51 %) additional solutions, respectively.

The novel feature of Leo-III that allows to discover inconsistent problem
statements (cf. §4.5) takes effect on the data set: Of the solutions found by Leo-
I1I, eight problems are identified as SZS result CAX (ContradictoryAxioms) and
are hence shown to contain inconsistent axioms. Without external cooperation,
Leo-III can identify 14 inconsistent problems (cf. discussion of external cooper-
ation below) in the data set.

The number of solved problems per ATP systems is graphically compared
in Fig. [T} Evidently, Satallax and Leo-III are currently the most powerful ATP
systems on the TPTP THO data set. Of course, if one does not require proof cer-
tificates, Isabelle/HOL is comparably powerful. Maybe somewhat surprisingly,
Zipperposition is able to solve more than one half of all problems despite being
essentially a first-order ATP system that has only recently been augmented with
some higher-order reasoning mechanisms.

Unsurprisingly, each of the systems seems to have its particular strengths
on certain types of problems and can, as a consequence, solve problems that no
other system is able to solve (unique solutions). LEO-II, Leo-III, Satallax (3.2)
and Zipperposition produce three, 18, 17 and 15 unique solutions, respectively.
Evidently, Leo-III currently produces more unique solutions than any other ATP
system in this setting. It is remarkable that Zipperposition, despite its quite recent
enhancement to higher-order logic, produces as many as 15 unique solutions. An
in-depth analysis of this situation seems beneficial for the remaining systems.

Additionally to the strong benchmark results discussed above, Leo-III solves
nine unsolved problems and three problems that can currently not be solved by
any other ATP system. Here, unsolved means that no ATP system has ever been
able to establish an SZS success value at any TPTP version release (rating 1.0).
This information is extracted from the TPTP problem rating that is attached to
each problem. These problems cover a range of different applications, includ-
ing natural language processing (via embedding to modal logic), reasoning in
intuitionistic logic (likewise via embedding) and set theoryE]

Among the ATP systems, Leo-III shows the largest discrepancy between
CPU time and WC time on average and sum over all solved problems (cf. Ta-
ble[T). This is due to the non-blocking asynchronous cooperation with first-order
ATP systems employed during proof search. Here, the external provers are started
as independent processes on the operating system level and can hence be assigned

© The exact, previously unsolved, problems are NLP004/7, SET013/7, SEU558"1, SEU683"1,
SEV14315, SYO03771, SYO06274.004, SYO06524.001 and SYO066°4.004. The other three prob-
lems that can currently not be solved by any other ATP system are MSC007”1.003.004, SEU938"5
and SEV106"5.

146

Chapter 6. Evaluation

Figure 2: Performance graphs of various ATP systems for data set TPTP THO

240
100 |
= L
5] L
g 19
[B
Q
5 1T —e— Leo-IIl (CPU)
E B —e— Leo-III (WC)
© r —e— Satallax 3.0
t y Satallax 3.2
0.1 — —e— LEO-I
E‘_———/ Zipperpin
|

| | | | | | | T T |
0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,200

Solution number

to different CPU cores. Satallax, LEO-II and Zipperposition, in contrast, show
only small differences between CPU and WC time on average and sum. A more
precise measure for a system’s utilization of multiple cores is the so-called core
usage. It is given by the average of the ratios of CPU time to used wall clock
time over all solved problems. The core usage of Leo-III for the TPTP THO data
set is roughly 2.52. This means that, on average, two to three CPU cores are used
during proof search by Leo-III. Satallax (3.2), LEO-II and Zipperposition show
a quite opposite behavior with core usages of 0.64, 0.56 and 0.47, respectively.

An interesting result of Leo-III's high core usage can be seen at Fig. 2] that
displays performance graphs for each ATP system. Here, it can be seen that the
CPU time used by Leo-III degrades similar to the other provers whereas the real
time spent, i.e. the wall clock time, gradually approaches those of the remaining
systems and even outperforms them after approx. 1600 problems. For a scope
of 400 problems, Leo-III is the fastest (with respect to WC time) prover, and
then outperformed by Satallax 3.2. However, as can be seen in particular for the
first 1200 problems, Leo-III suffers from the Java Virtual Machine back end as
the execution platform imposes a constant start-up delay of approximately one
second. Hence, even the simplest problem takes at least one second to be solved
by Leo-III while easily being solved by Satallax, LEO-II and Zipperposition in
under 10 ms. It is unclear if these drawbacks can be mitigated using recent ahead-
of-time compilers for Java-based languages or similar techniques.

147

Chapter 6. Evaluation

Table 2: Comparison of LEO-II and Leo-III on 1917 equational resp. 645 non-
equational problems

THO NoEq THO Eq
‘ LEO-II Leo-IIl Rel. Change [%] | LEO-II Leo-III Rel. Change [%]
No cooperation 285 410 43.86 537 1150 114.15
With cooperation 441 459 4.08 ‘ 1348 1586 17.66

Equational Reasoning. As pointed out before, one primary goal of the Leo-III
project is to augment the RUE-based reasoning approach of LEO-II with a dedi-
cated and, hopefully, more effective way of handling (primitive) equality. In or-
der to measure the advantages of Leo-III’s underlying paramodulation calculus,
the TPTP THO data set is divided into two disjoint sets: THO Eq (1917 problems)
and THO NoEgq (645 problems) that contain all problems from TPTP THO which
contain equality resp. do not contain equality. Here, containing equality means
that at least one syntactical occurrence of the interpreted TPTP symbol ”=" is
contained in the problem. Note that, in a higher-order setting, this classification
is not as precise as in a first-order context. This is due to the fact that equality
may occur between terms of every type including those of Boolean type (for-
mulas). Hence, every simple non-equational problem can easily be syntactically
expressed using equality symbols. Also, during proof search, equality predicates
may get instantiated by primitive substitution even if the original problem did
not contain any primitive equality. Additionally, there are infinitely many ways
of defining equality relations in HOL. As a consequence, recognizing equality
within HOL problems can only be an under-approximation. The simple classi-
fication proposed here is thus intended only as a coarse approximation and cer-
tainly leaves room for optimization and further discussion.

The employment of external cooperation again tampers with the evaluation
precision of the effectiveness of a system’s implemented calculus. In order to
reduce this distortion, the measurements were additionally conducted using both
LEO-II and Leo-III without any first-order prover cooperation.

Table [2] displays the number of solutions produced by LEO-II and Leo-III
on the two separated data sets, each with external first-order cooperation enabled
and without any cooperation. Using external cooperation, LEO-II solves 441
(68.37 %) non-equational problems and 1348 (70.32 %) equational problems.
Leo-III on the other hand is able to solve 459 (71.16 %) and 1586 (82.73 %)
problems, respectively. While this shows an increase in reasoning performance
from LEO-II to Leo-III of approximately 4.1 % for non-equational problems, the
increase of reasoning effectivity of Leo-III on equational problems is approx.
17.7 % and thereby more than four times as much as for non-equational prob-

148

Chapter 6. Evaluation

lems.

With first-order cooperation disable(ﬂ LEO-II (Leo-III) solves 285 (410) of
the non-equational problems and 537 (1150) of the equational ones. This cor-
responds to roughly 44.2 % (64.7 %) and 28.0 % (60.0 %) of the problems of
the respective problem class. In this setting, Leo-III solves dramatically more
problems than LEO-II with an increase of 43.9 % for non-equational problems
and 115.2 % for equational problems. As can be seen, Leo-III is unconditionally
stronger than LEO-II on any kind of input (cf. discussion on the influence of
external cooperation further below). Apart from the general improved strength
of Leo-III, the increase in reasoning effectivity for equational problems in partic-
ular is greater roughly by factor 2.5 and still considerably higher than for non-
equational problems.

In both evaluation scenarios, that is, reasoning with and without external co-
operation, it can be seen that Leo-III particularly improved its equational reason-
ing capabilities compared to LEO-II albeit having improved in general as well.
Hence, there is strong evidence that the underlying paramodulation calculus of
Leo-III seems fit for practical employment in ATP systems.

Impact of External Cooperation. Leo-III is designed as a cooperating ATP sys-
tem. However, in principle, it does not require any external (first-order) reasoning
system for functioning. In this section, the actual impact of external cooperation
on Leo-III’s reasoning strength is quantified. To that end, the above measure-
ments on the TPTP THO data set are repeated for different combinations of exter-
nal reasoners used in conjunction with Leo-III. More specifically, the first-order
reasoners examined here are E 2.1, CVC4 1.5, iProver 2.6 and Vampire 4.1.

Also, for comparison, LEO-II is benchmarked with and without cooperation
with E. The remaining higher-order ATP systems cannot be separated from their
subsystems (e.g., Satallax using MiniSat and E).

Figure [3] shows the number of problems solved for each combination of
external reasoner cooperation. As an example, the label “Leo-III/E” denotes a
configuration in which Leo-III was used in conjunction with E. The remaining
combinations are analogous. “Leo-III/none” denotes that Leo-III used no exter-
nal cooperation at all. “Leo-III/all” represents the combination from previous
experiments in which Leo-III cooperates with all the first-order reasoners.

LEO-II heavily depends on first-order cooperation; it solves only 822 prob-
lems without using E and 1789 problems when using E. This is due to the fact

7 External cooperation needs to be enabled explicitly in Leo-III. On the other hand, LEO-II
by default requires E to be available on the system. First-order cooperation can be disabled within
LEO-II using the ”- f none” option.

149

Chapter 6. Evaluation

Figure 3: Performance of LEO-II/Leo-III with different external first-order rea-
soners

2,000

&

[P

irs)

2 1,500]

[oF

=

o

2

2

« 1,000]

700 J N N

S <&

& W e S
§F & P E &S S
& VvV &V S
A% v F \)00 &

ATP/external prover combination

that LEO-II is designed to do only as much higher-order reasoning as necessary
(e.g., relevant applications of primitive substitution or extensionality) and dis-
patch the remaining reasoning tasks to E. In contrast, the aim of Leo-III has been
to strengthen the higher-order RUE calculus so that state-of-the-art techniques
from first-order reasoning can be applied to higher-order reasoning as well. As
a consequence, while external cooperation still has a great influence on Leo-III's
reasoning strength, it is not as critical as for LEO-II: Internally, Leo-III is able
to solve 1574 (63.93 %) problems which is 47.78 % more than LEO-II without
using E, and still 16.26 % more than those of Zipperposition.

The most effective cooperating systems are E and CVC4 with which Leo-III
solves 1979 and 1978 problems, respectively. When used in combination, Leo-
III yields 2031 solutions. This suggests that both system have, in some aspects,
orthogonal strengths and weaknesses; and can both convincingly contribute to
Leo-III’s reasoning process. The remaining two first-order provers, iProver and
Vampire, perform slightly worse with 1909 and 1874 solved problems, respec-
tively. Also, they do not add more solutions when used in addition to E and CVC4
(cf. Leo-III/all” with 2053 solutions), with iProver and Vampire contributing ten
and twelve additional solutions, respectively.

Currently, the portion of CAX results strongly decreases when using external

150

Chapter 6. Evaluation

cooperation. This is because the externally generated (first-order) proofs are not
analyzed by Leo-III which implies that it is not known which facts the first-order
provers actually used within their proofs. As a consequence, the proof recon-
struction over-approximates the derivation and assumes that all submitted facts
were used in the proof, including the (negated) conjecture. This naive handling
of external proofs impairs the effectivity of the inconsistency detection (cf. [4.3)).
Only refutations that are found faster by internal reasoning than by external rea-
soners can, at the moment, contribute to CAX solutions. This situation could be
amended by inspecting the external proofs but remains future work.

6.2. Polymorphic Higher-Order Reasoning

For the second measurement, Leo-III was benchmarked on the THF TH1 data
set that contains rank-1 polymorphic HOL problems (cf. §4.6). In contrast to
the TPTP THO problems, the collection of polymorphic problems is quite young
(started in 2017 with the release of TPTP v7.0.0), and is therefore not yet as large
and diverse; there are 666 problems in total, of which 662 are theorems. The
subset of these TPTP TH1 problems considered here is those 442 problems that
are theorems and do not include arithmetic. The set consists of problems from
the HOL Light core (205 problems) and of Sledgehammer-generated translations
of various AFP Isabelle theories (237 problems) [KNPO3|. The latter problems,
in particular, regularly consist of a large number of axioms of which often only
few are relevant to the conjecture, and thus pose yet another challenge to the ATP
systems apart from reasoning in polymorphic HOL itself.

Currently, there exist only few other systems that are capable of
reasoning within polymorphic HOL as specified by TPTP THI1. They
are HOL(y)Hammer [KUI15b] and the tptp_isabelle mode of Is-
abelle/HOL [NWPO2[], which schedules proof tactics within HOL Light [Har09]]
and Isabelle/HOL, respectively. Unfortunately, only Isabelle/HOL has been
available for instrumentation in a reasonable recent and stable version for a com-
parison with Leo—IIIE]

Table [3|displays the measurement results for the TPTP TH1 data set. As be-
fore, for both ATP systems (and, in the case of Leo-III, each external cooperation
system configuration) the absolute and relative number of solved problems, the
detailed SZS return values and the average and overall time consumption is dis-
played. Again, the SZS result values GUP and TMO are representatives for sim-
ilar return values (cf. footnote [5)) and solutions are only counted towards solved

8 A reasonably current version of HOL(y)Hammer is available at the SystemOnTPTP web inter-
face. However, the system always returns the SZS result "GaveUp" regardless of the input problem.

151

Chapter 6. Evaluation

Table 3: Detailed result of the 442 TPTP TH1 benchmark measurements

Systems Solutions SZS Results Avg. Time [s] Y Time [s]
Abs. | Rel. | THM | CAX | GUP | TMO | CPU | WC | CPU | WC
Leo-III 1.2
— internal 87 19.68 33 4 14 341 | 29.79 16.86 | 2592 1467
—E 162 36.65 160 2 10 270 | 3327 16.31 5391 2642
— CVC4 161 36.43 158 3 9 272 | 41.08 2222 | 6615 3577
— iProver 144 32.58 141 3 11 287 | 36.66 20.63 | 5279 2971
— Vampire 137 31.00 133 4 12 293 | 37.63 21.31 5155 2919
—all 185 41.86 183 2 8 249 | 49.18 2493 | 9099 4613
Isabelle/HOL 0 0 237 0 23 182 | 93.53 81.44 | 22404 19300

problems if a proof certificate is provided. As a consequence, Leo-III is trivially
the best (and only) ATP system for TPTP TH1 in this scenario. Nevertheless,
as can be seen from the detailed breakdown of SZS result values, Isabelle/HOL
finds 237 theorems (53.62 %) which is roughly 28.1 % more than the number of
solutions founds by Leo-III. Even if the cooperation of Leo-III is restricted to
only use E (CVC4), it still solves 162 (161) problems which is more than one
third of all problems and approximately 31.6 % less than Isabelle/HOL. Also,
Leo-III solves 35 unique problems whereas Isabelle/HOL solves 69 unique prob-
lems. With no external cooperation ("— internal” in Table , Leo-III only solves
one fifth of all problems. Up to four problems are identified by Leo-III to contain
inconsistent axioms and, hence, trivially validate their conjecture.

There are two components of Leo-III that considerably hinder its reasoning
effectivity in the TPTP TH1 data set context: Firstly, the relevance filter (axiom
selector) of Leo-III is quite naive and often only provides a weak filtering effect
for large knowledge bases. As a consequence, Leo-III’s reasoning strength de-
grades rather quickly if the number of axioms grows. Since the TPTP TH1 data
set consists of approx. one half Sledgehammer exports that typically include
numerous additional axioms, Leo-III's weak relevance filter has considerable in-
fluence on its success rate. In the TPTP THO data set, in contrast, the distribution
of problem sizes is not as biased towards large problems as in the TH1 data set.
Secondly, the monomorphization algorithm is not as optimized and mature as in
Isabelle/HOL. Monomorphization is used in regular intervals for encoding proof
obligations into monomorphic first-order logic during proof search. Its current
implementation is rather inefficient and severely slows down the reasoning loop
thus reducing the effective inference rate of Leo-III.

Isabelle/HOL prematurely aborts the reasoning process for 23 problems be-
cause of internal type errors, seemingly caused by faulty treatment of type quan-
tifications. The exact cause of these errors has not yet been identified. Leo-III,

152

Chapter 6. Evaluation

on the other hand, fails for up to eight problems due to internal typing errors
during proof search. The remaining six premature terminations are due to in-
completeness of the used search mode. These observations suggest that TH1
reasoning within Isabelle/HOL and Leo-III is not yet as stable as for the common
monomorphic input dialects and more effort needs to be invested in order to offer
reliable and mature reasoning capabilities for polymorphic inputs.

6.3. Modal Logic Reasoning

The last measurement of this chapter quantifies the performance of Leo-III on
first-order modal logic problems from the QMLTP library [RO12]. The QMLTP
library is, up to the author’s knowledge, the only uniform collection of first-
order modal logic problems currently available. The current release (version 1.1)
contains 600 problem statements, of which 421 contain first-order quantifica-
tion, and 20 being multi-modal problems. The QMLTP problem set consists
mainly of problems from textbooks on modal logic, from the TABLEAUX-2000
Non-Classical (Modal) System Comparisons (TANCS-2000) [MDOO]], and from
Goedel translations of intuitionistic problems into modal logic [G6d69].

The relevant subset of QMLTP problems considered for the evaluation are
those 580 problems that are mono-modal. In contrast to the previous measure-
ments, not only problems marked as theorems are used. This is due to the fact that
the measurements are conducted for multiple semantic settings and, for each of
these settings a problem’s validity status might be different. As a consequence,
for every semantics a different set of problems would be used for the evalua-
tion. In order to present an uniform evaluation framework for all semantic set-
tings, counter-satisfiable and open problems are thus also included. Likewise,
the multi-modal problems are excluded from the measurements since they are
restricted to use cumulative domains and particular axiomatizations.

Leo-III is compared against MleanCoP version 1.3 [Ott14]. MleanCoP is a
powerful representative of native first-order modal logics provers for modal log-
ics D, T, S4 and S5 and multi-modal logics. Earlier experiments confirm that
MleanCoP is currently the most effective ATP system for its supported modal
logics [BORI12]. Note that, for comparability reasons, rigid constants and local
consequence are used throughout this evaluation (cf. §4.7.2). This is because the
QMLTP library assumes these settings and MleanCoP supports only such seman-
tics. In contrast, Leo-III is by no means limited to these semantic variants. The
evaluation is conducted using the original QMLTP problem statements in the
case of MleanCoP. For Leo-III, the input problems are the result of translating

153

Chapter 6. Evaluation

the QMLTP problem statements to modal THF syntaxﬂ As a result, technically,
both systems are evaluated on different data sets. However, the transformation
merely translates first-order-like application syntax to their higher-order equiv-
alents (using explicit application operators) and adds type declarations for each
symbol.

The measurement results for Leo-III and MleanCoP on the QMLTP data set
are displayed in Tables fa] and [4b] respectively. As before, for both systems the
absolute number of solved problems, a breakdown of all result values as well as
both the average and sum of CPU and wallclock time over each solved problem
is given. The measurements were taken for all semantic combinations produced
by (assuming a local consequence relation):

e amodal axiomatization from {K,D, T, S4,S5},
e quantification semantics from {vary,decr,cumul,const}, where vary,

decr, cumul, const denote varying domains, decreasing domains, cu-

mulative domains and constant domains, and
e rigid constant symbols.

The resulting twelve combinations are denoted by the respective combination of
the first two components, e.g. S5/vary for a S5 modal logic with varying do-
mains, rigid constants and local consequence relation. Furthermore, the detailed
breakdown of SZS results now also displays counter-satisfiability (CSA) results
as not only theorems are included in the data set.

As can be seen from the measurements results, MleanCoP overall performs
better in all semantic settings that it supports. Nevertheless, as can be seen from
earlier evaluations [BOR12, IGSB17], Leo-III's performance is still significantly
better than that of other first-order modal logic provers or HOL reasoning back-
ends used in combination with the embedding approach. Additionally, the aver-
age wallclock time used by Leo-III for solving the problems is, for most semantic
settings, fairly close to the time used by MleanCoP.

Fig.[]displays a comparison of both systems for all twelve semantics that are
supported by MleanCoP. Leo-III is fairly competitive with MleanCoP (weaker by
maximally 14.05 %, minimally 2.95 % and 8.90 % on average) for all D and T
variants. For all S4 variants, the gap between both systems increases (weaker
by maximally 20.00 %, minimally 13.66 % and 16.18 % on average). For S5
variants Leo-III is again very effective (stronger by 1.36 % on average) and it is
ahead of MleanCoP for S5/const and S5/cumul. This is due to encoding of the

9 The translated collection of QMLTP problems is available at www.github.com/
TobiasGleissner/QMLTP.

154

www.github.com/TobiasGleissner/QMLTP
www.github.com/TobiasGleissner/QMLTP

Chapter 6. Evaluation

Table 4: Detailed result of the 580 QMLTP benchmark measurements

(a) Leo-III

Semantics | Solutions SZS Results Avg. Time [s] Y Time [s]

THM | CSA | GUP | TMO | CPU | WC | CPU | WC
K/vary 150 150 0 94 336 20.30 8.97 3045 1345
K/decr 162 165 0 30 388 19.41 8.55 3144 1385
K/cumul 166 166 0 30 384 18.73 8.24 3109 1367
K/const 189 189 0 83 308 19.53 8.62 3692 1628
D/vary 159 159 0 76 345 19.80 8.62 3149 1371
D/decr 174 174 0 19 387 1872 8.16 3257 1418
D/cumul 178 178 0 19 383 19.40 8.30 3453 1477
D/const 203 203 0 64 313 18.60 8.00 3776 1624
T/vary 209 209 0 73 298 19.52 822 | 4079 1718
T/decr 223 223 0 22 335 19.07 794 | 4254 1771
T/camul 233 233 0 22 325 20.28 8.21 4724 1914
T/const 263 263 0 59 258 18.87 7.88 | 4964 2073
S4/vary 246 246 0 0 334 21.84 9.26 5372 2278
S4/decr 264 264 0 0 316 20.75 8.78 5477 2317
S4/cumul 280 280 0 0 300 | 23.07 934 | 6459 2615
S4/const 316 316 0 0 264 | 21.00 874 | 6635 2762
S5/vary 340 340 0 77 163 2329 1042 7920 3542
S5/decr 456 456 0 48 75 2334 10.17 | 10644 4639
S5/cumul 456 456 0 48 75 2334 10.17 | 10644 4639
S5/const 456 456 0 48 75 2334 10.17 | 10644 4639

(b) MleanCoP

Semantics | Solutions SZS Results Avg. Time [s] ¥ Time [s]

THM | CSA | GUP | TMO | CPU | WC | CPU | WC
K/ — T
D/vary 185 185 271 20 104 7.72 845 | 1429 1564
D/decr T o R Fo---
D/cumul 206 206 245 21 108 6.36 7.12 | 1311 1467
D/const 223 223 219 19 119 6.24 6.82 | 1392 1520
T/vary 224 224 157 33 166 4.16 5.01 938 1122
T/decr T o Fo T
T/cumul 251 251 131 26 172 280 3.65 703 916
T/const 271 271 113 24 172 310 395 840 1070
S4/vary 289 289 126 25 140 9.66 10.36 | 2791 2995
S4/decr S R Fo Fo
S4/cumul 350 350 95 22 113 9.11 9.82 | 3188 3435
S4/const 366 366 82 21 111 9.37 10.07 | 3431 3687
S5/vary 360 360 93 16 111 5.01 5779 | 1805 2084
S5/decr R I e T
S5/cumul 436 436 40 17 87 446 525 | 1946 2289
S5/const 436 436 40 26 78 4.42 5.21 1927 2270

F: MleanCoP does not support the semantics

155

Chapter 6. Evaluation

Figure 4: Comparison of Leo-III and MleanCoP on solved problems

400 - In Leo Il
@ MileanCoP
£ 350
=
o
& 250
B 200
>
5 150
HH
50
0 D D NS D
X X X X
\@6 0&0 CP&‘&\&d 0‘@ 00& b‘\ﬁd 0&0 oo& 43\4%6 0&0 oo&
NP RN QY QF A &° &

Modal semantics

S5 accessibility relation in Leo-III 1.2 as the universal relation between possi-
ble worlds as opposed to its prior encoding as an equivalence
relation.

One possible reason for this performance degradation in stronger modal
logic systems such as S4 is that during the embedding process more axioms (re-
strictions on the accessibility relation) are included to the translated problem.
In particular, for modal logic S4 a transitivity axiom is included for the acces-
sibility relation. This axiom might increase the search space of the embedded
problem, and in turn renders the proof search less effective. In modal logic S5
such an effect would also appear if not mitigated by Leo-III by using an opti-
mized translation that is specific to the nature of S5 modal semantics. Here, the
accessibility relation is usually regarded an equivalence relation [Garl6] (e.g.,
reflexive and euclidean). However, without affecting the proof-theoretic seman-
tics of the system, the accessibility relation can also be postulated the universal
relation and can be eliminated completely from the embedding. This
greatly simplifies the embedded modal logic formulas and makes Leo-III more
effective on S5 semantic variants.

In the QMLTP benchmark set, Leo-III solves 199 previously unsolved prob-
lems. This includes 49, 29, and 38 new solutions for the semantics K/vary,
K/const and K/cumul, respectively, approximately 13 new solutions for every
SS variant and roughly four to six new solutions for every remaining semantics

156

Chapter 6. Evaluation

Table 5: Verification results for the nine case study problems from §3|that can be
verified using GDV. For each problem, the time used by GDV for verifying the
correctness of the proof is printed.

Problem | Verification time [s]
SET557”1 440
SY0037°1 804
MSC007°1.003.004 4099
NUNO25"1 1286
SYN997"°1 469
SY0548"°1 576
SY0519"°1 747
modified NUNO25~1 (Ex. [ES) 1071
SEV485™°1 470

supported by QMLTP. The extraordinarily high number of new solutions for vari-
ants of modal logic K is due to the fact that only few of the modal logic provers
indexed by QMLTP support reasoning in these logics.

6.4. Proof Certificates

In this section, the quality of proof certificates produced by Leo-III is assessed.
For that purpose, the proofs of Leo-III for the twelve problems from §5|are stud-
ied for verifiability by GDV [Sut06]. For the verification benchmarks GDV is
used in conjunction with Isabelle/HOL and Nitpick as higher-order reasoning
systems for proving and refuting the intermediate conclusions, respectively. The
results of the verification attempts are presented in Table[5] GDV is able to verify
eight out of the twelve proofs generated by Leo-III as correct. It can be seen
that the necessary time for verifying each proofs is by magnitudes larger than
the original time needed by Leo-III for solving the problem. This is due to the
fact no semantic information contained in the proof is utilized by GDV for the
verification. GDV merely invokes a reproving process each step of the produced
derivation.

There are two reasons why three Leo-III proofs could not be verified in this
way: Firstly, the proof of the polymorphic variant of the surjective Cantor Theo-
rem from §5.2]contains a universal type quantification in the conjecture. It seems
that the verification of such an conjecture is currently not supported by GDV
using the Isabelle/HOL backend. Secondly, the two proofs of the modal logic

157

Chapter 6. Evaluation

reasoning examples from contain non-trivial Skolemization. Note that this
operation is satisfiability preserving but not an equivalence transformation. The
verification of this kind of logical relationship between inference steps seems cur-
rently supported to only a limited degree by GDV. As a consequence, even com-
parably simple CNF transformations that include Skolemization impede GDV’s
verification capabilities.

Overall, the analysis presented here shows that the proofs of Leo-III are in-
formative enough to enable proof verification, even in the case of the comparably
simple GDV tool. This suggests that more sophisticated proof verification tech-
niques which utilize semantical information about the individual proofs steps can
be effectively applied to Leo-III proofs.

158

Chapter 7. Conclusion and Outlook

7. Conclusion and Outlook

The first part of this thesis has presented an extensional higher-order paramodu-
lation calculus that treats equality as primitive rather than as defined notion. This
calculus is shown to be sound and complete with respect to Henkin semantics. To
that end, a model existence theorem that rests on a formulation of abstract consis-
tency properties is presented, which slightly simplifies earlier variants prensented
by Benzmiiller et al. Moreover, the abstract consistency classes are not assumed
to be saturated.

In the second part of this thesis an implementation of the paramodulation
calculus is presented, forming the new higher-order ATP system Leo-III. Due to
its wide range of natively supported classical and non-classical logics, including
polymorphic HOL and numerous first- and higher-order modal logics, the system
has many topical applications in computer science, Al, maths and philosophy. In
particular, Leo-III features

native reasoning in rank-1 polymorphic HOL,

reasoning in almost every normal higher-order modal logic,

support for all common TPTP dialects (CNF, FOF, TFF, THF) including
their polymorphic variants (TF1, TH1),

flexible cooperation with any TFF- or THF-compliant ATP,

full compatibility with the standardized SZS result ontology, and
detailed/verifiable TSTP-compatible proof certificates.

These hybrid logic capabilities make Leo-III, up to the author’s knowledge, the
most widely applicable ATP system available. Additionally, an extensive evalu-
ation of Leo-III shows that it is also one of the most effective HO ATP systems
to date. These results also answer, to some degree, the question whether it is
generally feasible to employ a paramodulation-based calculus for higher-order
logic.

Further Work. There is much room for further improvements and extensions
of Leo-III and its underlying calculus. Extensive research in the context of first-
order theorem proving systems indicates that both a solid theoretical foundation
and also carefully developed implementation techniques are necessary in order
to yield a practically effective reasoning tool.

On the theoretical level, more work needs to be invested in augmenting the
calculus EP with appropriate techniques for restricting its inferences in such a

159

Chapter 7. Conclusion and Outlook

way that more sophisticated notions of redundancy can be employed. Obvi-
ously, adaptions of existing powerful mechanisms from first-order superposition
would be desirable. Unfortunately, due to the inherently more complex nature
of the term language of HOL there seems to be no straight-forward adaption
of such techniques. A potentially fruitful path for further work in this direc-
tion is to investigate whether existing higher-order term orderings such as CPO
(as employed by Leo-III) can be used to safely restrict the paramodulation in-
ferences of EP. Since small improvements on the calculus level might greatly
influence a system’s performance, it seems worthwhile to study if weaker con-
ditions than those of first-order superposition can be employed while retaining
completeness, e.g. adaptions of ordered paramodulation or even weaker forms of
ordering constraints. This is also motivated by the observation that considerable
effort needs to be invested for constructing a complete superposition calculus
for a logic that seems only marginally more expressive than standard first-order
logic [BBCW 18]

Another path is to formally prove completeness of a polymorphic variant of
EP which actually forms the basis of Leo-III. Such an investigation seems to be
merely technical but an important result for the overall correctness of Leo-III.

Practically relevant future work includes

e aformal study and more thorough evaluation of the higher-order adap-
tion of feature vector indexing employed by Leo-III,

e the development of a more effective subsumption procedure using a sub-
sumption index based on higher-order substitution trees as sketched in
earlier work [LS16],
an extensive study and evaluation of further clause selection heuristics,
an improved generation of proof certificates for proofs that were found
in conjunction with external first-order provers, and

e a more sophisticated and fine-grained control of external reasoning sys-
tems using per-system decisions on encoding details (e.g. the concrete
choice of an elimination technique for A-abstraction).

While the latter two points are rather aimed at improving the Leo-III system it-
self, the first three points are relevant for higher-order ATP systems in general.
As pointed out in the context of first-order theorem proving, the use of good
clause selection strategies is one of the most important factor for the practical
effectiveness of an ATP system. One would expect that a corresponding study
of selection heuristics (that in particular focus on certain higher-order features)
could have an similar effect in the higher-order case. Additionally, currently there
exist almost no general purpose indexing mechanisms for HOL ATP systems and

160

Chapter 7. Conclusion and Outlook

the development of such indexing techniques puts more emphasis on the com-
parably neglected field of practical implementation techniques for higher-order
reasoning systems. In particular, it seems that the development of a subsumption
indexing structure might profit from most recent work in higher-order matching
modulo associativity and commutativity [CK18].

161

Appendix A. Installation and Usage of Leo-I11

A. Installation and Usage of Leo-III

A.1l. Requirements

Leo-III requires the Java 1.8 Runtime (JRE) for execution. Leo-III works on any
common operating system (including Windows, Mac OS and Linux derivatives).
However, external cooperation so-far only works on Linux and Mac systems. If
Windows is used, it might be possible to try running Leo-III using Cygwin or
similar for exploiting external cooperation.

A.2. Installation

Using pre-built binaries

A current (pre-built) release of Leo-III 1.2 can be downloaded from GitHub un-
derlhttps://github.com/leoprover/Leo-I1I/releases/. Note that the bi-
naries available at GitHub were built on a Debian-based system and might not
work for all Linux derivatives. If the pre-built version does not work, consider
building Leo-III from source. Its quite simple and only takes a minute or two.

Building from source

The following requirements (dependencies) are not managed by the SBT build
tool and hence need to be present at the system prior to building Leo-III:

Java JDK 1.8

make (any reasonably current version)
SBT, Scala Build Tool (version 1.x)
gcc (any reasonably current version)

Note that gcc is only required if you want to build Leo-III with support for ex-
ternal cooperation (the way Leo-III is intended to be used and works best). If
you want to build Leo-IIT without capabilities for external cooperation, gcc is not
needed. Leo-III will still be a fully functional higher-order ATP system, you just
cannot increase its reasoning effectivity using external reasoners.

Leo-III uses SBT for building the Scala sources SBT will download an
appropriate version of Scala (and further dependencies) automatically. The ac-

ISee http://www.scala-sbt.org for the SBT tool and further details.

163

https://github.com/leoprover/Leo-III/releases/
http://www.scala-sbt.org

Appendix A. Installation and Usage of Leo-111

tual build process in invoked by make. Proceed as follows to build Leo-III from

source:

164

Download the source distribution of the latest stable version (here: 1.3)
from GitHub and unpack the archive:

> wget https://github.com/leoprover/Leo-III/archive/vl.3.tar.gz
> tar -xvzf vl.3.tar.gz

Step into the newly created directory and run make:

> cd Leo-III-1.3/
> make

The building process might take some time, depending on your com-
puter system. You can also build a static version of Leo-III (if you want
to move the executable around to other machines) using make static.
Alternatively, if you do not have gcc installed (and you do not require
external cooperation), you can run make leo3. However, you will not
be able to make use of external reasoning systems to increase Leo-1II’s
reasoning effectivity.

If no error occurred, you should find a bin directory at top-level:

> cd bin/
> 1s
leo3 leo3.jar

where leo3 is the executable of Leo-III. A jar file leo3.jar is also
generated in case you want to include Leo-III as a library to some other
application.

Optionally install the Leo-III binaries to a dedicated location using

> make install

This will copy the leo3 executable to the default install destination
$HOME/bin. The install destination can be modified using the DESTDIR
modifier.

Appendix A. Installation and Usage of Leo-I11
A.3. Usage

It is assumed that the leo3 executable can be found in $PATH in the following.
Leo-III is invoked via command-line:

> leo3
Leo III -- A Higher-Order Theorem Prover.
C. Benzmuller, A. Steen, M. Wisniewski and others.

Usage: leo3 problem [option ...]
[...]

The release of Leo-III contains several test problems, including a polymor-
phic THF formulation of the surjective Cantor theorem (cf. example [E9 from
§5.2), located at . /src/test/resources/thl/sur_cantor_thl.p. The prob-
lem statement reads as follows:

thf(sur_cantor, conjecture, ![T:$tTypel: (~(?[F: T>(T>%$0)]: (
U [Y:T>%0]: (
?[X:T]: (
(F@X) =Y

)).

Leo-III can now be invoked for proving this conjecture. The -p option enables
the output of a proof certificate (formatted using Sutcliffe’s TPTP4X tool):

./leo3 ./src/test/resources/thl/sur_cantor_thl.p -p

Time passed: 2490ms

Effective reasoning time: 1619ms

Axioms used in derivation (0):

No. of inferences in proof: 14

No. of processed clauses: 9

No. of generated clauses: 60

|

SZS status Theorem for ./src/test/resources/thl/sur_cantor_thl.p : 2490 ms resp. 1619
ms w/0 parsing

s SZS output start CNFRefutation for ./src/test/resources/thl/sur_cantor_thl.p

thf(sktl_type,type, (sktl: $tType)).

® o o° V

o°

o°

o — o

o

thf(skl_type,type, (skl: sktl > sktl > $o0)).
thf(sk2_type, type, (sk2: (sktl > $o0) > sktl)).

thf(1,conjecture, (
! [TA: $tTypel
~ 7 [A: TA > TA > %0] :
! [B: TA > $0] :

165

Appendix A. Installation and Usage of Leo-111

? [C: TA] :
((A@C)
=B)),
file('./src/test/resources/thl/sur_cantor_thl.p’,sur_cantor)).

thf(2,negated_conjecture, (
~ ! [TA: $tType] :
~ 7?2 [A: TA > TA > $o0] :

! [B: TA > $0] :
? [C: TA] :
((A@C)
=B)),

inference(neg_conjecture, [status(cth)],[1])).

thf(3,plain, (
~ ! [TA: $tType] :
~ 7?2 [A: TA > TA > $0] :

! [B: TA > $0] :
? [C: TA] :
((A@C)
=B)),

inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(4,plain, (
! [A: sktl > $o] :
((skl@ (sk@A))
=A)),
inference(cnf, [status(esa)l,[3])).

thf(5,plain, (
! [A: sktl > $0] :
((skl@ (sk@A))
=A)),
inference(lifteq, [status(thm)],[4])).

thf(6,plain, (

! [B: sktl,A: sktl > $o] :
((skl@(skk@A)@B)
=(A@B))),

inference(func_ext, [status(esa)],[5])).

thf(8,plain, (
! [B: sktl,A: sktl > $o] :
((skl@ (skk@A)@B)
| ~(A@B))),
inference(bool_ext, [status(thm)],[6])).

thf (198, plain, (
! [B: sktl,A: sktl > $o] :
((skl@ (sk2@A)@B)
| ((A@B)
'=(~(skl@(sk@A)@B)))
| ~ $true)),
inference(eqfactor_ordered, [status(thm)],[8])).

thf (217, plain,
(skl
@ (sk2

166

Appendix A. Installation and Usage of Leo-I11

@ ™ [A: sktl]
~(skl@A@A))
@ (sk2
@ ™ [A: sktl] :
~(skleA@A))),
inference(pre_uni, [status(thm)],[198:[bind(A,$thf(~ [C: sktl]

i~ (skl@cCc@cC))),
bind(B,$thf(sk2 @ ~ [C: sktl] : ~ (skli@C@C)))Il])).

thf(7,plain, (
! [B: sktl,A: sktl > $o] :
(~(ski@(sk2@A)@B)
| CA@B))),
inference(bool_ext, [status(thm)],[6])).

thf(17,plain, (
! [B: sktl,A: sktl > $o] :
(~(skl@(sk2@A)@B)
| ((A@B)
'=(~(skl@(sk@A)@B)))
| ~ $true)),
inference(eqfactor_ordered, [status(thm)],[7]1)).

thf(29,plain, (
~ (skl
@ (sk2
@ ~ [A: sktl] :
~(skleA@A))
@ (sk2
@ ™ [A: sktl] :
ski@eA@A)))),
inference(pre_uni, [status(thm)],[17:[bind(A,$thf(~ [C: sktl]
bind(B,$thf(sk2 @ ~ [C: sktl] : ~ (ski@C@C)))1l)).

i~ (skilec@cC))),

thf(225,plain, ($false),
inference(rewrite, [status(thm)],[217,29])).
% SZS output end CNFRefutation for ./src/test/resources/thl/sur_cantor_thl.p

The line starting with % SZS status Theorem” confirms that the conjecture is
indeed a theorem and the contents between ”% SZS output start”and % SZS
output end” are the proof certificate for this claim.

167

Appendix B. List of Contributions

B. List of Contributions

This thesis project contributes both to theoretical and practical aspects of higher-
order logic automation. An overview over the individual contributions is dis-
played below:

Theoretical contributions

Model Existence. Following earlier work by Benzmiiller, Kohlhase and
Brown, a model existence theorem is presented for an extensional for-
mulation of higher-order logic that is based on primitive equality as sole
logical connective. The choice of primitive equality as only connective
allows dropping the requirement q of Benzmiiller et al. (who had to
explicitly assume it) as it is implied by the definition of HOL models.
For the model existence result, a set of abstract consistency properties
is presented that simplifies and combines earlier work of Benzmiiller
and Brown in the setting of equational higher-order logic with Henkin
semantics. As a consequence, the model existence theorem moreover
does not assume saturation which makes it applicable for completeness
proofs of machine-oriented calculi.

Higher-Order Paramodulation. A paramodulation calculus that is sound and
complete with respect to Henkin semantics (without choice) and that
treats equality as a primitive notion rather than being defined, is pre-
sented. In contrast to earlier work of Benzmiiller, the calculus EP does
not come with a dedicated resolution rule and does not expand occur-
rences of equality predicates to their corresponding definition due to
Leibniz.

Practical contributions

System Implementation. One of the main practical contributions of this the-
sis project is the design, development, evaluation and dissemination of
the novel, stand-alone HO ATP system Leo-III. Leo-III has been imple-
mented from scratch (it is not an extension/variant of LEO-II implemen-
tation code) in the modern Scala language, accumulating roughly 40000
lines of code in total, thereof approx. 30000 lines of code directly re-

169

Appendix B. List of Contributions

lated to this dissertation project. Leo-III is one of the most powerful
HO ATP systems today and is, up to the author’s knowledge, the most
widely applicable ATP available in terms of supported logics.

Heuristic Equational Simplifications. Using a higher-order term ordering,
Leo-III pioneers the use of equational simplification procedures from
first-order theorem proving, in particular from superposition systems.
Additionally, more sophisticated clausification routines have been de-
veloped that make use of formula renaming and subterm extraction.

Function synthesis. Leo-III seems to be the first HO ATP system that comes
with dedicated rules for function synthesis, including a special treat-
ment of injective functions. The underlying calculus rules have been
introduced in this thesis.

Proof guidance. Sophisticated clause selection schemes for saturation-based
ATPs have been presented in this thesis. These selection mechanism
have been adapted from approaches that have significantly improved
the performance of ATP systems in the context of first-order reasoning.

Flexible Cooperation Schemes. Flexible means for cooperating with differ-
ent kinds of external reasoning systems have been developed and pre-
sented in this thesis project. The implementation is asynchronous (non-
blocking), independent of the concrete external prover at hand and ad-
justs its translation procedure to the capabilities of the goal system.

Polymorphic HOL Reasoning. A conservative extension of the EP calculus
is contributed that generalizes paramodulation to rank-1 polymorphic
HOL. This generalization has been implemented within Leo-III, yield-
ing a reasoning system capable of reasoning in TF1 and TH1 languages.

Reasoning in Non-Classical Logics. An automation procedure for reasoning
in numerous higher-order modal logics is presented in this thesis. In par-
ticular, a new problem syntax is proposed that will be further developed
into a new TPTP language standard.

Data structures. The work presents a sophisticated data structure for higher-
order terms that combines a locally nameless spine term representation
with explicit substitutions for efficient substitution and traversal opera-
tions.

Indexing methods. Leo-III makes use of a higher-order adaption of feature
vector indexing that reduces the number of subsumption checks during
proof search. Up to the author’s knowledge, Leo-III is the first HO ATP
system that uses non-trivial term indexing methods for relevant high-
level proof search procedures.

Inconsistent Problems. Using the novel feature of Leo-III to detect incon-

170

Appendix B. List of Contributions

sistencies in successfully proven problems, this thesis project has con-
tributed 15 inconsistent problems from the TPTP library that should
hence be amended.

Integration into Isabelle/HOL. As an additional contribution of this thesis
project, the Leo-III prover has been included into the Sledgehammer
system of Isabelle/HOL. Consequently, Leo-III can now be used for dis-
charging higher-order proof obligations from within the Isabelle/HOL
proof assistant (as of release Isabelle 2018, August 2018).

171

Appendix C. Complete Leo-III Proofs

C. Complete Leo-III Proofs

The complete Leo-III proofs of the example problems from §5] are displayed in
this sectionm All of the proofs given below are produced by Leo-III as-is (except
for editorial changes).

C.1. Proof of SET557"1

% SZS status Theorem for SET557"1.p

% SZS output start CNFRefutation for SET55771.p

thf(skl_type, type, skl: ($i > ($1i > $0))).

thf(sk2_type, type, sk2: (($i > $0) > $i)).

thf(1,conjecture, ((~ (? [A:($1 > ($1 > $0))]: ! [B:($i > $0)]: ? [C:$i]: ((A @ C) = B)
)),file(’/home/lex/TPTP/Problems/SET/SET557"1.p’,surjectiveCantorThm)).

thf(2,negated_conjecture, ((~ (~ (? [A:($i > ($1 > $0))]1: ! [B:($i > $0)]: ? [C:$il: ((A
@ C) = B))))),inference(neg_conjecture, [status(cth)]1,[1])).

thf(3,plain, ((~ (~ (? [A:($1 > ($i > $0))]1: ! [B:($i > $0)]1: ? [C:$i]: ((A @ C) = (B)))
))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(4,plain, ((? [A:($1 > ($i > $0))]1: ! [B:($i > $0)]1: ? [C:$i]: ((A @ C) = (B))))
inference(polarity_switch, [status(thm)],[3]1)).

thf(5,plain, (! [A:($1 > $0)] : (((skl @ (sk2 @ A)) = (A)))),inference(cnf, [status(esa)
1,041)).

thf(6,plain, (! [A:($1 > $0)] : (((skl @ (sk2 @ A)) = (A)))),inference(lifteq, [status(
thm)1,[51)).

thf(7,plain, (! [B:$i,A:($1 > $0)] : (((skl @ (sk2 @ (A)) @ B) = (A @ B)))),inference(
func_ext, [status(esa)], [6])).

thf(9,plain, (! [B:$i,A:($1 > $0)] : ((skl @ (sk2 @ (A)) @ B) | (~ (A @ B)))),inference(
bool_ext, [status(thm)],[7])).

thf(199,plain, (! [B:$i,A:($1 > $0)] : ((skl @ (sk2 @ (A)) @B) | ((A@B) != (~ (skl @
(sk2 @ (A)) @B))) | ~ ($true))),inference(eqfactor_ordered, [status(thm)],[9])).

thf(216,plain, ((skl @ (sk2 @ (~ [A:$i]: ~ (skl @ A@A))) @ (sk2 @ (~ [A:$i]: ~ (skl @
A @ A))))),inference(pre_uni, [status(thm)],[199:[bind(A, $thf(”~ [C:$i]: ~ (skl @ C
@ C))),bind(B, $thf(sk2 @ (~ [C:$i]: ~ (skl @ C @ C))))1])).

thf(8,plain, (! [B:$i,A:($1i > $0)] : ((~ (skl @ (sk2 @ (A)) @ B)) | (A @ B))),inference(
bool_ext, [status(thm)],[7])).

thf(18,plain, (! [B:$i,A:($1i > $0)] : ((~ (skl @ (sk2 @ (A)) @B)) | ((A@B) !'= (~ (skl
@ (sk2 @ (A)) @ B))) | ~ ($true))),inference(eqfactor_ordered, [status(thm)],[8]))

thf(28,plain, ((~ (skl @ (sk2 @ (~ [A:$i]: ~ (skl @ A@ A))) @ (sk2 @ (~ [A:$i]: ~ (skl
@A @A)))))),inference(pre_uni, [status(thm)],[18:[bind(A, $thf(~ [C:$i]: ~ (skl @
C @ C))),bind(B, $thf(sk2 @ (~ [C:$i]: ~ (skl @ C @ C))))]1])).

thf(230,plain, ($false),inference(rewrite, [status(thm)],[216,28])).

% SZS output end CNFRefutation for SET557°1.p

! The proof of MSCO07~1.003.004 from example is not included as it consumes more than
10 pages.

173

Appendix C. Complete Leo-III Proofs

C.2. Proof of SY0037"1

% SZS status Theorem for SY0037"1.p : 9613 ms resp. 7245 ms w/o parsing
% SZS output start CNFRefutation for SY0037°1.p
thf(skl_type, type, skl: (($i > $0) > $i)). thf(sk2_type, type, sk2: ($i > ($i > $0))).
thf(7,axiom, (! [A:($1 > $0)] : (((sk2 @ (skl @ A)) = A))),introduced(tautology, [
new_symbols(inverse(skl),[sk2]1)1)).
thf(8,plain, (! [B:$i,A:($1i > $0)] : (((sk2 @ (skl @ A) @ B) = (A @ B)))),inference(
func_ext, [status(esa)], [7])).
thf(1,conjecture, ((~ (? [A:(($1 > $0) > $i)]: ! [B:($1i > $0),C:($1 > $0)]: (((A @ B) =
(A@C)) =>(B=2C))))),file(’/home/lex/TPTP/Problems/SY0/SY0037~1.p",conj)).
thf(2,negated_conjecture, ((~ (~ (? [A:(($1 > $0) > $i)]: ! [B:($1i > $0),C:($1 > $0)]:
(((A@B) = (A@C)) == (B =2C)))))),inference(neg_conjecture, [status(cth)],[1])).
thf(3,plain, (~ (~ (? [A:(($i > $0) > $i)]: ! [B:($i > $0),C:($1i > $0)]: (((A @B) = (A
@ C)) == (B =2C))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).
thf(4,plain, ((? [A: (($1 > $0) > $i)]: ! [B:($1 > $0),C:($1 > $0)]1: (((A @ (B)) = (A@ (
C))) => ((B) = (C))))),inference(polarity_switch, [status(thm)],[3]1)).
thf(5,plain, (! [B:($1 > $0),A:($1 > $0)] : ((~ ((skl @ (A)) = (skl @ (B)))) | ((A) = (B
)))),inference(cnf, [status(esa)], [4])).
thf(6,plain, (! [B:($1i > $0),A:($1 > $0)] : (((skl @ (A)) != (skl @ (B))) | ((A) = (B)))
),inference(lifteq, [status(thm)],[5])).
thf(13,plain, (! [C:$1i,B:($1 > $0),A:($1 > $0)] : (((A@C) =(B@C)) | ((skl @ (A)) !=
(skl @ (B))))),inference(func_ext, [status(esa)l,[6])).
thf(263,plain, (! [E:$i,D:($i > $0),C:($i > $0),B:$i,A:($1i > $0)] : (((A@B) = (C@E))
| ((skl @ (C)) !'= (skl @ (D))) | ((sk2 @ (skl1 @ (A)) @ B) != (D @ E)))),inference
(paramod_ordered, [status(thm)],[8,13])).
thf(332,plain, (! [D:($i > ($i > $0)),C:($i > $i),B:$1i,A:($i > $0)]1 : (((D @B @ (C @ B)
) = (A@B)) | ((skl @ (A)) '= (skl @ (~ [E:$i]: (sk2 @ (skl @ (D @ E)) @ (C @ E))
))))),inference(pre_uni, [status(thm)],[263:[bind(A, $thf(H @ E)),bind(B, $thf(G @
E)),bind(C, $thf(C)),bind(D, $thf(~ [H:$i]: (sk2 @ (skl1 @ (H@ H)) @ (G @ H)))),
bind(E, $thf(E))11)).
thf(333,plain, (! [C:($1i > ($i > $0)),B:($i > $i),A:$i] : (((C@A @ (B@A)) = (sk2 @ (
skl @ (C@A)) @ (B@A))))),inference(pattern_uni, [status(thm)], [332:[bind(A,
$thf (™ [G:$i]: (sk2 @ (skl @ (G @ G)) @ (F @ G)))),bind(B, $thf(A)),bind(C, $thf(F
)),bind(D, $thf(G))I1)).
thf(356,plain, (! [C:($i > ($i > $0)),B:($i > $i),A:$i] : (((C@A @ (B @A)) = (sk2 @ (
skl @ (C@A)) @ (B@A))))),inference(simp, [status(thm)],[333])).
thf(9,plain, (! [B:$i,A:($1 > $0)] : ((~ (sk2 @ (skl @ A) @B)) | (A @ B))),inference(
bool_ext, [status(thm)],[8])).
thf(14,plain, (! [B:($1i > $0),A:$i] : ((~ (sk2 @ (skl @ (~ [C:$i]l: ~ (B @ C))) @ A)) |
(~ (B @A)))),inference(prim_subst, [status(thm)],[9:[bind(A, $thf(~ [D:$i]: ~ (C @
D)))I).
thf(18,plain, (! [B:($i > $0),A:$i] : ((~ (B @ A)) | (~ (sk2 @ (skl @ (~ [C:$i]: ~ (B @
C))) @ A)))),inference(cnf, [status(esa)],[14])).
thf(20,plain, (! [B:($i > $0),A:$i] : ((~ (B @ A)) | (~ (sk2 @ (skl @ (~ [C:$i]: ~ (B @
C))) @ A)))),inference(simp, [status(thm)],[18])).
thf(963,plain, (! [B:($1i > $0),A:$i]: ((~ (B @ A)) | ((sk2 @ (skl @ (~ [C:$i]: ~ (B @ Q)
)) @A) '= (B@A)) | ~ ($true))),inference(eqfactor_ordered, [status(thm)],[20])).
thf(987,plain, ((~ (sk2 @ (skl @ (~ [A:$i]: ~ (sk2 @ A @ A))) @ (skl @ (~ [A:$i]: ~ (sk2
@A @A)))))),inference(pre_uni, [status(thm)],[963:[bind(A, $thf(skl @ (~ [C:$i]
~ (sk2 @ C @ C)))),bind(B, $thf(~ [C:$i]: (sk2 @ C @ C)))1])).
thf(1030,plain, (! [C:($1 > ($1 > $0)),B:($1 > $i),A:$i] : ((~ (C@QA @ (B@A))) | ((
sk2 @ (skl1 @ (C@A)) @ (B@A)) '= (sk2 @ (skl @ (~ [D:$i]: ~ (sk2@D @ D))) @ (
skl @ (~ [D:$i]: ~ (sk2 @ D @ D))))))),inference(paramod_ordered, [status(thm)
1,[356,987]1)).

174

Appendix C. Complete Leo-III Proofs

thf(1042,plain, ((~ (~ (sk2 @ (skl1 @ (™ [A:$i]: ~ (sk2 @ A @ A))) @ (skl @ (~ [A:$i]: ~
(sk2 @ A @ A))))))),inference(pre_uni, [status(thm)],[1030: [bind(A, $thf(skl @ (~ [
D:$i]: ~ (sk2 @ D @ D)))),bind(B, $thf(~ [D:$i]: (D))),bind(C, $thf(~ [D:$i,E:$i]:
~ (sk2 @ E @ E)))II)).

thf(1044,plain, ((sk2 @ (skl1 @ (~ [A:$i]: ~ (sk2 @ A@ A))) @ (skl @ (™~ [A:$i]l: ~ (sk2 @
A @ A))))),inference(cnf, [status(esa)],[1042])).

thf(1051,plain, ($false),inference(rewrite, [status(thm)],[1044,987])).

% SZS output end CNFRefutation for SY0037"1.p

175

Appendix C. Complete Leo-III Proofs

C.3. Proof of NUNO25"1

% SZS status Theorem for NUNO25”1.p : 6417 ms resp. 5077 ms w/o parsing

% SZS output start CNFRefutation for NUNOG25"1.p

thf(zero_type, type, zero: $i). thf(s_type, type, s: ($i > $i)).

thf(ite_type, type, ite: ($0 > ($i > ($i > $i)))).

thf(1,conjecture, (((! [A:$0,B:$1i,C:$i]: ((A) => ((ite@ A @B @C) =B)) & ! [A:$0,B:$1
,C:811: ((~ (A)) => ((ite@A @B @C) =0C)) & ! [A:$i]: ((s @A) !'=A)) = (? [A
:($1 > $i)]: (((A @ zero) = (s @ zero)) & ((A @ (s @ zero)) = zero) & ((A@ (s @ (
s @ zero))) = (s @ zero)))))),file(’/home/lex/TPTP/Problems/NUN/NUNO25"1.p’,n9)).

thf(2,negated_conjecture,~ ((! [A:$0,B:$1i,C:$i]: ((A) => ((ite @ A@B@C) =B)) & ! [
A:$0,B:$1,C:$1i]: ((~ (A)) => ((ite@A @B @C) =C)) & ! [A:$i]: ((s @ A) !'=A))
=> (? [A:($1 > $i)]: (((A @ zero) = (s @ zero)) & ((A @ (s @ zero)) = zero) & ((A
@ (s @ (s @ zero))) = (s @ zero))))),inference(neg_conjecture, [status(cth)],[1])).

thf(3,plain,~((! [A:$0,B:$1,C:$i]: (A => ((ite @ A@B @C) =B)) & ! [A:$0,B:$i,C:$i]

((~A) => ((ite@ A @B @C) =C)) & ! [A:$i]: ~ ((s @ A) = A)) => (? [A:($1 > $i)

1: (((A @ zero) = (s @ zero)) & ((A @ (s @ zero)) = zero) & ((A @ (s @ (s @ zero))
) = (s @ zero))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(4,plain,~ ((! [A:$0]: ((A) => (! [B:$i,C:$i]: ((ite @ A@B @ C) =B))) & ! [A:$0]:

((~ (A)) => (! [B:$i,C:$i]: ((ite@A @B @C) =0C))) &~ (? [A:$i]: ((s @A) =A

))) => (? [A:($1 > $1i)]: (((A @ zero) = (s @ zero)) & ((A @ (s @ zero)) = zero) &
((A@ (s @ (s @ zero))) = (s @ zero))))),inference(miniscope, [status(thm)],[3])).

thf(7,plain, (! [C:$i,B:$1i,A:$0] : (A | ((ite @ A@B @ C) = C))),inference(cnf, [status(
esa)l,[4])).

thf(13,plain, (! [C:$i,B:$i,A:$0] : (((ite @ A@B @ C) =C) | A)),inference(lifteq,[
status(thm)1,[7])).

thf(14,plain, (! [C:$1,B:$i,A:$0] : (((ite @ A@B @ C) = C) | A)),inference(simp, [
status(thm)],[13])).

thf(16,plain, (! [C:$0,B:$i,A:$i] : (((ite @ (~ (C)) @ A@B) =B) | (~ (C)))),inference
(prim_subst, [status(thm)]1, [14:[bind(A, $thf(~ (D)))1]1)).

thf(20,plain, (! [C:$0,B:$1i,A:$1i] : (~ (C) | ((ite @ (~ (C)) @ A @ B) = B))),inference(
cnf, [status(esa)],[16])).

thf(22,plain, (! [C:$0,B:$1i,A:$i] : (~ (C) | ((ite @ (~ (C)) @ A @ B) = B))),inference(
simp, [status(thm)],[20])).

thf(8,plain, (! [C:$i,B:$i,A:$0] : (~ (A) | ((ite @ A @B @ C) = B))),inference(cnf,[
status(esa)l, [4])).

thf(15,plain, (! [C:$1,B:$i,A:$0] : (((ite @ A@B @ C) =B) | ~ (A))),inference(lifteq
, [status(thm)1,([8])).
thf(5,plain, (! [A:($i > $i)] : ((~ ((A @ zero) = (s @ zero))) | (~ ((A@ (s @ zero)) =

zero)) | (~ ((A@ (s @ (s @ zero))) = (s @ zero))))),inference(cnf, [status(esa)
1,041)).

thf(9,plain, (! [A:($1 > $i)] : (((A @ zero) !'= (s @ zero)) | ((A @ (s @ zero)) != zero)

| ((A@ (s @ (s @ zero))) !'= (s @ zero)))),inference(lifteq, [status(thm)],[5])).

thf(10,plain, (! [A:($i > $i)] : (((A @ zero) != (s @ zero)) | ((A @ (s @ zero)) != zero
) | ((A@ (s @ (s @ zero))) != (s @ zero)))),inference(simp, [status(thm)],[9])).

thf(56,plain, (! [D:($i > $i),C:$1i,B:$i,A:$0] : (~ (A) | ((D @ zero) != (s @ zero)) | ((
D@ (s @zero)) !=zero) | (B != (s @ zero)) | ((ite@A@B@C) !'= (D@ (s@ (s
@ zero)))))),inference(paramod_ordered, [status(thm)],[15,10])).

thf(60,plain, (! [C:($i > $i),B:($1 > $i),A:($1 > $0)] : ((~ (A @ (s @ (s @ zero)))) |
((ite @ (A @ zero) @ (B @ zero) @ (C @ zero)) != (s @ zero)) | ((ite@ (A @ (s @
zero)) @ (B @ (s @ zero)) @ (C @ (s @ zero))) != zero) | ((B @ (s @ (s @ zero)))
!= (s @ zero)))),inference(pre_uni, [status(thm)], [56:[bind(A, $thf(E @ (s @ (s @
zero)))),bind(B, $thf(F @ (s @ (s @ zero)))),bind(C, $thf(G @ (s @ (s @ zero)))),
bind(D, $thf(~ [H:$i]: (ite @ (E@H) @ (F@H) @ (G @ H))))II)).

thf(74,plain, (! [C:($1 > $i),B:($1 > $i),A:($1 > $0)] : ((~ (A @ (s @ (s @ zero)))) |
((ite @ (A @ zero) @ (B @ zero) @ (C @ zero)) != (s @ zero)) | ((ite@ (A @ (s @

176

Appendix C. Complete Leo-III Proofs

zero)) @ (B @ (s @ zero)) @ (C @ (s @ zero))) != zero) | ((B@ (s @ (s @ zero)))
!= (s @ zero)))),inference(simp, [status(thm)],[60])).
thf(455,plain, (! [F:($i > $i),E:($1 > $i),D:($1i > $0),C:$1i,B:$i,A:$0] : (~ (A) | (~ (D
@ (s @ (s @zero)))) | (B!=(s@zero)) | ((ite@ (D@ (s @ zero)) @ (E@ (s @
zero)) @ (F @ (s @ zero))) != zero) | ((E@ (s @ (s @ zero))) != (s @ zero)) | ((
ite@A@B @C) !'= (ite @ (D @ zero) @ (E @ zero) @ (F @ zero))))),inference(
paramod_ordered, [status(thm)],[15,74])).
thf(507,plain, (! [C:($1 > $i),B:($1 > $i),A:($1 > $0)] : ((~ (A @ zero)) | (~ (A@ (s @
(s @ zero)))) | ((B @ zero) != (s @ zero)) | ((ite @ (A @ (s @ zero)) @ (B@ (s @
zero)) @ (C @ (s @ zero))) !'= zero) | ((B@ (s @ (s @ zero))) != (s @ zero)))),
inference(pre_uni, [status(thm)], [455:[bind(A, $thf(D @ zero)),bind(B, $thf(E @
zero)),bind(C, $thf(F @ zero))]])).
thf(557,plain, (! [C:($1i > $i),B:($1 > $i),A:($1 > $0)] : ((~ (A @ zero)) | (~ (A@ (s @
(s @ zero)))) | ((B @ zero) != (s @ zero)) | ((ite @ (A @ (s @ zero)) @ (B@ (s @
zero)) @ (C @ (s @ zero))) != zero) | ((B@ (s @ (s @ zero))) != (s @ zero)))),
inference(simp, [status(thm)], [507])).
thf(642,plain, (! [F:($1i > $i),E:($i > $i),D:($1i > $0),C:%$0,B:$i,A:$i] : (~ (C) | (~ (D
@ zero)) | (~ (D@ (s @ (s @ zero)))) | ((E@ zero) != (s @ zero)) | (B != zero)
((E@ (s @ (s @zero))) != (s @zero)) | ((ite@ (~ (C)) @ A@B) != (ite@ (D @
(s @ zero)) @ (E @ (s @ zero)) @ (F @ (s @ zero)))))),inference(paramod_ordered, [
status(thm)],[22,557])).
thf(687,plain, (! [C:($1 > $0),B:($i > $i),A:($1 > $i)] : ((~ (C @ (s @ zero))) | (~ (~
(C@zero))) | (~ (~(C@ (s@ (s@zero))))) | ((A@zero) != (s @ zero)) | ((B @

(s @ zero)) != zero) | ((A@ (s @ (s @ zero))) != (s @ zero)))),inference(pre_uni
, [status(thm)],[642:[bind(A, $thf(E @ (s @ zero))),bind(B, $thf(F @ (s @ zero))),
bind(C, $thf(G @ (s @ zero))),bind(D, $thf(~ [H:$i]: ~ (G @ H)))]11)).

thf(688,plain, (! [A:($i > $0)] : ((~ (~ (A @ (s @ (s @ zero))))) | (~ (~ (A @ zero))) |
(~ (A @ (s @ zero))))),inference(pre_uni, [status(thm)], [687: [bind(A, $thf(~ [D:$i
1: (s @ zero))),bind(B, $thf(~ [D:$i]: (zero))),bind(C, $thf(C))11)).

thf(731,plain, (! [A:($1 > $0)] : ((~ (A@ (s @ zero))) | (A@ zero) | (A@ (s @ (s @
zero))))),inference(cnf, [status(esa)], [688])).

thf(782,plain, (! [A:($1 > $0)] : ((~ (A @ (s @ zero))) | (A@ zero) | (A@ (s @ (s @
zero))))),inference(simp, [status(thm)],[731])).

thf(1422,plain, (! [A:($1 > $0)] : ((~ (A @ (s @ zero))) | (A@ zero) | ((A@ (s @ (s @
zero))) !'= (~ (A @ (s @ zero)))) | ~ ($true))),inference(eqfactor_ordered, [status(
thm)],[782])).

thf(1432,plain, ((~ ((s @ zero) = (s @ zero))) | ((s @ zero) = zero) | (((s @ zero) = (s
@ (s @ zero))) !'= (~ ((s @ zero) = (s @ zero)))) | ~ ($true)),inference(
replace_leibeq, [status(thm)],[1422:[bind (A, $thf(= @ $1i @ (s @ zero)))1]1)).

thf(1476,plain, (((s @ zero) != (s @ zero)) | ((s @ zero) = zero) | (((s @ zero) = (s @
(s @ zero))) != (~ ((s @ zero) = (s @ zero)))) | ~ ($true)),inference(lifteq, [
status(thm)],[1432])).

thf(1618,plain, (((s @ zero) = zero) | ((s @ zero) = (s @ (s @ zero)))),inference(simp, [
status(thm)],[1476])).

thf(1634,plain, (((s @ (s @ zero)) = (s @ zero)) | ((s @ zero) = zero)),inference(lifteq
, [status(thm)]1,[1618])).

thf(6,plain, (! [A:$i] : ((~ ((s @ A) = A)))),inference(cnf, [status(esa)],[4])).

thf(11,plain, (! [A:$i] : (((s @ A) != A))),inference(lifteq, [status(thm)],[6])).

thf(12,plain, (! [A:$i] : (((s @ A) != A))),inference(simp, [status(thm)],[11])).

thf(58,plain, (! [A:($i > $i)] : (((A @ zero) != (s @ zero)) | ((A @ (s @ zero)) != zero
) | ((A@ (s @ (s @zero))) != (s @zero)) | ((s @ zero) != (A @ zero)))),
inference(eqfactor_ordered, [status(thm)],[10])).

thf(69,plain, (((s @ zero) != (s @ zero)) | ((s @ zero) !'= zero)),inference(pre_uni, [
status(thm)],[58:[bind(A, $thf(~ [B:$i]: (s @ zero)))11)).

thf(71,plain, (((s @ zero) != zero)),inference(simp, [status(thm)],[69])).

thf(1834,plain, ($false),inference(simplifyReflect, [status(thm)],[1634,12,71])).

% SZS output end CNFRefutation for NUN©25"°1.p

177

Appendix C. Complete Leo-III Proofs

C4. Proof of SYN997"1

% SZS status Theorem for SYN997~1.p : 3332 ms resp. 1618 ms w/o parsing

% SZS output start CNFRefutation for SYN997"1.p

thf(skl_type, type, skl: ((($1i > $0) > $i) > ($1 > $0))).

thf(sk2_type, type, sk2: ((($1i > $0) > $i) > $i)).

thf(1,conjecture, ((? [A:(($i > $0) > $i)]1: ! [B:($i > $0)]1: ((? [C:$i]: (B @ C)) => (B
@ (A@B))))),file(’/home/lex/TPTP/Problems/SYN/SYN997~1.p’,conj)).

thf(2,negated_conjecture, ((~ (? [A:(($i > $0) > $i)]: ! [B:($1i > $0)]: ((? [C:$i]: (B @
C)) => (B @ (A@B)))))),inference(neg_conjecture, [status(cth)],[1])).

thf(3,plain, ((~ (7 [A:(($1 > $0) > $i)]: ! [B:(%$1 > $0)]: ((? [C:$i]: (B@C)) => (B @
(A @ (B))))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(5,plain, (! [A:(($1 > $0) > $i)] : ((skl @ (A) @ (sk2 @ (A))))),inference(cnf, [
status(esa)l,[3])).

thf(7,axiom, ((? [A:(($1i > $0) > $i)]: ! [B:($i > $0)]: ((? [C:$i]: (B @ C)) => (B @ (A
@ B))))),introduced(axiom_of_choice)).

thf(8,plain, (! [B:$i,A:(($1 > $0) > $i)] : ((~ (skl @ (A) @ B)) | (skl @ (A) @ (e+ [C:
$i]: (skl @ (A) @ C))))),inference(choice, [status(esa)],[7])).

thf(4,plain, (! [A:(($1 > $0) > $i)] : ((~ (skl @ (A) @ (A @ (skl @ (A))))))),inference(
cnf, [status(esa)],[3])).

thf(13,plain, (! [C:(($1 > $0) > $i),B:$1,A:(($1 > $0) > $i)] : ((~ (skl @ (A) @ B)) |
((skl @ (A) @ (@+ [D:$i]: (skl @ (A) @ D))) != (skl @ (C) @ (C @ (skl @ (C))))))),
inference(paramod_ordered, [status(thm)]1,[8,4])).

thf(16,plain, (! [A:$i] : ((~ (skl @ (~ [P: $i > $0]: (@+ [X: $il: (P @ X))) @ A)))),
inference(pre_uni, [status(thm)],[13:[bind(A, $thf((~ [P: $i > $o0]: (@+ [X: $i]: (P
@ X))))),bind(B, $thf(B)),bind(C, $thf((~ [P: $i > $0]: (@+ [X: $il: (P @ X)))))

thf(18,plain, (! [A:$i] : ((~ (skl @ ((~ [P: $i > $o]: (@+ [X: $i]: (P @ X)))) @ A)))),
inference(simp, [status(thm)]1,[16])).

thf(19,plain, (! [B:$i,A:(($i > $0) > $i)] : (((skl @ (A) @ (sk2 @ (A))) != (skl @ ((~ [
P: $i > $0]: (@+ [X: $i]: (P @ X)))) @ B)))),inference(paramod_ordered, [status(thm
)1,15,18])).

thf(20,plain, ($false),inference(pattern_uni, [status(thm)],[19:[bind(A, $thf((~ [P: $i >
$0]: (@+ [X: $i]: (P @ X))))),bind(B, $thf(sk2 @ ((~ [P: $i > $o]: (@+ [X: $i]: (
P@X))))))1).

% SZS output end CNFRefutation for SYN997"°1.p

178

Appendix C. Complete Leo-III Proofs

C.5. Proof of SY0548"1

% SZS status Theorem for SY0548”1.p : 1352 ms resp. 696 ms w/o parsing

% SZS output start CNFRefutation for SY0548”1.p

thf(sk3_type, type, sk3: ($i > $0)).

thf(sk4_type, type, sk4: $i).

thf(1,conjecture, ((? [A:(($i > $0) > $i)]1: ! [B:($i > $0)]1: ((? [C:$i]: ~ (B @ C)) =>
(~(B@ (A@B)))))),file(’'/home/lex/TPTP/Problems/SY0/SY0548~1.p’,choicecomp)).

thf(2,negated_conjecture, ((~ (? [A:(($1 > $0) > $i)]: ! [B:($i > $0)]1: ((? [C:$i]: ~ (B
@C)) =>(~(B@ (A@B))))))),inference(neg_conjecture, [status(cth)],[1])).

thf(3,plain, ((~ (7 [A:(($1 > $0) > $i)]: ! [B:($1 > $0)]: ((? [C:$i]l: ~ (B @ C)) => (~
(B@ (A @ (B)))))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(5,plain, ((~ (! [A:($1 > $0)]: ((? [B:$i]: ~ (A @B)) => (~ (A @ (@+ [B:$i]: ~ (A @
B)))))))),inference(instance, [status(thm)],[3])).

thf(9,plain, ((~ (! [A:($1 > $0)]: ((~ (! [B:$i]l: (A @B))) => (~ (A @ (@+ [B:$i]: ~ (A
@B)))))))),inference(miniscope, [status(thm)],[5])).

thf(11,plain, ((~ (sk3 @ sk4))),inference(cnf, [status(esa)l,[9])).

thf(16,axiom, ((? [A:(($i > $0) > $i)]: ! [B:($i > $0)]: ((? [C:$i]: (B@C)) == (B @ (A
@ B))))),introduced(axiom_of_choice)).

thf(21,plain, (! [A:$1i] @ ((~ (~ (sk3 @ A))) | (~ (sk3 @ (@+ [B:$i]: ~ (sk3 @ B)))))),
inference(choice, [status(esa)],[16])).

thf(23,plain, (! [A:$1i] : ((~ (sk3 @ (@+ [B:$i]: ~ (sk3 @ B)))) | (sk3 @ A))),inference(
cnf, [status(esa)],[21])).

thf(10,plain, ((sk3 @ (@+ [A:$i]: ~ (sk3 @ A)))),inference(cnf, [status(esa)],[9])).

thf(24,plain, (! [A:$1i] : (~ ($true) | (sk3 @ A))),inference(rewrite, [status(thm)
1,[23,10])).

thf(25,plain, (! [A:$i] : ((sk3 @ A))),inference(simp, [status(thm)],[24])).

thf(27,plain, (~ ($true)),inference(rewrite, [status(thm)],[11,25])).

thf(28,plain, ($false),inference(simp, [status(thm)],[27])).

% SZS output end CNFRefutation for SY0548"71.p

179

Appendix C. Complete Leo-III Proofs

C.6. Proof of SY0519"1

% SZS status Theorem for SY0519”1.p : 2780 ms resp. 1407 ms w/o parsing
% SZS output start CNFRefutation for SY0519”°1.p
thf(skl_type, type, skl: $i).
thf(sk2_type, type, sk2: $i).
thf(11,axiom, ((? [A:(($1 > $0) > $i)]: ! [B:($1i > $0)]: ((? [C:$i]: (B@ C)) => (B @ (A
@ B))))),introduced(axiom_of_choice)).
thf(13,plain, (! [A:$i] : ((~ (((sk2 = skl) => (A = sk2)) & (A = skl))) | (((sk2 = skl)
=> ((@+ [B:$i]: (((sk2 = skl) => (B = sk2)) & (B = skl1))) = sk2)) & ((@+ [B:$i]:
(((sk2 = skl) => (B = sk2)) & (B = skl))) = skl)))),inference(choice, [status(esa)
1,[11])).
thf(19,plain, (! [A:$i] : (((@+ [B:$il: (((sk2 = skl) => (B = sk2)) & (B = skl))) = skl)
| (sk2 = skl) | (~ (A = skl)))),inference(cnf,[status(esa)],[13])).
thf(34,plain, (! [A:$i] : (((@+ [B:$il: (((sk2 = skl) => (B = sk2)) & (B = skl))) = skl)
| (sk2 = skl) | (A != skl))),inference(lifteq, [status(thm)],[19])).
thf(35,plain, (((@+ [A:$i]l: (((sk2 = sk1) => (A = sk2)) & (A = sk1))) = skl) | (sk2 =
skl)),inference(simp, [status(thm)],[34]1)).
thf(1,conjecture, ((! [A:$1i,B:$i]: ? [C:($1 > $i)]: (((C @A) =B) & ((C@B) =A)))),
file(’/home/lex/TPTP/Problems/SY0/SY0519~1.p’,ifi)).
thf(2,negated_conjecture, ((~ (! [A:$i,B:$i]: ? [C:($1 > $i)]: (((C @ A) =B) & ((C @ B)
= A))))),inference(neg_conjecture, [status(cth)],[1])).
thf(3,plain, ((~ (! [A:$1,B:$i]l: ? [C:($1 > $i)]: (((C @ A) = B) & ((C @ B) = A))))),
inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).
thf(4,plain, (! [A:($1 > $1i)] : ((~ ((A @ skl) = sk2)) | (~ ((A @ sk2) = skl1)))),
inference(cnf, [status(esa)l,[3])).
thf(5,plain, (! [A:($1 > $i)] : (((A @ skl) != sk2) | ((A @ sk2) != skl))),inference(
lifteq, [status(thm)],[4])).
thf(7,plain, (! [A:($1 > $1i)] : (((A @ skl) !=sk2) | ((A @ sk2) !=sk2) | ((A @ skl)
skl))),inference(eqfactor_ordered, [status(thm)], [5])).
thf(9,plain, ((sk2 != skl)),inference(pre_uni,[status(thm)]1,[7:[bind(A, $thf(~ [B:$i]: (
B)))11)).
thf(8,plain, (((@+ [A:$i]: (((skl = skl) => (A = sk2)) & ((skl
sk2) | ((@+ [A:$i]: (((sk2 = skl) => (A = sk2)) & ((sk2
skl)),introduced(choice_instance)).
thf(10,plain, (((@+ [A:$i]: ((A = sk2) & ((skl = sk2) => (A = skl)))) != sk2) | ((e+ [A:
$il: (((sk2 = skl) => (A = sk2)) & (A = skl))) != skl)),inference(simp, [status(thm
)1,081)).
thf(12,plain, (! [A:$1i] @ ((~ ((A = sk2) & ((skl
((B = sk2) & ((skl = sk2) => (B = skl))))
B = sk2) & ((skl = sk2) => (B = skl)))) =
1,[11]1)).
thf(17,plain, (! [A:$i] : (((@+ [B:$i]l: ((B = sk2) & ((skl = sk2) => (B = skl)))) = sk2)
| (~ (A =sk2)) | (skl = sk2))),inference(cnf,[status(esa)],[12])).
thf(28,plain, (! [A:$i] : (((@+ [B:$i]: ((B = sk2) & ((skl = sk2) => (B = skl)))) = sk2)
| (A !'=sk2) | (sk2 = skl))),inference(lifteq, [status(thm)],[17])).
thf(29,plain, (((@+ [A:$i]l: ((A = sk2) & ((skl = sk2) => (A = skl1)))) = sk2) | (sk2 =
skl)),inference(simp, [status(thm)],[28])).
thf(38,plain, (((@+ [A:$i]: ((A = sk2) & ((skl = sk2) => (A = skl)))) = sk2)),inference(
simplifyReflect, [status(thm)],[29,9])).
thf(39,plain, ((sk2 !'= sk2) | ((@+ [A:$i]: (((sk2 = skl) => (A = sk2)) & (A = skl))) !=
skl)),inference(rewrite, [status(thm)],[10,38])).
thf(40,plain, (((@+ [A:$i]: (((sk2 = skl) => (A = sk2)) & (A = sk1))) != skl)),inference
(simp, [status(thm)]1,[39])).
thf(48,plain, ($false),inference(simplifyReflect, [status(thm)],[35,9,401)).
% SZS output end CNFRefutation for SY05197°1.p

sk2) => (A = skl)))) !=
sk2) => (A = skl)))) !=

sk2) => (A = skl1)))) | (((e+ [B:$i]:
sk2) & ((skl = sk2) => ((@+ [B:$i]l: ((
skl))))),inference(choice, [status(esa)

180

Appendix C. Complete Leo-III Proofs

C.7. Proof of modified NUN025"1 (Ex. Eg)

% SZS status Theorem for - : 2992 ms resp. 2247 ms w/o parsing
% SZS output start CNFRefutation for -
thf(zero_type, type, zero: $i).
thf(s_type, type, s: ($i > $i)).
thf(33,axiom, ((? [A:(($1 > $0) > $i)]: ! [B:($i > $0)]: ((? [C:$i]: (B@ C)) => (B @ (A
@ B))))),introduced(axiom_of_choice)).
thf(35,plain, (! [A:$i] : ((~ ((((s @ zero) = zero) => (A = (s @ zero))) & (A = zero) &
(((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) | ((((s @ zero) = zero) =>
((@+ [B:$i]: ((((s @ zero) = zero) => (B = (s @ zero))) & (B = zero) & (((s @
zero) = (s @ (s @ zero))) => (B = (s @ zero))))) = (s @ zero))) & ((@+ [B:$i]
((((s @ zero) = zero) => (B = (s @ zero))) & (B = zero) & (((s @ zero) = (s @ (s @
zero))) => (B = (s @ zero))))) = zero) & (((s @ zero) = (s @ (s @ zero))) => ((@+
[B:$i]: ((((s @ zero) = zero) => (B = (s @ zero))) & (B = zero) & (((s @ zero) =
(s @ (s @ zero))) => (B = (s @ zero))))) = (s @ zero)))))),inference(choice, [
status(esa)l,[33])).
thf(62,plain, (! [A:$i] : (((@+ [B:$i]: ((((s @ zero) = zero) => (B = (s @ zero))) & (B
= zero) & (((s @ zero) = (s @ (s @ zero))) => (B = (s @ zero))))) = zero) | ((s @
zero) = zero) | (~ (A = zero)) | ((s @ zero) = (s @ (s @ zero))))),inference(cnf, [
status(esa)l,[35])).
thf(149,plain, (! [A:$i] : (((@+ [B:$i]l: ((((s @ zero) = zero) => (B = (s @ zero))) & (B
= zero) & (((s @ zero) = (s @ (s @ zero))) => (B = (s @ zero))))) = zero) | ((s @
zero) = zero) | (A != zero) | ((s @ (s @ zero)) = (s @ zero)))),inference(lifteq
, [status(thm)],[62])).
thf(150,plain, (((@+ [A:$i]: ((((s @ zero) = zero) => (A = (s @ zero))) & (A = zero) &
(((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) = zero) | ((s @ zero) =
zero) | ((s @ (s @ zero)) = (s @ zero))),inference(simp, [status(thm)],[149])).
thf(13,plain, (((@+ [A:$i]: (((zero = zero) => (A = (s @ zero))) & ((zero = (s @ zero))
=> (A = zero)) & ((zero = (s @ (s @ zero))) => (A = (s @ zero))))) !'= (s @ zero))
| ((@+ [A:$i]: ((((s @ zero) = zero) => (A = (s @ zero))) & (((s @ zero) = (s @
zero)) => (A = zero)) & (((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) !=
zero) | ((@+ [A:$i]: ((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s @ (s
@ zero)) = (s @ zero)) => (A = zero)) & (((s @ (s @ zero)) = (s @ (s @ zero))) =>
(A= (s @ zero))))) != (s @ zero))),introduced(choice_instance)).
thf(17,plain, (((@+ [A:$i]: ((A = (s @ zero)) & ((zero = (s @ zero)) => (A = zero)) & ((
zero = (s @ (s @ zero))) => (A = (s @ zero))))) != (s @ zero)) | ((@+ [A:$il: ((((
s @ zero) = zero) => (A = (s @ zero))) & (A = zero) & (((s @ zero) = (s @ (s @
zero))) => (A = (s @ zero))))) != zero) | ((@+ [A:$i]: ((((s @ (s @ zero)) = zero)
=> (A= (s @zero))) & (((s @ (s @ zero)) = (s @ zero)) => (A = zero)) & (A = (s
@ zero)))) != (s @ zero))),inference(simp, [status(thm)],[13])).
thf(34,plain, (! [A:$i] : ((~ ((A = (s @ zero)) & ((zero = (s @ zero)) => (A = zero)) &
((zero = (s @ (s @ zero))) => (A = (s @ zero))))) | (((@+ [B:$il: ((B = (s @ zero)
) & ((zero = (s @ zero)) => (B = zero)) & ((zero = (s @ (s @ zero))) => (B = (s @
zero))))) = (s @ zero)) & ((zero = (s @ zero)) => ((@+ [B:$i]: ((B = (s @ zero)) &
((zero = (s @ zero)) => (B = zero)) & ((zero = (s @ (s @ zero))) => (B = (s @
zero))))) = zero)) & ((zero = (s @ (s @ zero))) => ((@+ [B:$i]: ((B = (s @ zero))
)) =
)

)

& ((zero = (s @ zero)) => (B = zero)) & ((zero = (s @ (s @ zero) > (B=(se
zero))))) = (s @ zero)))))),inference(choice, [status(esa)], [33])
thf(43,plain, (! [A:$i] : (((@+ [B:$il: ((B = (s @ zero)) & ((zero = (s @ zero)) => (B =
zero)) & ((zero = (s @ (s @ zero))) => (B = (s @ zero))))) = (s @ zero)) | (~ (A
= (s @ zero))) | (zero = (s @ zero)) | (~ (A= (s @ zero))))),inference(cnf, [
status(esa)], [34])).
thf(133,plain, (! [A:$i] : (((@+ [B:$i]: ((B = (s @ zero)) & ((zero = (s @ zero)) => (B
= zero)) & ((zero = (s @ (s @ zero))) => (B = (s @ zero))))) = (s @ zero)) | (A !=
(s @ zero)) | ((s @ zero) = zero) | (A != (s @ zero)))),inference(lifteq, [status(

181

Appendix C. Complete Leo-III Proofs

thm)1,[43]1)).
thf(134,plain, (((@+ [A:$i]: ((A = (s @ zero)) & ((zero
((zero = (s @ (s @ zero))) => (A = (s @ zero)))))
zero)),inference(simp, [status(thm)],[133])).
thf(1l,conjecture, (((! [A:$i]: ((s @ A) != A)) => (? [A:($1 > $i)]: (((A @ zero) = (s @
zero)) & ((A @ (s @ zero)) = zero) & ((A @ (s @ (s @ zero))) = (s @ zero)))))),
file(’-",n9)).
thf(2,negated_conjecture, ((~ ((! [A:$i]: ((s @ A) != A)) => (? [A:($1 > $i)]: (((A @
zero) = (s @ zero)) & ((A @ (s @ zero)) = zero) & ((A@ (s @ (s @ zero))) = (s @
zero))))))),inference(neg_conjecture, [status(cth)],[1])).
thf(3,plain, ((~ ((! [A:$i]: ~ ((s @ A) = A)) => (? [A:($1 > $i)]: (((A @ zero) = (s @
zero)) & ((A @ (s @ zero)) = zero) & ((A @ (s @ (s @ zero))) = (s @ zero))))))),
inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).
thf(4,plain, ((~ ((~ (? [A:$i]: ((s @ A) = A))) => (? [A:($1i > $i)]: (((A @ zero) = (s @
zero)) & ((A @ (s @ zero)) = zero) & ((A @ (s @ (s @ zero))) = (s @ zero))))))),
inference(miniscope, [status(thm)1,[31)).
thf(5,plain, (! [A:($1 > $i)] : ((~ ((A @ zero) = (s @ zero))) | (~ ((A @ (s @ zero)) =
zero)) | (~ ((A@ (s @ (s @ zero))) = (s @ zero))))),inference(cnf, [status(esa)
1,041)).
thf(7,plain, (! [A:($1 > $i)] : (((A @ zero) !'= (s @ zero)) | ((A @ (s @ zero)) != zero)
| ((A@ (s @ (s @ zero))) !'= (s @ zero)))),inference(lifteq, [status(thm)],[5])).
thf(8,plain, (! [A:($1 > $i)] : (((A @ zero) != (s @ zero)) | ((A @ (s @ zero)) != zero)
| ((A@ (s @ (s @zero))) !'= (s @ zero)))),inference(simp, [status(thm)],[7])).
thf(11,plain, (! [A:($1i > $i)] : (((A @ zero) != (s @ zero)) | ((A @ (s @ zero)) != zero
) | ((A@ (s @ (s @ zero))) != (s @ zero)) | ((s @ zero) != (A @ zero)))),
inference(eqfactor_ordered, [status(thm)],[8])).
thf(15,plain, (((s @ zero) != (s @ zero)) | ((s @ zero) != zero)),inference(pre_uni, [
status(thm)1,[11:[bind(A, $thf(” [B:$il: (s @ zero)))11)).
thf(16,plain, (((s @ zero) != zero)),inference(simp, [status(thm)],[15])).
thf(153,plain, (((@+ [A:$i]: ((A = (s @ zero)) & ((zero = (s @ zero)) => (A = zero)) &
((zero = (s @ (s @ zero))) => (A = (s @ zero))))) = (s @ zero))),inference(
simplifyReflect, [status(thm)],[134,16])).
thf(154,plain, (((s @ zero) !'= (s @ zero)) | ((@+ [A:$i]: ((((s @ zero) = zero) => (A =
(s @ zero))) & (A = zero) & (((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero)))
) != zero) | ((@+ [A:$i]: ((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s
@ (s @ zero)) = (s @ zero)) => (A = zero)) & (A = (s @ zero)))) != (s @ zero))),
inference(rewrite, [status(thm)],[17,153])).
thf(155,plain, (((@+ [A:$i]l: ((((s @ zero) = zero) => (A = (s @ zero))) & (A = zero) &
(((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) !'= zero) | ((@+ [A:$i]:
((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s @ (s @ zero)) = (s @ zero)
) => (A = zero)) & (A= (s @ zero)))) !'= (s @ zero))),inference(simp, [status(thm)
1,[154])).
thf(36,plain, (! [A:$i] : ((~ ((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s @

(s @ zero)) => (A = zero)) &
(s @ zero)) | ((s @ zero) =

)

(s @ zero)) = (s @ zero)) => (A = zero)) & (s @ zero)))) | ((((s @ (s @ zero)
) = zero) => ((@+ [B:$i]: ((((s @ (s @ zero zero) => (B = (s @ zero))) & (((s
@ (s @ zero)) = (s @ zero)) => (B = zero)) & (B = (s @ zero)))) = (s @ zero))) &
(((s @ (s @ zero)) = (s @ zero)) => ((@+ [B:$i]: ((((s @ (s @ zero)) = zero) => (B
= (s @ zero))) & (((s @ (s @ zero)) = (s @ zero)) => (B = zero)) & (B = (s @ zero
)))) = zero)) & ((@+ [B:$i]: ((((s @ (s @ zero)) = zero) => (B = (s @ zero))) &
(((s @ (s @ zero)) = (s @ zero)) => (B = zero)) & (B = (s @ zero)))) = (s @ zero))
))),inference(choice, [status(esa)],[33])).
thf(74,plain, (! [A:$i] : (((@+ [B:$il: ((((s @ (s @ zero)) = zero) => (B = (s @ zero)))

=z

& (((s @ (s @ zero)) = (s @ zero)) => (B = zero)) & (B = (s @ zero)))) (s @
zero)) | (~ (A= (s @ zero))) | ((s @ (s @ zero)) = (s @ zero)) | (~ (A= (s @
zero))))),inference(cnf, [status(esa)], [36])).

thf(91,plain, (! [A:$1i] : (((@+ [B:$il: ((((s @ (s @ zero)) = zero) => (B = (s @ zero)))

& (((s @ (s @ zero)) = (s @ zero)) => (B = zero)) & (B = (s @ zero)))) = (s @

zero)) | (A !'= (s @ zero)) | ((s @ (s @ zero)) = (s @ zero)) | (A !'= (s @ zero))))

182

Appendix C. Complete Leo-III Proofs

,inference(lifteq, [status(thm)],[74])).

thf(92,plain, (((@+ [A:$i]: ((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s @ (s
@ zero)) = (s @ zero)) => (A = zero)) & (A = (s @ zero)))) = (s @ zero)) | ((s @
(s @ zero)) = (s @ zero))),inference(simp, [status(thm)],[91])).

thf(6,plain, (! [A:$i] : ((~ ((s @ A) = A)))),inference(cnf,[status(esa)l,[4])).

thf(9,plain, (! [A:$i] : (((s @ A) !'= A))),inference(lifteq, [status(thm)],[6])).

thf(372,plain, (((@+ [A:$i]: ((((s @ (s @ zero)) = zero) => (A = (s @ zero))) & (((s @ (
s @ zero)) = (s @ zero)) => (A = zero)) & (A = (s @ zero)))) = (s @ zero))),
inference(simplifyReflect, [status(thm)]1,[92,9]1)).

thf(373,plain, (((@+ [A:$i]: ((((s @ zero) = zero) => (A = (s @ zero))) & (A = zero) &
(((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) !'= zero) | ((s @ zero) !=
(s @ zero))),inference(rewrite, [status(thm)],[155,372])).

thf(374,plain, (((@+ [A:$i]: ((((s @ zero) = zero) => (A = (s @ zero))) & (A = zero) &
(((s @ zero) = (s @ (s @ zero))) => (A = (s @ zero))))) != zero)),inference(simp, [
status(thm)],[373])).

thf(446,plain, ($false),inference(simplifyReflect, [status(thm)],[150,374,9,16])).

% SZS output end CNFRefutation for -

183

Appendix C. Complete Leo-III Proofs

C.8. Proof of Polymorphic Cantor

% SZS status Theorem for sur_cantor_thl.p : 1948 ms resp. 1293 ms w/o parsing

% SZS output start CNFRefutation for sur_cantor_thl.p

thf(sktl_type, type, sktl: $tType).

thf(skl_type, type, skl: (sktl > (sktl > $0))).

thf(sk2_type, type, sk2: ((sktl > $o0) > sktl)).

thf(1l,conjecture, ((! [TA: $tTypel: (~ (? [A:(TA > (TA > $0))]: ! [B:(TA > $0)]1: ? [C:TA
1: ((A@C) =B))))),file(’/home/lex/dev/Leo-III/src/test/resources/thl/
sur_cantor_thl.p’,sur_cantor)).

thf(2,negated_conjecture, ((~ (! [TA: $tTypel: (~ (? [A:(TA > (TA > $0))]: ! [B:(TA > %o
)1: ? [C:TA]: ((A@C) =B)))))),inference(neg_conjecture, [status(cth)],[1])).

thf(3,plain, ((~ (! [TA: $tTypel: (~ (? [A:(TA > (TA > $0))]: ! [B:(TA > $0)]1: ? [C:TA]:

((A@C) =(B))))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[2])).

thf(4,plain, (! [A:(sktl > $0)] : (((skl @ (sk2 @ A)) = (A)))),inference(cnf, [status(esa
)1,031)).

thf(5,plain, (! [A:(sktl > $0)] : (((skl @ (sk2 @ A)) = (A)))),inference(lifteq, [status(
thm)1,[4])).

thf(6,plain, (! [B:sktl,A:(sktl > $0)] : (((skl @ (sk2 @ (A)) @ B) = (A @B)))),
inference(func_ext, [status(esa)], [5])).

thf(8,plain, (! [B:sktl,A:(sktl > $0)] : ((skl @ (sk2 @ (A)) @ B) | (~ (A @B)))),
inference(bool_ext, [status(thm)],[6])).

thf(198,plain, (! [B:sktl,A:(sktl > $0)] : ((skl @ (sk2 @ (A)) @B) | ((A@B) != (~ (
skl @ (sk2 @ (A)) @ B))) | ~ ($true))),inference(eqfactor_ordered, [status(thm)
1,081)).

thf(217,plain, ((skl @ (sk2 @ (~ [A:sktl]: ~ (skl @ A @ A))) @ (sk2 @ (~ [A:sktl]l: ~ (
skl @ A @ A))))),inference(pre_uni, [status(thm)],[198: [bind(A, $thf(~ [C:sktl]: ~
(skl @ C@C))),bind(B, $thf(sk2 @ (~ [C:sktl]: ~ (skl@ C@ C))))Il])).

thf(7,plain, (! [B:sktl,A:(sktl > $0)] : ((~ (skl @ (sk2 @ (A)) @B)) | (A @ B))),
inference(bool_ext, [status(thm)],[6])).

thf(17,plain, (! [B:sktl,A:(sktl > $0)] : ((~ (skl @ (sk2 @ (A)) @ B)) | ((A@B) != (~
(skl @ (sk2 @ (A)) @ B))) | ~ ($true))),inference(eqfactor_ordered, [status(thm)
1,[71)) .

thf(29,plain, ((~ (skl @ (sk2 @ (~ [A:sktl]: ~ (skl1 @ A @ A))) @ (sk2 @ (~ [A:sktl]: ~ (
skl @ A @ A)))))),inference(pre_uni, [status(thm)],[17:[bind(A, $thf(~ [C:sktl]: ~
(skl @ C @ C))),bind(B, $thf(sk2 @ (~ [C:sktl]: ~ (skl @ C@ C))))I])).

thf(225,plain, ($false),inference(rewrite, [status(thm)],[217,29])).

thf(226,plain, ($false),inference(simp, [status(thm)]1,[225])).

% SZS output end CNFRefutation for sur_cantor_thl.p

184

Appendix C. Complete Leo-III Proofs

C.9. Proof of SEV485°1

% SZS status Theorem for SEV485°1.p : 2804 ms resp. 1152 ms w/o parsing

% SZS output start CNFRefutation for SEV485°1.p

thf(’type/nums/num_type’, type, 'type/nums/num’: $tType).

thf(’const/sets/UNIV_type’, type, ’'const/sets/UNIV’': !>[TA: $tTypel: (TA > $0)).

thf(’const/sets/HAS_SIZE type’, type, ’'const/sets/HAS_SIZE': !>[TA: $tTypel: ((TA > $o0)
> ('type/nums/num’ > $0))).

thf(’const/sets/FINITE type’, type, ’'const/sets/FINITE': !>[TA: $tTypel: ((TA > $0) >
$0)).

thf(’const/sets/CARD_type’, type, ’'const/sets/CARD’: !>[TA: $tTypel: ((TA > $0) > ’"type
/nums/num’)) .

thf(’const/nums/NUMERAL_type’, type, ’const/nums/NUMERAL’: (’'type/nums/num’ > 'type/
nums/num’)) .

thf(’const/nums/BIT1 type’, type, ’'const/nums/BIT1’: ’type/nums/num’>’type/nums/num’).

thf(’const/nums/BITO_type’, type, 'const/nums/BITO’: ’type/nums/num’>’type/nums/num’).

thf(’const/nums/_0_type’, type, ’const/nums/_0': ’'type/nums/num’).

thf(3,axiom, ((’'const/sets/HAS_SIZE' @ $0 @ (’'const/sets/UNIV’ @ $0) @ (’const/nums/
NUMERAL’ @ ('const/nums/BITO’ @ ('const/nums/BIT1’ @ 'const/nums/_0'))))),file(’/
home/lex/TPTP/TH1/SEV/SEV485~1.p', 'thm/sets/HAS_SIZE_BOOL_")).

thf(6,plain, (('const/sets/HAS_SIZE’ @ $o0 @ ('const/sets/UNIV’ @ $0) @ (’'const/nums/
NUMERAL' @ (’const/nums/BITO’ @ ('const/nums/BIT1’ @ ’'const/nums/_0'))))),
inference(defexp_and_simp_and_etaexpand, [status(thm)],[3])).

thf(4,axiom, (('[TA: $tTypel: (! [A:(TA > $0),B:’type/nums/num’]: ((’'const/sets/HAS_SIZE
"@TA @A @B) = (('const/sets/FINITE' @ TA @ A) & (('const/sets/CARD’ @ TA @ A)
=B)))))),file(’'/home/lex/TPTP/TH1/SEV/SEV485~1.p’, "thm/sets/HAS_SIZE_")).

thf(7,plain, ((![TA: $tTypel: (! [A:(TA > $0),B:’type/nums/num’]: (('const/sets/HAS_SIZE
"@TA @ (A) @ B) = (('const/sets/FINITE’ @ TA @ A) & (('const/sets/CARD’ @ TA @ A
) = B)))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[4])).

thf(8,plain, (! [TA:$tType,B: type/nums/num’,A: (TA > $0)] : (((’'const/sets/HAS_SIZE’' @ TA
@ (A) @ B) = (('const/sets/FINITE' @ TA @ (A)) & (('const/sets/CARD" @ TA @ (A))
= B))))),inference(cnf, [status(esa)],[7])).

thf(9,plain, (! [TA:$tType,B: 'type/nums/num’,A: (TA > $0)] : (((('const/sets/FINITE’ @ TA
@ (A)) & (('const/sets/CARD’ @ TA @ (A)) = B)) = (’'const/sets/HAS_SIZE’' @ TA @ (A)
@ B)))),inference(lifteq, [status(thm)],[8])).

thf(11,plain, (! [TA:$tType,B: 'type/nums/num’,A: (TA > $0)] : (((’const/sets/FINITE’ @ TA
@ (A)) & (('const/sets/CARD’ @ TA @ (A)) =B)) | (~ ('const/sets/HAS_SIZE' @ TA @
(A) @ B)))),inference(bool_ext, [status(thm)],[9])).

thf(14,plain, ! [TA:$tType,B: 'type/nums/num’ ,A: (TA > $0)]1: ((~ (’'const/sets/HAS_SIZE' @
TA @A @B)) | ('const/sets/FINITE'’ @ TA @ A)),inference(cnf, [status(esa)],[11])).

thf(23,plain, (! [TA:$tType,B: 'type/nums/num’,A: (TA > $0)]: ((’'const/sets/FINITE’ @ TA @
A) | ((’'const/sets/HAS_SIZE’' @ $0 @ ('const/sets/UNIV’ @ $0) @ (’const/nums/
NUMERAL’ @ (’const/nums/BITO’ @ (’const/nums/BIT1’ @ ’'const/nums/_0')))) != ('
const/sets/HAS_SIZE’ @ TA @ A @ B)))),inference(paramod_ordered, [status(thm)
1,06,14])).

thf(24,plain, 'const/sets/FINITE’ @ $0 @ (’'const/sets/UNIV’' @ $o),inference(pattern_uni
, [status(thm)],[23:[bind(A, $thf(’'const/sets/UNIV’' @ $0)),bind(B, $thf(’const/nums
/NUMERAL’ @ (’const/nums/BITO’ @ (’const/nums/BIT1’ @ 'const/nums/_0"))))11)).

thf(1,conjecture, ((’const/sets/FINITE’ @ $0 @ (’'const/sets/UNIV’ @ $0))),file(’/home/
lex/TPTP/TH1/SEV/SEV485~1.p’, "thm/sets/FINITE_BOOL_")).

thf(2,negated_conjecture, ((~ (’'const/sets/FINITE’ @ $0 @ ('const/sets/UNIV’' @ $0)))),
inference(neg_conjecture, [status(cth)],[1])).

thf(5,plain, ((~ (’'const/sets/FINITE’ @ $0 @ ('const/sets/UNIV' @ $0)))),inference(
defexp_and_simp_and_etaexpand, [status(thm)], [2])).

thf(26,plain, ($false),inference(simplifyReflect, [status(thm)],[24,5])).

% SZS output end CNFRefutation for SEV485”°1.p

185

Appendix C. Complete Leo-III Proofs

C.10. Proof of the Barcan Formula

% SZS status Theorem for bf.p : 2722 ms resp. 1054 ms w/o parsing
% SZS output start CNFRefutation for bf.p
thf(mworld_type, type, mworld: $tType).
thf(mrel_type, type, mrel: (mworld > (mworld > $0))).
thf(mvalid_type, type, mvalid: ((mworld > $0) > $0)).
thf(mvalid_def, definition, (mvalid = (~[A: mworld > $o0]: (![B: mworld]: (A @ B))))).
thf(mimplies_type, type, mimplies: ((mworld > $0) > ((mworld > $0) > (mworld > $0)))).
thf(mimplies_def, definition, (mimplies = (~ [A:(mworld > $0),B:(mworld > $0),C:mworld
I: ((A@C) == (B@())))).
thf(mbox_type, type, mbox: ((mworld > $0) > (mworld > $0))).
thf(mbox_def, definition, (mbox = (~ [A:(mworld > $0),B:mworld]: ! [C:mworld]: ((mrel @
B@C) =>(Ae())))).
thf(eiw__d_i_type, type, eiw__d_i: ($i > (mworld > $0))).
thf(mforall_vary__d_i_type, type, mforall_vary__d_i: (($i > (mworld > $0)) > (mworld >
$0))).
thf(mforall_vary__d_i def, definition, (mforall_vary__d_i = (* [A:($1i > (mworld > $0)),
B:mworld]: ! [C:$i]: ((eiw._d_i@C@B) == (A@C@B))))).
thf(p_type, type, p: ($1i > (mworld > $0))).
thf(skl_type, type, skl: mworld).
thf(sk2_type, type, sk2: mworld).
thf(sk3_type, type, sk3: $i).
thf(1l,conjecture, ((mvalid @ (mimplies @ (mforall_vary__d_i @ (~ [A:$i]: (mbox @ (p @ A)
))) @ (mbox @ (mforall_vary__d_-i @ (p)))))),file(’'/home/lex/dev/temp/bf.p’,1)).
thf(2,negated_conjecture, ((~ (mvalid @ (mimplies @ (mforall_vary__d_i @ (~ [A:$i]: (
mbox @ (p @ A)))) @ (mbox @ (mforall_vary__d_i @ (p))))))),inference(
neg_conjecture, [status(cth)],[1])).
thf(7,plain, ((~ (! [A:mworld]: ((! [B:$i]: ((eiw__d_i @ B @ A) => (! [C:mworld]: ((mrel
@A@C)=>(p@B@C))))) == (! [B:mworld]: ((mrel @ A @ B) => (! [C:$i]: ((
eiw._d i@C@B) == (p@C@B))))))))),inference(defexp_and_simp_and_etaexpand, [
status(thm)1,[2,mbox_def, mforall_vary__d_i def, mvalid_def, mimplies_def])).
thf(9,plain, ((eiw__d_i @ sk3 @ sk2)),inference(cnf, [status(esa)],[7])).
thf(5,axiom, ((! [A:mworld,B:mworld,C:$il: ((mrel @ A @ B) => ((eiw__d_ i @ C @ B) => (
eiw__d_i @ C @ A))))),file('/home/lex/dev/temp/bf.p’,eiw_decre__d_i r)).
thf(16,plain, ((! [A:mworld,B:mworld,C:$i]: ((mrel @ A @ B) => ((eiw__d_1i @ C @ B) => (
eiw__d_i @ C @ A))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[5])).
thf(17,plain, ((! [A:mworld,B:mworld]: ((mrel @ A @ B) => (! [C:$i]: ((eiw__d i @ C @ B)
=> (eiw__d_i @ C @ A)))))),inference(miniscope, [status(thm)],[16])).
thf(18,plain, (! [C:$i,B:mworld,A:mworld] : ((~ (mrel @ A@B)) | (~ (eiw__d_i @ C @ B))
| (eiw__d_i @ C @ A))),inference(cnf, [status(esa)],[17])).
thf(45,plain, (! [C:$i,B:mworld,A:mworld] : ((~ (mrel @ A @B)) | (eiw__d_i @C @A) |
((eiw__d_i @ sk3 @ sk2) != (eiw_._d i @ C @ B)))),inference(paramod_ordered, [status
(thm)]1,[9,18])).
thf(46,plain, (! [A:mworld] : ((~ (mrel @ A @ sk2)) | (eiw__d_i @ sk3 @ A))),inference(
pattern_uni, [status(thm)], [45:[bind(A, $thf(A)),bind(B, $thf(sk2)),bind(C, $thf(
sk3))11)).
thf(10,plain, ((mrel @ skl @ sk2)),inference(cnf, [status(esa)],[7])).
thf(11,plain, (! [B:mworld,A:$i] : ((~ (eiw__d_i @ A @ skl)) | (~ (mrel @ skl @ B)) | (p
@ A @B))),inference(cnf, [status(esa)l,[7]1)).
thf(21,plain, (! [B:mworld,A:$i] : ((~ (eiw__d_i @ A @ skl)) | (p @ A@B) | ((mrel @
skl @ sk2) != (mrel @ skl @ B)))),inference(paramod_ordered, [status(thm)],[10,11])
).
thf(22,plain, (! [A:$i] : ((~ (eiw__d_i @ A @ skl)) | (p @ A @ sk2))),inference(
pattern_uni, [status(thm)],[21:[bind(A, $thf(A)),bind(B, $thf(sk2))]11)).

186

Appendix C. Complete Leo-III Proofs

thf(75,plain, (! [B:$i,A:mworld] : ((~ (mrel @ A @ sk2)) | (p @ B @ sk2) | ((eiw__d_i @
sk3 @ A) != (eiw__d_i @ B @ skl1)))),inference(paramod_ordered, [status(thm)
1,[46,22])).

thf(76,plain, ((~ (mrel @ skl @ sk2)) | (p @ sk3 @ sk2)),inference(pattern_uni, [status(
thm)1,[75:[bind (A, $thf(skl)),bind(B, $thf(sk3))11)).

thf(8,plain, ((~ (p @ sk3 @ sk2))),inference(cnf, [status(esa)],[7]1)).

thf(83,plain, (~ ($true) | $false),inference(rewrite, [status(thm)],[76,10,8])).

thf(84,plain, ($false),inference(simp, [status(thm)],[83])).

% SZS output end CNFRefutation for bf.p

187

Appendix C. Complete Leo-III Proofs

C.11. Proof of the Converse Barcan Formula

% SZS status Theorem for cbf.p : 2824 ms resp. 999 ms w/o parsing
% SZS output start CNFRefutation for cbf.p
thf(mworld_type, type, mworld: $tType).
thf(mrel_type, type, mrel: mworld > mworld > $o0).
thf(mvalid_type, type, mvalid: (mworld > $o0) > $o0).
thf(mvalid_def, definition, mvalid = (~[A: mworld > $o]: (![B: mworld]: (A @ B)))).
thf(mimplies_type, type, mimplies: (mworld > $0) > (mworld > $0) > mworld > $o).
thf(mimplies_def, definition, mimplies = (~ [A:(mworld > $0),B:(mworld > $0),C:mworld]:
((Ae@C) == (B@()))).
thf(mbox_type, type, mbox: (mworld > $0) > mworld > $o0).
thf(mbox_def, definition, mbox = (~ [A:(mworld > $0),B:mworld]: ! [C:mworld]: ((mrel @
B@C = (A@()))).
thf(eiw__d_i_type, type, eiw__d_i: ($i > (mworld > $0))).
thf(mforall_vary__d_i_type, type, mforall_vary__d_i: ($i > mworld > $0) > mworld > $0).
thf(mforall_vary__d_i def, definition, (mforall_vary__d_i = (~ [A:($1i > (mworld > $0)),
B:mworld]: ! [C:$i]: ((eiw._d i @C@B) == (A@C @B))))).
thf(p_type, type, p: ($i > (mworld > $0))).
thf(skl type, type, skl: mworld). thf(sk2_type, type, sk2: $i).
thf(sk3_type, type, sk3: mworld).
thf(1,conjecture, ((mvalid @ (mimplies @ (mbox @ (mforall_vary__d_i @ (p))) @ (
mforall_vary__d_i @ (”~ [A:$i]: (mbox @ (p @ A))))))),file('cbf.p’,1)).
thf(2,negated_conjecture, (~(mvalid @ (mimplies @ (mbox @ (mforall_vary__d_i @ p)) @ (
mforall_vary__d_i @ (~ [A:$i]: (mbox @ (p @ A))))))),inference(neg_conjecture, [
status(cth)1,[1])).
thf(7,plain, ((~ (! [A:mworld]: ((! [B:mworld]: ((mrel @ A @ B) => (! [C:$i]: ((eiw__d_i
@C@B) =>(p@C@B))))) => (! [B:$i]: ((eiw__d_i @ B @A) => (! [C:mworld]:
((mrel @ A@C) => (p@B@C))))))))),inference(defexp_and_simp_and_etaexpand, [
status(thm)]1,[2,mbox_def, mforall_vary__d_i_def, mvalid_def, mimplies_def])).
thf(10,plain, ((eiw__d_i @ sk2 @ skl)),inference(cnf,[status(esa)l,[7])).
thf(5,axiom, ((! [A:mworld,B:mworld,C:$i]l: ((mrel @ A @ B) => ((eiw__d_i @ C @ A) => (
eiw_d i @ C@8B))))),file('cbf.p’,eiw_cumul__d_i r)).
thf(16,plain, ((! [A:mworld,B:mworld,C:$i]: ((mrel @ A @ B) => ((eiw__d_ i @ C @ A) => (
eiw__d-i @ C @ B))))),inference(defexp_and_simp_and_etaexpand, [status(thm)],[5])).
thf(17,plain, ((! [A:mworld,B:mworld]: ((mrel @ A @ B) => (! [C:$i]: ((eiw__d_i @ C @ A)
=> (eiw__d_i @ C @ B)))))),inference(miniscope, [status(thm)]1,[16])).
thf(18,plain, (! [C:$i,B:mworld,A:mworld] : ((~ (mrel @ A @B)) | (~ (eiw__d_i @ C @ A))
| (eiw__d_i @ C @ B))),inference(cnf, [status(esa)],[17])).
thf(11,plain, (! [B:$i,A:mworld] : ((~ (mrel @ skl @ A)) | (~ (eiw-_d_-i @ B@A)) | (p @
B @ A))),inference(cnf, [status(esa)],[7])).
thf(8,plain, ((~ (p @ sk2 @ sk3))),inference(cnf, [status(esa)],[7]1)).
thf(25,plain, (! [B:$i,A:mworld] : ((~ (mrel @ skl1 @ A)) | (~ (eiw__d_i @ B @ A)) | ((p
@B @A) !'= (p @sk2 @ sk3)))),inference(paramod_ordered, [status(thm)],[11,81)).
thf(26,plain, ((~ (mrel @ skl @ sk3)) | (~ (eiw__d_i @ sk2 @ sk3))),inference(
pattern_uni, [status(thm)],[25:[bind(A, $thf(sk3)),bind(B, $thf(sk2))]1)).
thf(9,plain, ((mrel @ skl @ sk3)),inference(cnf, [status(esa)l,[7])).
thf(28,plain,~$true | ~(eiw__d_i @ sk2 @ sk3),inference(rewrite, [status(thm)],[26,9])).
thf(29,plain, ((~ (eiw__d_i @ sk2 @ sk3))),inference(simp, [status(thm)],[28])).
thf(41,plain, (! [C:$1i,B:mworld,A:mworld] : ((~ (mrel @ A@B)) | (~ (eiw._d_i @ C @ A))
| ((eiw__d_i @ C @ B) != (eiw__d_i @ sk2 @ sk3)))),inference(paramod_ordered, [
status(thm)],[18,29])).
thf(42,plain, (! [A:mworld]: ((~ (mrel @ A @ sk3)) | (~ (eiw__d_i @ sk2 @ A)))),inference
(pattern_uni, [status(thm)], [41:[bind(B, $thf(sk3)),bind(C, $thf(sk2))11)).
thf(61,plain, (! [A:mworld]: ((~ (mrel @ A @ sk3)) | ((eiw__d_i @ sk2 @ skl) '= (eiw__d_i
@ sk2 @ A)))),inference(paramod_ordered, [status(thm)],[10,42])).

188

Appendix C. Complete Leo-III Proofs

thf(62,plain, ((~ (mrel @ skl @ sk3))),inference(pattern_uni, [status(thm)],[61:[bind(A,
$thf(sk1))11)).

thf(70,plain, ($false),inference(simp, [status(thm)],inference(rewrite, [status(thm)
1,062,91))).

% SZS output end CNFRefutation for cbf.p

189

Appendix D. Deutsche Zusammenfassung

D. Deutsche Zusammenfassung

In der vorliegenden Dissertation werden sowohl die theoretischen Grundlagen als
auch Implementierungstechniken fiir die Entwicklung eines effektiven automatis-
chen Theorembeweisers fiir Pradikatenlogik hoherer Stufe préasentiert. Ein Haup-
taugenmerk der Arbeit liegt dabei auf der Demonstration der Machbarkeit, ein
performantes Theorembeweisersystem fiir das automatische Schlieen in gleich-
heitsbasierter extensionaler Typentheorie (hier gleichbedeutend mit Prédikaten-
logik hoherer Stufe) mit Hilfe eines Paramodulationskalkiils zu implementieren.
Zu diesem Zweck wird ein korrekter und vollstdndiger Paramodulationskalkiil
fiir extensionale Typentheorie unter Henkinsemantik erarbeitet. Fiir den Voll-
stdndigkeitsbeweis wurden bereits existierende Beweistechniken der abstrakten
Konsistenz vereinheitlicht und, fiir den hier prisentierten gleichheitsbasierten
Ansatz, vereinfacht.

Der praktisch motivierte Hauptteil der Arbeit diskutiert die Soft-
warearchitektur und Implementierung des neuen, auf dem zuvor entwickelten
Paramodulationskalkiil basierten, Theorembeweiser Leo-III. Dabei implemen-
tiert Leo-III eine um weitgehend praktische Aspekte erweiterte Version des
Kalkiils und umfasst z.B. gleichheitsbasierte Simplifikationtechniken, heuristis-
che Termersetzung und Unterstiitzung fiir das SchlieBen mit Auswahlfunktionen.
Leo-III umfasst als Deduktionsplattform zudem ein flexibles, asynchrones Kom-
munikationssystem fiir die Kooperation mit externen Systemen, insbesondere mit
Theorembeweisern fiir Priadikatenlogik erster Stufe. Das System implementiert
fortschrittliche Beweissuchemethoden und basiert diese auf effizienten Daten-
strukturen. Auflerdem werden weitere, praktisch relevante Anwendungen und
Fahigkeiten von Leo-III skizziert, darunter die Unterstiitzung von polymorpher
Typentheorie und das Schliefen in allen normalen quantifizierten Modallogiken.
Die Effektivitit von Leo-III wird durch eine breite Evaluation auf verschiedenen
Datensitzen untersucht. Die Ergebnisse dieser Evaluation bestitigen dass Leo-
IIT zu den aktuell stiarksten Theorembeweisern fiir hoherstufige Pradikatenlogik
zahlt und zudem fiir ein breites Spektrum von Anwendungen nutzbar ist.

191

Appendix E. About the Author

E. About the Author

Alexander Steen was born in 1990 in Cuxhaven where he also grew up and fin-
ished his A-levels at Lichtenberg-Gymnasium. In 2014, Alexander graduated
from Freie Universitit Berlin with a Bachelor’s and Master’s degree in Computer
Science and a Bachelor’s degree in Mathematics. Since his late undergraduate
studies, he served as tutor for computer science and was awarded a scholarship
of the German Academic Scholarship Foundation (Studienstiftung des Deutschen
Volkes). Alexander joined the Dahlem Center for Robotics and Machine Learning
at the Institute of Computer Science of Freie Universitéit Berlin as a research as-
sistant for the Leo-III project which was funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft). Since February 2018, Alexander works
as a research assistant for the project ”Consistent Rational Argumentation in Pol-
itics” funded by the Volkswagenstiftung.

During his time at Freie Universitit Berlin, Alexander served in several com-
mittees of academic administration at the Department of Mathematics and Com-
puter Science and the Institute of Computer Science. He was strongly involved
in university teaching, successfully participated in advanced training for univer-
sity teaching (Hochschuldidaktisches Lehrzertifikat) and was awarded the central
teaching award (Zentraler Lehrpreis) of Freie Universitit in 2015 for the con-
ception of a novel, interdisciplinary lecture on Computational Metaphysics. The
automated theorem prover Leo-III, which Alexander implemented as one of the
main developers during his PhD studies, won the 2nd place in the 2017 interna-
tional CADE ATP System Competition (CASC), THF category.

List of Selected Publications

Core publications related to the dissertation project

10. Alexander Steen, Christoph Benzmiiller, The Higher-Order Prover Leo-
111. In Didier Galmiche, Stephan Schulz, Roberto Sebastiani (Eds.), Au-
tomated Reasoning — 9th International Joint Conference, [JCAR 2018,
Oxford, UK, July 14-17, 2018, Proceedings , Springer, LNCS, 2018.
(To appear)

9. Tobias Gleiiner, Alexander Steen, Christoph Benzmiiller, Theorem Provers
for Every Normal Modal Logic. In Thomas Eiter, David Sands (Eds.),
LPAR-21. 21st International Conference on Logic for Programming,

193

Appendix E. About the Author

Artificial Intelligence and Reasoning, EasyChair, EPiC Series in Com-
puting, Volume 46, pp. 14-30, 2017.

. Alexander Steen, Max Wisniewski, Christoph Benzmiiller, Going Polymor-

phic - THI Reasoning for Leo-III. In Thomas Eiter, David Sands, Geoff
Sutcliffe and Andrei Voronkov (Eds.), IWIL Workshop and LPAR Short
Presentations, EasyChair, Kalpa Publications in Computing, Volume 1,
pp- 100-112, 2017.

. Christoph Benzmiiller, Alexander Steen, Max Wisniewski, Leo-III Version

1.1 (System description). In Thomas Eiter, David Sands, Geoff Sut-
cliffe and Andrei Voronkov (Eds.), IWIL Workshop and LPAR Short
Presentations, EasyChair, Kalpa Publications in Computing, Volume 1,
pp- 11-26,2017.

. Tomer Libal, Alexander Steen, Towards a Substitution Tree Based Index for

Higher-order Resolution Theorem Provers. In 5th Workshop on Practi-
cal Aspects of Automated Reasoning (PAAR 2016), Coimbra, Portugal,
July 2016, Proceedings. CEUR Workshop Proceedings, Volume 1653,
CEUR-WS.org, 2016.

Max Wisniewski, Alexander Steen, Christoph Benzmiiller, TPTP and
Beyond: Representation of Quantified Non-Classical Logics. In C.
Benzmiiller, J. Otten (Eds.), 2nd International Workshop on Automated
Reasoning in Quantified Non-Classical Logics (ARNQL 2016), Coim-
bra, Portugal, July 2016, Proceedings, CEUR Workshop Proceedings,
Volume 1770, CEUR-WS.org, 2016.

Alexander Steen, Max Wisniewski, Christoph Benzmiiller, Agent-Based

HOL Reasoning. In 5th International Congress on Mathematical Soft-
ware, ICMS 2016, Berlin, Germany, July 2016, Proceedings, Springer,
LNCS, volume 9725, 2016.

. Max Wisniewski, Alexander Steen, Kim Kern, Christoph Benzmiiller, Ef-

fective Normalization Techniques for HOL. In Nicola Olivetti, Ashish
Tiwari (Eds.), 8th International Joint Conference on Automated Rea-
soning, IJCAR 2016, Coimbra, Portugal, 27 June - 2 July, 2016, Pro-
ceedings. Springer, LNAI, volume 9706, 2016.

Alexander Steen, Christoph Benzmiiller, There Is No Best Beta-
Normalization Strategy for Higher-Order Reasoners. In Martin Davis,
Ansgar Fehnker, Annabelle Cclver, Andrei Voronkov (Eds.), 20th In-
ternational Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR), Suva, Fiji, November 2015, Proceedings,
Springer, LNCS/ARCoSS, volume 9450, 2015.

1. Max Wisniewski, Alexader Steen, Christoph Benzmiiller, LEOPARD —

194

Appendix E. About the Author

A Generic Platform for the Implementation of Higher-Order Reasoners
(Project Paper). In Manfred Kerber, Jacques Carette, Cezary Kaliszyk,
Florian Rabe, Volker Sorge (Eds.), Intelligent Computer Mathematics -
International Conference, CICM 2015, Washington, DC, USA, July 13-
17, 2015, Proceedings , Springer, LNCS, volume 9150, pp. 325-330,
2015.

Further related publications

6. Alexander Steen, Christoph Benzmiiller, System Demonstration: The
Higher-Order Prover Leo-Ill. In Christoph Benzmiiller, Jens Ot-
ten (Eds.), ARQNL 2018. Automated Reasoning in Quantified
Non-Classical Logics, Proceedings, CEUR Workshop Proceedings,
http://ceur-ws.org, volume 2095. (To appear)

5. Alexander Steen, Max Wisniewski, Hans-Jorg Schurr, Christoph
Benzmiiller, Capability Discovery for Automated Reasoning Systems.
In Thomas Eiter, David Sands, Geoff Sutcliffe and Andrei Voronkov
(Eds.), IWIL Workshop and LPAR Short Presentations, EasyChair,
Kalpa Publications in Computing, Volume 1, pp. 113-118, 2017.

4. Alexander Steen, Max Wisniewski, Christoph Benzmiiller, Tutorial on
Reasoning in Expressive Non-Classical Logics with Isabelle/HOL. In
Christoph Benziiller, Raul Rojas, Geoff Sutcliffe (Eds.), Second Global
Conference on Atrtificial Intelligence (GCAI), Proceedings, EasyChair,
EPiC Series in Computing, Volume 41, pp. 1-10, 2016.

3. Alexander Steen, Christoph Benzmiiller, Sweet SIXTEEN: Automation via
Embedding into Classical Higher-Order Logic. In Logic and Logical
Philosophy, Volume 25, No 4, Nicolaus Copernicus University, 2016.

2. Alexander Steen, Max Wisniewski, Christoph Benzmiiller, Einsatz von
Theorembeweisern in der Lehre. In Andreas Schwill, Ulrike Lucke
(Eds.), Hochschuldidaktik der Informatik, HDI2016 — 7. Fachtagung
des GI-Fachbereichs Informatik und Ausbildung / Didaktik der Infor-
matik ; 13.-14. September 2016 an der Universitit Potsdam, Com-
mentarii Informaticae Didacticae, Volume 10, pages 81 - 92, Univer-
sitdtsverlag Potsdam, 2016.

1. Max Wisniewski, Alexander Steen, Embedding of Quantified Higher-
Order Nominal Modal Logic into Classical Higher-Order Logic. In
Christoph Benzmiiller, Jens Otten (Eds.), 1st International Workshop
on Automated Reasoning in Quantified Non-Classical Logics (ARQNL
2014), Vienna, Austria, Proceedings, EasyChair, EasyChair Proceed-
ings in Computing, volume 33, pp. 59-64, 2014.

195

List of Figures

List of Figures

|1.Bird’s-eye perspective on automated theorem proving as a black box.|..... 9

[2.The logo of the Leo-III theorem prover.|....................cooiini, 15
|1.Definitions of logical connectives based on equality|......................... 22
[2.Relationship between standard and general models and their valid |
L SENEENCES) ... evuiiiiei et 24
[L.Clause normalization rules]............ooeoviiiiiiiiiiiin 31
[2.Primary inference rules of EP|...............c.oo 33
[3.Extensionality rules of EP|..................... 35
[4. Unification rules of EP)
1.Top-level system architecture of Leo-II|.........................l. 60
.. 66
.Pre-processing procedure of Leo-IIl|..............cooooiii . 78
4.Saturation procedure of Leo-Il...........co.o 81
5.Round-robin clause selection within T.eo-IIT
|6.Invocation of external reasoning systems during proof search............. 93
[7.Schematic template of Leo-III’s proof output]............................e. 100

|§ !iﬁe unlﬁcatlon Ez transiormatlon.‘ .. 105
EE ;ooﬁeratmn scEemes for Eo!imorﬁﬁlc EroE!ems| 106

[TO.Bird’s eye perspective of the automated embedding process|............. 111
|1T.Layout of a general modal logic problem.|......................c.oiiiins 114
|12.A corollary of Becker’s postulate formulated in modal THE]............ 116

|1.Number of solved problems per system for the TPTP THO data set|..... 145
[2.Performance graphs of various ATP systems for data set TPTP THO|... 147

197

List of Tables

List of Tables

|1.Intensity levels of primitive substitution (Prim) within Leo-111|............ 90
[2.Annotations used within Leo-III proofs and their corresponding cal- |
T cuTuS TUTES] oo 102

3.Popular modal axiom schemes and their corresponding frame condition(109
4 Embedding of modal Togic connectives and meta-logical notions in |

OO ..o 112
[5.Modal semantic specification parameters.|...........coeuveuvenernineunennennns 115
|6.Commands for Leo-1II's guided mode].......................ni. 121

.Command-line options for pre-processing features of Leo-II]]............ 124

[2.Comparison of LEO-II and Leo-IIl on 1917 equational resp. 645 |

| non-equational problems|....................... 148

3.Detailed result of the 442 TPTP a
4 .Detailed result of the 580 QMLTP benchmark measurementsl 155
15. Verification results for the proofs of the case study problems|............. 157

199

List of Tables

Index

A-abstraction, [6]

— elimination of, [97]
A-calculus,
A-lifting,

Abstract consistency class, 28] 38
i
— compactness of, [43]
— properties of,
Abstract extension lemma, @l
Abstraction, [6]
— type, [TT8]
Application, [6] 20] [21]
— operator, 07} [124]

Barcan formula, [137]
— converse, [139]
Binding
— general, [33] 9]
— imitation, 33}
— projection, 33 37]

Calculus, 30} [62]
__EP,
Choice, [09H70} [72} [77, B2 06} [131}-
[33,[135]
— axiom of, [69]
Clause, 79
— empty, 29 (82} 34]
— given, [76] [79]
— normal form, 29} [31] [82]
— normalization, [77] 82} [83]
— pre,[29]
Clause order, [83]
Clause selection, [82] 84} [83]

200

— function, [83] 87} [88
Combinator, 98]

— Curry, 08|

— Turner, 0]
Compactness, [39]
Completeness, 48]

— of EP, B3|
Comprehension, 3] [7]
Computational Metaphysics, [9]
Conclusion,

Conjecture, BHIT) I3 75} B5HE7) 03

— Kepler’s, [T4]

— Robbins’, [[4]
Consequence

— in HOL, 23]

— in HOML, [TTT]
Constant, [6]

Control, [62} 84} 04} [T04]
Conversion rules, 21]

— .

Y

—n.Bl2T]
Currying,[6]

CvC4, 5771174, P2 [149]

Denotation, 22]
Derivable, [30]
DISCOUNT,

— loop. FUEI B3

E,[11} 57 76} [0} B3} 86} 02} [149]
Equality, 2T}
— Andrews’, [69]

— Leibniz, [12) 21} [69]
— defined, [69] [77] [79]
— notions of, [T9]
— primitive, [79} [T29]
— resolution, [67]
Equation, [29]
Extensmnahty, |Z|, [12 [13] B4 [63]
— Boolean [7) B4} [126] [127]
— functional, [7} 34} [126] [127]
External cooperation, [62] [81] [82] [02}-
[103] [103] 19 [141}

[149H151]

Factorization, 33} [83}
Flex-flex

— constraint, 29|

— rule, 37
Formula, [6] 2T]
Frame, 22

— standard, 22

Function synthesis, @ @ @
GDV, [103}[157]

Higher-Order Logic, [T} [8] [T9H23)]
— Semantics, [2]]
— Syntax, [6} [T9]
— automation of, [3] [TT] 24]
Hintikka Lemma, 3]
Hintikka set, 39} [44] 7]
— properties of, [44]
HOL Model, 23]

— general, [8] [24]

— standard, 23]

Identity of Indiscernibles,
If-then-clse, FTTH73} 130 131} 13

Incompleteness Theorem, [§]

Indexing, [62} [63] [TT8]

List of Tables

Inference

— generating, [69] [70] [73] [74]
B3lP1]
Inference rule, 30|

— modifying, [66]

— restriction, 89
Injectivity, [74] [78] [79} [127] [128] [130]
iProver, [57] 02} [149]

Isabelle/HOL, [T2HI4] O3] O8] [103
% [M23] 144 151

Leibniz’s law, see Identity of Indis-
cernibles
LEO,[T3]
LEO-11,[12} [T3} [T43]
Leo-IIL, f] [15] [17} F7HI25] [130} [T44]
% [T48] [149 [I51] [I53]

Lifting Lemma, 48]
Literal,[29]

— equational, [29]
Logical Connectives, 2]

Miniscoping, [77} [79]
MileanCoP,[144} [133] [154]
Modal Logic,[T39]

Modal logic, [T} 2} [T07} [T37]

— automation of, [T11]
— higher-order, [109]
— semantics, [T08} [T10]

Model existence theorem, 7]
Monomorphization, 98] [T06]

E

Normal form

—B.22
— Bn.R2AM

Normalization

— Bn.[I1§]

201

List of Tables

Ontological Argument,[T]

Otter, [TT}
— loop,

Paramodulation,] 27} 32]
— EP calculus, 30|

— unordered,
Polarity, 29|
Polymorphism, 26} [T03HT06] [T33]
— TF1,[T04]
— TH1,[104] [T43] [151]
Position,
Pre-order, [§7]
Premise, [30]
Preprocessing,
Primary inferences, 32]
Proof certificate, [T0} [61} B9HIO3]
[125] 1451 [157)

Relevance filtering, @ @
Rewriting, [68]

SAT,[T0]
Satallax, [13] (58] (B9l [143] [144]
[146 [147,[149]

Saturation, [61] [76} [79] [81} 84} O3]
Sentence, 21]

Set of support, [83]
Signature,
Simplification, [64H66] [77] [78] [0} [82]
Simplify-reflect,[67]
SInE, [89]
Skolemization, 32} [103]
Sledgehammer, [93] 98] [T0€] [123]
SMT. 10l [71] 2]
Sort symbol, [T9]
Soundness
—of CNF,B2
—of EXT,[BI
— of PZ,34

&

202

— of UN'Z,[BT]

— of EP, 3§
Strategy scheduling, [0T]
Substitution, 2T}

— explicit, [TT7]

— primitive, 33} [63} [83] 00} [129]
Subsumption, [68] [TT8] [TT9]

Term, [5} 20H2T]

— ground, [20]

— nameless, [T17]

— ordering, 3]

— representation, [T17]

— sharing, [TT8]
Term Ordering, [54]

— higher-order, [54} 01
TF1,[T03)
TH1,[T04]
Type, [3l [OH20)
of Booleans, [6]
— of individuals,
Base type, [T9]
Function type, [T9]
Goal type,[19]

Type theory, 3]
— Church’s, [[7]

— Elementary, [§]

— Extensional,
— elementary, [07]
— ramified, 3]

Unification, [TT} 36} [63] [721 [2
(B3] 89} O} 126} [T27]

— constraint, 29]
— contraint, [36]

— pattern, [68} [74] [83]
— type, [104]

Universal Logic, 3]

Universe,

Validity, [23]

— of clauses, 29]

— of literals, [29]
Valuation function, 23]
Vampire, [T1] 57} 02} [T49]
Variable, [6] 20]

— bound, 27]

— free, 21]

— solved, 36|
Variable assignment, 23]

Zipperposition, @ @ @

List of Tables

203

Bibliography

Bibliography

[ABO6]

[ABIT96]

[ACCL90]

[AGO09]

[AH76]

[And63]

[And65]

[And71]
[And72a]
[And72b]
[And74]
[And89]

[And02a]

Peter. B. Andrews and Chad E. Brown. Tps: A hybrid automatic-
interactive system for developing proofs. Journal of Applied Logic,
4(4):367 — 395, 2006. Towards Computer Aided Mathematics.
Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith,
Frank Pfenning, and Hongwei Xi. TPS: A theorem-proving sys-
tem for classical type theory. J. Autom. Reasoning, 16(3):321-353,
1996.

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit sub-
stitutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 90,
pages 31-46, New York, NY, USA, 1990. ACM.

Pietro Abate and Rajeev Goré. The Tableau Workbench. Electronic
Notes in Theoretical Computer Science, 231:55-67, 2009.

K. Appel and W. Haken. Every planar map is four colorable. Bul-
letin of the American Mathematical Society, 82(5):711-712, 09
1976.

Peter B. Andrews. A reduction of the axioms for the theory
of propositional types. Fundamenta Mathematicae, 52:345-350,
1963.

Peter B. Andrews. Transfinite Type Theory with Type Vari-
ables. Studies in logic and the foundations of mathematics. North-
Holland Pub. Co., 1965.

Peter B. Andrews. Resolution in type theory. J. Symb. Log.,
36(3):414-432, 1971.

Peter B. Andrews. General models and extensionality. J. Symb.
Log., 37(2):395-397, 1972.

Peter B. Andrews. General models, descriptions, and choice in
type theory. J. Symb. Log., 37(2):385-394, 1972.

Peter B. Andrews. Provability in elementary type theory. Mathe-
matical Logic Quarterly, 20(25-27):411-418, 1974.

Peter B. Andrews. On connections and higher-order logic. J. Au-
tom. Reasoning, 5(3):257-291, 1989.

Peter B Andrews. An introduction to mathematical logic and type
theory, volume 27. Springer Science & Business Media, 2002.

205

Bibliography
[And02b]
[Ans78]
[BT08]
[BT11]

[Bac10]

[Bar81]

[BBO7]

[BBCW18]

[BBKO4a]

[BBKO04b]

[BBKO09]

[BBP13]

206

Peter B. Andrews. An Introduction to Mathematical Logic and
Type Theory. Applied Logic Series. Springer, 2002.

St. Anselm. St Anselm’s Proslogion. Oxford:OUP, 1078. Repub-
lished in 1965.

Francois Bobot et al. The Alt-Ergo automated theorem prover,
2008.

Clark Barrett et al. CVC4. In Computer aided verification, pages
171-177. Springer, 2011.

Julian Backes. Tableaux for Higher-Order Logic with If-Then-
Else, Description and Choice. Master’s thesis, Saarland University,
Saarbruecken, Germany, 2010.

Henk P. Barendregt. The lambda calculus: Its syntax and seman-
tics, volume 103 of studies in logic and the foundations of com-
puter science, 1981.

Christoph Benzmiiller and Chad Brown. The curious inference of
Boolos in MIZAR and OMEGA. In Roman Matuszewski and Anna
Zalewska, editors, From Insight to Proof — Festschrift in Honour of
Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar,
and Rhetoric, pages 299-388. The University of Bialystok, Polen,
2007.

Alexander Bentkamp, Jasmin Christian Blanchette, Simon Cru-
anes, and Uwe Waldmann. Superposition for lambda-free higher-
order logic. http://matryoshka.gforge.inria.fr/pubs/
Lfhosup_paper.pdf, 2018.

Christoph Benzmiiller, Chad Brown, and Michael Kohlhase.
Higher-order semantics and extensionality. Journal of Symbolic
Logic, 69(4):1027-1088, 2004.

Christoph Benzmiiller, Chad Brown, and Michael Kohlhase. Se-
mantic techniques for cut-elimination in higher order logic. Tech-
nical report, Saarland University, Saarbriicken, Germany and In-
ternational University Bremen, Germany, 2004. SEKI Report SR-
2004-07.

Christoph Benzmiiller, Chad Brown, and Michael Kohlhase. Cut-
simulation and impredicativity. Logical Methods in Computer Sci-
ence, 5(1:6):1-21, 2009.

Jasmin Christian Blanchette, Sascha Bohme, and Lawrence C
Paulson. Extending sledgehammer with smt solvers. Journal of
automated reasoning, 51(1):109-128, 2013.

http://matryoshka.gforge.inria.fr/pubs/lfhosup_paper.pdf
http://matryoshka.gforge.inria.fr/pubs/lfhosup_paper.pdf

[BBPS16]

[BBWW17]

[BCHI15]

[BCM™03]

[BDNO9]

[BDS13]

[Bec30]

[Ben99a]

[Ben99b]

Bibliography

Jasmin Christian Blanchette, Sascha Bohme, Andrei Popescu, and
Nicholas Smallbone. Encoding monomorphic and polymorphic
types. Logical Methods in Computer Science, 12(4), 2016.

Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, and
Daniel Wand. A transfinite knuth-bendix order for lambda-free
higher-order terms. In Leonardo de Moura, editor, Automated De-
duction - CADE 26 - 26th International Conference on Automated
Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings,
volume 10395 of Lecture Notes in Computer Science, pages 432—
453. Springer, 2017.

Guillaume Bury, Raphaél Cauderlier, and Pierre Halmagrand. Im-
plementing polymorphism in zenon. In Boris Konev, Stephan
Schulz, and Laurent Simon, editors, IWIL@LPAR 2015, 11th In-
ternational Workshop on the Implementation of Logics, Suva, Fiji,
November 23, 2015, volume 40 of EPiC Series in Computing,
pages 15-20. EasyChair, 2015.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda—
a functional language with dependent types. In International Con-
ference on Theorem Proving in Higher Order Logics, pages 73-78.
Springer, 2009.

Henk P. Barendregt, W. Dekkers, and R. Statman. Lambda Calcu-
lus with Types. Perspectives in logic. Cambridge University Press,
2013.

Oskar Becker. Zur Logik der Modalititen. Max Niemeyer Verlag,
1930.

Christoph Benzmiiller. Equality and Extensionality in Higher-
Order Theorem Proving. PhD thesis, Naturwissenschaftlich-
Technische Fakultit I, Saarland University, Saarbriicken, Germany,
1999.

Christoph Benzmiiller. Extensional higher-order paramodulation
and RUE-resolution. In Harald Ganzinger, editor, Automated De-
duction - CADE-16, 16th International Conference on Automated
Deduction, Trento, Italy, July 7-10, 1999, Proceedings, number
1632 in LNCS, pages 399—413. Springer, 1999.

207

Bibliography

[Ben09]

[Benll]

[Benl5a]

[Benl5b]

[Benl5c]

[Benl7a]

[Ben17b]

[Benl7c]

[BFM106]

208

Christoph Benzmiiller. Automating access control logic in simple
type theory with LEO-II. In Dimitris Gritzalis and Javier Lépez,
editors, Emerging Challenges for Security, Privacy and Trust, 24th
IFIP TC 11 International Information Security Conference, SEC
2009, Pafos, Cyprus, May 18-20, 2009. Proceedings, volume 297
of IFIP, pages 387-398. Springer, 2009.

Christoph Benzmiiller. Combining and automating classical and
non-classical logics in classical higher-order logic. Annals of
Mathematics and Artificial Intelligence (Special issue Computa-
tional logics in Multi-agent Systems (CLIMA XI)), 62(1-2):103—
128, 2011.

Christoph Benzmiiller. Higher-order automated theorem provers.
In David Delahaye and Bruno Woltzenlogel Paleo, editors, All
about Proofs, Proof for All, Mathematical Logic and Foundations,
pages 171-214. College Publications, London, UK, 2015.
Christoph Benzmiiller. HOL provers for first-order modal logics
— experiments. In Christoph Benzmiiller and Jens Otten, editors,
ARQNL 2014. Automated Reasoning in Quantified Non-Classical
Logics, volume 33 of EPiC Series in Computing, pages 37-41.
EasyChair, 2015.

Christoph Benzmiiller. Invited talk: On a (quite) universal theorem
proving approach and its application in metaphysics. In Hans De
Nivelle, editor, TABLEAUX 2015, volume 9323 of LNAI, pages
213-220, Wroclaw, Poland, 2015. Springer. (Invited paper).
Christoph Benzmiiller. Cut-elimination for quantified conditional
logic. Journal of Philosophical Logic, 46(3):333-353, 2017.
Christoph Benzmiiller. Recent successes with a meta-logical ap-
proach to universal logical reasoning (extended abstract). In Si-
mone André da Costa Cavalheiro and José Luiz Fiadeiro, editors,
Formal Methods: Foundations and Applications - 20th Brazilian
Symposium, SBMF 2017, Recife, Brazil, November 29 - December
1, 2017, Proceedings, volume 10623 of Lecture Notes in Computer
Science, pages 7—11. Springer, 2017.

Christoph Benzmiiller. Universal reasoning, rational argumenta-
tion and human-machine interaction. Technical report, CoRR,
2017. http://arxiv.org/abs/1703.09620.

Christoph Benzmiiller, Armin Fiedler, Andreas Meier, Martin Pol-
let, and Jorg Siekmann. Omega. In Freek Wiedijk, editor, The Sev-

http://arxiv.org/abs/1703.09620

[BFP18]

[BFSW17]

[BFT16]

[BGYO]

[BGY4]

[BGO1]

[BGK™16]

Bibliography

enteen Provers of the World, number 3600 in LNCS, pages 127-
141. Springer, 2006.

Christoph Benzmiiller, Ali Farjami, and Xavier Parent. A dyadic
deontic logic in hol. In Cleo Condoravdi, Shyam Nair, and Jan
Broersen, editors, Deon 2018 — 14th International Conference on
Deontic Logic and Normative Systems 3-6 July 2018, Utrecht, the
Netherlands, 2018, Proceedings. Springer, 2018. To appear.
Jasmin Christian Blanchette, Pascal Fontaine, Stephan Schulz, and
Uwe Waldmann. Towards strong higher-order automation for fast
interactive verification. In Giles Reger and Dmitriy Traytel, editors,
ARCADE 2017, Ist International Workshop on Automated Rea-
soning: Challenges, Applications, Directions, Exemplary Achieve-
ments, Gothenburg, Sweden, 6th August 2017, volume 51 of EPiC
Series in Computing, pages 16-23. EasyChair, 2017.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfia-
bility Modulo Theories Library (SMT-LIB). www.SMT-LIB.org,
2016.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered
paramodulation with simplification. In Mark E. Stickel, editor,
10th International Conference on Automated Deduction, Kaiser-
slautern, FRG, July 24-27, 1990, Proceedings, volume 449 of Lec-
ture Notes in Computer Science, pages 427-441. Springer, 1990.
Leo Bachmair and Harald Ganzinger. Rewrite-based equational
theorem proving with selection and simplification. J. Log. Com-
put., 4(3):217-247, 1994.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving.
In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning (in 2 volumes), pages 19-99. Elsevier and
MIT Press, 2001.

Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk,
Daniel Kiihlwein, and Josef Urban. A learning-based fact selector
for isabelle/hol. J. Autom. Reasoning, 57(3):219-244, 2016.

[BHVYMWO09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,

[Bib87]

[BJR15]

editors. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. 10S Press, 2009.
Wolfgang Bibel. Automated theorem proving, 2nd Edition. Artifi-
cial intelligence. Vieweg, 1987.

Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The
computability path ordering. Logical Methods in Computer Sci-
ence, 11(4), 2015.

209

Bibliography

[BK98a]

[BK98b]

[BM14]

[BNOg]

[BN10a]

[BN10b]
[B6h12]
[Boo87]

[BORI12]

[BP11]

210

Christoph Benzmiiller and Michael Kohlhase. Extensional higher-
order resolution. In Claude Kirchner and Héleéne Kirchner, editors,
Automated Deduction - CADE-15, 15th International Conference
on Automated Deduction, Lindau, Germany, July 5-10, 1998, Pro-
ceedings, number 1421 in LNAI, pages 56—71. Springer, 1998.
Christoph Benzmiiller and Michael Kohlhase. System description:
LEO - A higher-order theorem prover. In Claude Kirchner and
Hélene Kirchner, editors, Automated Deduction - CADE-15, 15th
International Conference on Automated Deduction, Lindau, Ger-
many, July 5-10, 1998, Proceedings, volume 1421 of Lecture Notes
in Computer Science, pages 139—144. Springer, 1998.

Christoph Benzmiiller and Dale Miller. Automation of higher-
order logic. In Dov M. Gabbay, Jorg H. Siekmann, and John
Woods, editors, Handbook of the History of Logic, Volume 9 —
Computational Logic, pages 215-254. North Holland, Elsevier,
2014.

Franz Baader and Tobias Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A coun-
terexample generator for higher-order logic based on a relational
model finder. In Matt Kaufmann and Lawrence C. Paulson, edi-
tors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, vol-
ume 6172 of Lecture Notes in Computer Science, pages 131-146.
Springer, 2010.

Sascha Bohme and Tobias Nipkow. Sledgehammer: Judgement
day. In IJCAR, volume 6173, pages 107—121. Springer, 2010.
Sascha Bohme. Proving Theorems of Higher-Order Logic with
SMT Solvers. PhD thesis, Technische Universitat Miinchen, 2012.
George Boolos. A curious inference. Journal of Philosophical
Logic, 16(1):1-12, 1987.

Christoph Benzmiiller, Jens Otten, and Thomas Raths. Implement-
ing and evaluating provers for first-order modal logics. In Luc De
Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter Lucas, editors, ECAI 2012,
volume 242 of Frontiers in Artificial Intelligence and Applications,
pages 163-168, Montpellier, France, 2012. IOS Press.

Francois Bobot and Andrei Paskevich. Expressing polymorphic
types in a many-sorted language. In International Symposium on
Frontiers of Combining Systems, pages 87—102. Springer, 2011.

[BP13a]

[BP13b]

[BPST15]

[BR12]

[BR13]

[Bro12]

[Bro13]

[Bru72]

[BS13]

[BS16]

Bibliography

Christoph Benzmiiller and Lawrence Paulson. Quantified multi-
modal logics in simple type theory. Logica Universalis (Special
Issue on Multimodal Logics), 7(1):7-20, 2013.

Jasmin C. Blanchette and A. Paskevich. TFF1: the TPTP typed
first-order form with rank-1 polymorphism. In M. P. Bonacina,
editor, Automated Deduction - CADE-24 - 24th International Con-
ference on Automated Deduction, Lake Placid, NY, USA, June 9-
14, 2013. Proceedings, volume 7898 of LNCS, pages 414—420.
Springer, 2013.

Christoph Benzmiiller, Lawrence C. Paulson, Nik Sultana, and
Frank Thei. The Higher-Order Prover LEO-II. Journal of Au-
tomated Reasoning, 55(4):389-404, 2015.

Christoph Benzmiiller and Thomas Raths. FMLtoHOL (ver-
sion 1.0): Automating first-order modal logics with LEO-II and
friends. Technical report, Freie Universitit Berlin, Germany, 2012.
arXiv:1207.6685.

Christoph Benzmiiller and Thomas Raths. HOL based first-order
modal logic provers. In Kenneth L. McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, Proceedings of the 19th Interna-
tional Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR), volume 8312 of LNCS, pages 127-
136, Stellenbosch, South Africa, 2013. Springer.

Chad E. Brown. Satallax: An automatic higher-order prover. In
Proceedings of the 6th International Joint Conference on Auto-
mated Reasoning, IICAR’12, pages 111-117, Berlin, Heidelberg,
2012. Springer-Verlag.

Chad E. Brown. Reducing higher-order theorem proving to a se-
quence of SAT problems. J. Autom. Reasoning, 51(1):57-77,2013.
N. G. De Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application
to the church-rosser theorem. INDAG. MATH, 34:381-392, 1972.
Christoph Benzmiiller and Nik Sultana. LEO-II version 1.5. In
Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013,
volume 14 of EPiC Series in Computing, pages 2—10. EasyChair,
2013.

Christoph Benzmiiller and Dana Scott. Automating free logic in Is-
abelle/HOL. In G.-M. Greuel, T. Koch, P. Paule, and A. Sommese,
editors, Mathematical Software — ICMS 2016, 5th International
Congress, Proceedings, volume 9725 of LNCS, pages 43-50,
Berlin, Germany, 2016. Springer.

211

Bibliography

[BSJKOS]

[BVBO7]

[BvBWO06]

[BWB*11]

[BWP14]

[BWP15]

[BWP16]

[BWP17]

[BWW17]

212

Christoph Benzmiiller, Volker Sorge, Mateja Jamnik, and Manfred
Kerber. Combined reasoning by automated cooperation. Journal
of Applied Logic, 6(3):318-342, 2008.

Patrick Blackburn and Johan Van Benthem. 1 modal logic: a se-
mantic perspective. In Studies in Logic and Practical Reasoning,
volume 3, pages 1-84. Elsevier, 2007.

Patrick Blackburn, Johan FAK van Benthem, and Frank Wolter.
Handbook of modal logic, volume 3. Elsevier, 2006.

Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott
Owens, and Susmit Sarkar. Nitpicking c++ concurrency. In Pro-
ceedings of the 13th international ACM SIGPLAN symposium on
Principles and practices of declarative programming, pages 113—
124. ACM, 2011.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. Automating
Godel’s ontological proof of God’s existence with higher-order au-
tomated theorem provers. In Torsten Schaub, Gerhard Friedrich,
and Barry O’Sullivan, editors, ECAI 2014, volume 263 of Fron-
tiers in Artificial Intelligence and Applications, pages 93 — 98. I0S
Press, 2014.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. On logic
embeddings and Godel’s God. In Mihai Codescu, Razvan Di-
aconescu, and Ionut Tutu, editors, Recent Trends in Algebraic
Development Techniques: 22nd International Workshop, WADT
2014, Sinaia, Romania, September 4-7, 2014, Revised Selected Pa-
pers, number 9563 in LNCS, pages 3-6, Sinaia, Romania, 2015.
Springer. (Invited paper).

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. The incon-
sistency in Godel’s ontological argument: A success story for Al
in metaphysics. In Subbarao Kambhampati, editor, IJCAI 2016,
volume 1-3, pages 936-942. AAAI Press, 2016.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. Experiments
in Computational Metaphysics: Godel’s proof of God’s existence.
Savijnanam: scientific exploration for a spiritual paradigm. Jour-
nal of the Bhaktivedanta Institute, 9:43-57, 2017.

Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand.
A lambda-free higher-order recursive path order. In Javier Esparza
and Andrzej S. Murawski, editors, Foundations of Software Sci-
ence and Computation Structures - 20th International Conference,
FOSSACS 2017, Held as Part of the European Joint Conferences

[BWWP17]

[Chu32]
[Chu40]
[Chu41]
[CK18]

[CLO7]

[CLS11]

[Co076]

[Coq94]

[CPO3]

[CRSS95]

[Crul5]

[Cur30]

Bibliography

on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22-29, 2017, Proceedings, volume 10203 of Lecture
Notes in Computer Science, pages 461-479, 2017.

Christoph Benzmiiller, Leon Weber, and Bruno Woltzenlogel Pa-
leo. Computer-assisted analysis of the Anderson-Héjek contro-
versy. Logica Universalis, 11(1):139-151, 2017.

Alonzo Church. A set of postulates for the foundation of logic.
Annals of Mathematics, 33(2):346-366, 1932.

Alonzo Church. A formulation of the simple theory of types. J.
Symb. Log., 5(2):56-68, 1940.

Alonzo Church. The calculi of lambda-conversion, volume 6.
Princeton University Press, 1941.

David M Cerna and Temur Kutsia. Higher-order equational pattern
anti-unification [preprint]. arXiv preprint arXiv:1801.07438, 2018.
Jean-Francois Couchot and Stéphane Lescuyer. Handling poly-
morphism in automated deduction. In International Conference on
Automated Deduction, pages 263-278. Springer, 2007.

Koen Claessen, Ann Lilliestrom, and Nicholas Smallbone. Sort it
out with monotonicity. In International Conference on Automated
Deduction, pages 207-221. Springer, 2011.

Stephen A. Cook. A short proof of the pigeon hole principle using
extended resolution. SIGACT News, 8(4):28-32, October 1976.
Thierry Coquand. A new paradox in type theory. In Proceedings
of the Ninth International Congress of Logic, Methodology, and
Philosophy of Science, pages 7-14. Elsevier, 1994.

I. Cervesato and F. Pfenning. A linear spine calculus. J. Logic and
Computation, 13(5):639-688, 2003.

David Cyrluk, Sreeranga Rajan, Natarajan Shankar, and Man-
dayam K Srivas. Effective theorem proving for hardware veri-
fication. In Theorem Provers in Circuit Design, pages 203-222.
Springer, 1995.

Simon Cruanes. Extending Superposition with Integer Arithmetic,
Structural Induction, and Beyond. (Extensions de la Superposition
pour I’Arithmétique Linéaire Entiére, I'Induction Structurelle, et
bien plus encore). PhD thesis, Ecole Polytechnique, Palaiseau,
France, 2015.

Haskell B. Curry. Grundlagen der kombinatorischen logik. Amer-
ican Journal of Mathematics, 52(3):509-536, 1930.

213

Bibliography

[Dav83]

[Dav01]

[DB70]

[dCt01]

[DHS86]

[DKS97]

[DMBOS]

[DP60]
[Dru09]

[End15]

[Far08]

[FB16]

214

Martin Davis. The prehistory and early history of automated de-
duction. InJ. Siekmann and G. Wrightson, editors, Automation of
Reasoning: Classical Papers on Computational Logic, pages 1-28.
Springer, 1983.

Martin Davis. The early history of automated deduction. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning (in 2 volumes), pages 3—15. Elsevier and
MIT Press, 2001.

Nicolaas Govert De Bruijn. The mathematical language automath,
its usage, and some of its extensions. In Symposium on automatic
demonstration, pages 29—61. Springer, 1970.

Luis Farifias del Cerro et al. Lotrec : The Generic Tableau Prover
for Modal and Description Logics. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Automated Reasoning, First
Int. Joint Conf., IJCAR 2001, Siena, Italy, June 18-23, 2001, Pro-
ceedings, volume 2083 of LNCS, pages 453-458. Springer, 2001.
Vincent J. Digricoli and Malcolm C. Harrison. Equality-based bi-
nary resolution. J. ACM, 33(2):253-289, April 1986.

Jorg Denzinger, Martin Kronenburg, and Stephan Schulz. Discount
- a distributed and learning equational prover. Journal of Auto-
mated Reasoning, 18(2):189-198, Apr 1997.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340. Springer,
2008.

Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. J. ACM, 7(3):201-215, 1960.

T. Drucker. Perspectives on the History of Mathematical Logic.
Modern Birkhiuser Classics. Birkhduser Boston, 2009.

Herbert B. Enderton. Second-order and higher-order logic. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, fall 2015 edition,
2015.

William M. Farmer. The seven virtues of simple type theory. J.
Applied Logic, 6(3):267-286, 2008.

Michael Férber and Chad Brown. Internal guidance for satallax.
In International Joint Conference on Automated Reasoning, pages

349-361. Springer, 2016.

[FB17]

[Fit96]

[FM98]

[FRO8]

[Fre79]

[Fre93]

[FZ07]

[Gac08]

[Garl6]

[Gil60]

[Gir72]

[GKU17]

Bibliography

David Fuenmayor and Christoph Benzmiiller. Types, Tableaus and
Godel’s God in Isabelle/HOL. Archive of Formal Proofs, 2017.
This publication is machine verified with Isabelle/HOL, but only
mildly human reviewed.

Melvin Fitting. First-Order Logic and Automated Theorem Prov-
ing, Second Edition. Graduate Texts in Computer Science.
Springer, 1996.

Melvin Fitting and R.L. Mendelsohn. First-Order Modal Logic.
Synthese Library Studies in Epistemology Logic, Methodology,
and Philosophy of Science Volume 277. Springer Netherlands,
1998.

Michael J Fischer and Michael O Rabin. Super-exponential com-
plexity of presburger arithmetic. In Quantifier Elimination and
Cylindrical Algebraic Decomposition, pages 122—135. Springer,
1998.

Gottlob Frege. Begriffsschrift, eine der arithmetischen nachge-
bildete Formelsprache des reinen Denkens. Verlag von Louis
Nebert, Halle, 1879.

Gottlob Frege. Grundgesetze der Arithmetik, volume 1. H. Pohle,
1893.

Branden Fitelson and EdwardN. Zalta. Steps toward a computa-
tional metaphysics. Journal of Philosophical Logic, 36(2):227—
247, 2007.

Andrew Gacek. The Abella interactive theorem prover (system
description). In Automated Reasoning, IJCAR, volume 5195 of
LNCS, pages 154-161. Springer, 2008.

James Garson. Modal logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, spring 2016 edition, 2016.

Paul C. Gilmore. A proof method for quantification theory: Its
justification and realization. IBM Journal of Research and Devel-
opment, 4(1):28-35, 1960.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures de I’arithmétique d’ordre supérieur. PhD thesis, Univer-
sité Paris VII, 1972.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Tactictoe:
Learning to reason with HOL4 tactics. In Thomas Eiter and David
Sands, editors, LPAR-21, 21st International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Maun,

215

Bibliography

[GM93]

[GMR"15]

[GMW79]

[God31]

[Go6d69]

[God70]

[Gol81]

[Goll1]

[GP94]

[Gre81]

[GSB17]

216

Botswana, May 7-12, 2017, volume 46 of EPiC Series in Com-
puting, pages 125-143. EasyChair, 2017.

Mike Gordon and Tom Melham, editors. Introduction to HOL:
A Theorem-Proving Environment for Higher-Order Logic. Cam-
bridge University Press, 1993.

Jirgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann,
and Johannes Waldmann. Termination competition (termcomp
2015). In International Conference on Automated Deduction,
pages 105-108. Springer, 2015.

Michael J. C. Gordon, Robin Milner, and Christopher P.
Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes in Com-
puter Science. Springer, 1979.

Kurt Godel. Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme. Monatshefte fiir Mathe-
matik und Physik, 38(1):173-198, 1931.

Kurt Godel. An interpretation of the intuitionistic sentential logic.
In J. Hintakka, editor, The Philosophy of Mathematics, pages 128
— 129. Oxford University Press, 1969.

Kurt Godel. Appx. a: Notes in kurt godel’s hand. pages 144 —
145. 1970. In J.H. Sobel. Logic and Theism: Arguments for and
Against Beliefs in God. Cambridge U. Press, 2004.

Warren D Goldfarb. The undecidability of the second-order uni-
fication problem. Theoretical Computer Science, 13(2):225-230,
1981.

R. Goldblatt. Quantifiers, Propositions and Identity: Admissible
Semantics for Quantified Modal and Substructural Logics. Lecture
Notes in Logic. Cambridge University Press, 2011.

M. J. C. Gordon and A. M. Pitts. The HOL logic and system. In
J. Bowen, editor, Towards Verified Systems, volume 2 of Real-Time
Safety Critical Systems, chapter 3, pages 49-70. Elsevier Science
B.V,, 1994.

Cordell Green. Application of theorem proving to problem solv-
ing. In Readings in Artificial Intelligence, pages 202-222. Elsevier,
1981.

Tobias GleiBlner, Alexander Steen, and Christoph Benzmiiller. The-
orem provers for every normal modal logic. In Thomas Eiter
and David Sands, editors, LPAR-21. 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning,
volume 46 of EPiC Series in Computing, pages 14-30, Maun,
Botswana, 2017. EasyChair.

[Gup92]

[HAB*17]

[HahO1]

[Har09]

[Hen50]
[Hin55]

[HS00]

[Hue72]

[Hue73a]

[Hue73b]

[Hue75]

[Hue81]

Bibliography

Aarti Gupta. Formal hardware verification methods: A survey. For-
mal Methods in System Design, 1(2-3):151-238, 1992.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John
Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron,
Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof of
the kepler conjecture. In Forum of Mathematics, Pi, volume 5.
Cambridge University Press, 2017.

Reiner Hihnle. Tableaux and related methods. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Rea-
soning (in 2 volumes), pages 100-178. Elsevier and MIT Press,
2001.

John Harrison. Hol light: An overview. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings, pages 60-66, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

Leon Henkin. Completeness in the theory of types. Journal of
Symbolic Logic, 15(2):81-91, 06 1950.

Jaakko Hintikka. Form and content in quantification theory. Acta
Philosophica Fennica, 8(7):55, 1955.

Ulrich Hustadt and Renate A Schmidt. Mspass: Modal reasoning
by translation and first-order resolution. In TABLEAUX, volume
1847, pages 67-71. Springer, 2000.

Gerard Pierre Huet. Constrained Resolution: A Complete Method
for Higher-order Logic. PhD thesis, Case Western Reserve Uni-
versity, Cleveland, OH, USA, 1972. AAI7306307.

Gerard P. Huet. A mechanization of type theory. In Proceedings
of the 3rd International Joint Conference on Artificial Intelligence,
IJCAT’ 73, pages 139-146, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

Gerard P. Huet. The undecidability of unification in third order
logic. Information and control, 22(3):257-267, 1973.

Gerard P. Huet. A unification algorithm for typed A-calculus. The-
oretical Computer Science, 1(1):27-57, 1975.

Gérard P. Huet. A complete proof of correctness of the knuth-
bendix completion algorithm. J. Comput. Syst. Sci., 23(1):11-21,
1981.

217

Bibliography

[Hur03]

[HV11]

DK11]

[JMO5]

[Joh85]

[JP0O9]
[JU18]

[KB70]

[Ker94]

[KKKS13]

[KMPS10]

[KNPO3]

218

Joe Hurd. First-order proof tactics in higher-order logic theorem
provers. Design and Application of Strategies/Tactics in Higher
Order Logics, number NASA/CP-2003-212448 in NASA Technical
Reports, pages 56-68, 2003.

Krystof Hoder and Andrei Voronkov. Sine qua non for large theory
reasoning. In International Conference on Automated Deduction,
pages 299-314. Springer, 2011.

Swen Jacobs and Viktor Kuncak. Towards complete reasoning
about axiomatic specifications. In International Workshop on Veri-
fication, Model Checking, and Abstract Interpretation, pages 278—
293. Springer, 2011.

Mauro Jaskelioff and Stephan Merz. Proving the correctness of
disk paxos. Archive of Formal Proofs, June 2005. http://
isa-afp.org/entries/DiskPaxos.html, Formal proof devel-
opment.

Thomas Johnsson. Lambda lifting: Treansforming programs to
recursive equations. In Jean-Pierre Jouannaud, editor, Functional
Programming Languages and Computer Architecture, FPCA 1985,
Nancy, France, September 16-19, 1985, Proceedings, volume 201
of Lecture Notes in Computer Science, pages 190-203. Springer,
1985.

Paul B Jackson and Grant Olney Passmore. Proving spark verifica-
tion conditions with smt solvers, 2009.

Jan Jakubuv and Josef Urban. Hierarchical invention of theorem
proving strategies. Al Commun., 31(3):237-250, 2018.

Donald E Knuth and Peter B Bendix. Simple word problems in
universal algebras. In Computational problems in abstract algebra,
pages 263-297. Elsevier, 1970.

Manfred Kerber. On the translation of higher-order problems into
first-order logic. In ECAI, pages 145-149, 1994.

Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter.
Synthesis modulo recursive functions. Acm Sigplan Notices,
48(10):407-426, 2013.

Viktor Kuncak, Mikaél Mayer, Ruzica Piskac, and Philippe Suter.
Complete functional synthesis. ACM Sigplan Notices, 45(6):316—
329, 2010.

Gerwin Klein, Tobias Nipkow, and Lawrence Paulson. The archive
of formal proofs, 2003.

http://isa-afp.org/entries/DiskPaxos.html
http://isa-afp.org/entries/DiskPaxos.html

[Koh94]

[Koh95]

[Kop12]

[Kor08]

[Kro09]

[KRTU99]

[KSR16]

[KU15a]

[KU15b]

[KV13]

[Lagll]

[Lei89]

Bibliography

Michael Kohlhase. A mechanization of sorted higher-order logic
based on the resolution principle. PhD thesis, Universitit des Saar-
landes, 1994.

Michael Kohlhase. Higher-order tableaux. In International Work-
shop on Theorem Proving with Analytic Tableaux and Related
Methods, pages 294-309. Springer, 1995.

Cynthia Kop. Higher order termination. PhD thesis, Faculty of
Sciences, Department of Computer Science, VUA, 2012.
Konstantin Korovin. iprover—an instantiation-based theorem
prover for first-order logic (system description). In Interna-
tional Joint Conference on Automated Reasoning, pages 292-298.
Springer, 2008.

Daniel Kroening. Software verification. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 505-532. IOS Press, 2009.

A. J. Kfoury, Simona Ronchi Della Rocca, Jerzy Tiuryn, and
Pawel Urzyczyn. Alpha-conversion and typability. Inf. Comput.,
150(1):1-21, 1999.

Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe. THI1: the
TPTP typed higher-order form with rank-1 polymorphism. In
P. Fontaine, S. Schulz, and J. Urban, editors, Proceedings of the
Sth Workshop on Practical Aspects of Automated Reasoning, vol-
ume 1635 of CEUR Workshop Proceedings, pages 41-55. CEUR-
WS.org, 2016.

Cezary Kaliszyk and Josef Urban. Femalecop: Fairly efficient ma-
chine learning connection prover. In Logic for Programming, Arti-
ficial Intelligence, and Reasoning, pages 88-96. Springer, 2015.
Cezary Kaliszyk and Josef Urban. Hol(y)hammer: Online ATP
service for HOL light. Mathematics in Computer Science, 9(1):5—
22,2015.

Laura Kovics and Andrei Voronkov. First-order theorem proving
and vampire. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification, volume 8044 of Lecture Notes in
Computer Science, pages 1-35. Springer Berlin Heidelberg, 2013.
Jeffrey C. Lagarias. The Kepler Conjecture: The Hales-Ferguson
Proof. Springer New York, 2011.

Gottfried Wilhelm Leibniz. Discourse on metaphysics. In Leroy E.
Loemker, editor, Philosophical Papers and Letters, pages 303-330.
Springer Netherlands, Dordrecht, 1989.

219

Bibliography

[Lib15]

[LinO8]

[LISK17]

[LS16]

[Mac95]

[McC94]

[McC97a]

[McC97b]

[MDO00]

[Mel93]

[Menl6]

220

Tomer Libal. Regular patterns in second-order unification. In
Amy P. Felty and Aart Middeldorp, editors, Automated Deduc-
tion - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, vol-
ume 9195 of Lecture Notes in Computer Science, pages 557-571.
Springer, 2015.

Fredrik Lindblad. Higher-order proof construction based on first-
order narrowing. Electr. Notes Theor. Comput. Sci., 196:69-84,
2008.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary
Kaliszyk. Deep network guided proof search. CoRR,
abs/1701.06972, 2017.

Tomer Libal and Alexander Steen. Towards a substitution tree
based index for higher-order resolution theorem provers. In Pas-
cal Fontaine, Stephan Schulz, and Josef Urban, editors, 5th Work-
shop on Practical Aspects of Automated Reasoning (PAAR), num-
ber 1635 in CEUR Workshop Proceedings, pages 82-94, Aachen,
2016.

D. MacKenzie. The automation of proof: A historical and socio-
logical exploration. IEEE Ann. Hist. Comput., 17(3):7-29, Septem-
ber 1995.

William W. McCune. Otter 3.0 reference manual and guide. Tech-
nical report, Argonne National Laboratory, Argonne, IL, 1994.
William McCune. 33 basic test problems: A practical evaluation
of some paramodulation strategies. Automated reasoning and its
applications: Essays in honor of Larry Wos, pages 71-114, 1997.
William McCune. Solution of the robbins problem. Journal of
Automated Reasoning, 19(3):263-276, 1997.

Fabio Massacci and Francesco M. Donini. Design and results of
tancs-2000 non-classical (modal) systems comparison. In Roy Dy-
ckhoff, editor, Automated Reasoning with Analytic Tableaux and
Related Methods, pages 52-56, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

T. F. Melham. The HOL logic extended with quantification over
type variables. Formal Methods in System Design, 3(1-2):7-24,
1993.

Christopher Menzel. Actualism. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, winter 2016 edition, 2016.

[Mil83]

[Mil91a]

[Mil91b]

[MM76]

[MPOS]

[MP09]

[Mus07]

[MW80]

[MW97]

[Nad99]

[Nip91]

[Nip93]

[NM99]

Bibliography

Dale A Miller. Proofs in higher-order logic. PhD thesis, Carnegie-
Mellon University, 1983.

Dale Miller. Unification of simply typed lamda-terms as logic pro-
gramming. In Koichi Furukawa, editor, Logic Programming, Pro-
ceedings of the Eigth International Conference, Paris, France, June
24-28, 1991, pages 255-269. MIT Press, 1991.

Dale A. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. J. Log.
Comput., 1(4):497-536, 1991.

Alberto Martelli and Ugo Montanari. Unification in linear time
and space: A structured presentation. Istituto di Elaborazione della
Informazione, Consiglio Nazionale delle Ricerche, 1976.

Jia Meng and Lawrence C. Paulson. Translating higher-order
clauses to first-order clauses. J. Autom. Reasoning, 40(1):35-60,
2008.

Jia Meng and Lawrence C Paulson. Lightweight relevance filtering
for machine-generated resolution problems. Journal of Applied
Logic, 7(1):41-57, 2009.

Reinhard Muskens. Intensional models for the theory of types. J.
Symb. Log., 72(1):98-118, 2007.

Zohar Manna and Richard Waldinger. A deductive approach to
program synthesis. ACM Trans. Program. Lang. Syst., 2(1):90—
121, January 1980.

William McCune and Larry Wos. Otter-the cade-13 competition
incarnations. Journal of Automated Reasoning, 18(2):211-220,
1997.

Gopalan Nadathur. A fine-grained notation for lambda terms and
its use in intensional operations. Journal of Functional and Logic
Programming, 1999(2), 1999.

Tobias Nipkow. Higher-order critical pairs. In Logic in Computer
Science, 1991. LICS’91., Proceedings of Sixth Annual IEEE Sym-
posium on, pages 342-349. IEEE, 1991.

Tobias Nipkow. Functional unification of higher-order patterns. In
Proc. 8th IEEE Symp. Logic in Computer Science, pages 6474,
1993.

Gopalan Nadathur and DustinJ. Mitchell. System Description:
Teyjus - A Compiler and Abstract Machine Based Implementa-
tion of AProlog. In Automated Deduction, CADE, volume 1632
of LNAI, pages 287-291. Springer, 1999.

221

Bibliography

[NR92]

[NRO1]

[NS56]

[NWO1]

[NWP02]

[OB17]

[ORRT96]

[Ott14]

[Pau88]

222

Robert Nieuwenhuis and Albert Rubio. Theorem proving with or-
dering constrained clauses. In Deepak Kapur, editor, Automated
Deduction - CADE-11, 11th International Conference on Auto-
mated Deduction, Saratoga Springs, NY, USA, June 15-18, 1992,
Proceedings, volume 607 of Lecture Notes in Computer Science,
pages 477-491. Springer, 1992.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based the-
orem proving. In John Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning (in 2 volumes), pages
371-443. Elsevier and MIT Press, 2001.

Allen Newell and Herbert Simon. The logic theory machine—a
complex information processing system. IRE Transactions on in-
formation theory, 2(3):61-79, 1956.

Andreas Nonnengart and Christoph Weidenbach. Computing small
clause normal forms. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning (in 2 volumes), pages
335-367. Elsevier and MIT Press, 2001.

Tobias Nipkow, Makarius Wenzel, and Lawrence C. Paulson. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic. Springer-
Verlag, Berlin, Heidelberg, 2002.

Jens Otten and Wolfgang Bibel. Advances in connection-based
automated theorem proving. In Michael G. Hinchey, Jonathan P.
Bowen, and Ernst-Riidiger Olderog, editors, Provably Correct Sys-
tems, NASA Monographs in Systems and Software Engineering,
pages 211-241. Springer, 2017.

Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and
Mandayam K. Srivas. PVS: combining specification, proof check-
ing, and model checking. In Rajeev Alur and Thomas A. Hen-
zinger, editors, Computer Aided Verification, 8th International
Conference, CAV ’96, New Brunswick, NJ, USA, July 31 - August
3, 1996, Proceedings, volume 1102 of Lecture Notes in Computer
Science, pages 411-414. Springer, 1996.

Jens Otten. Mleancop: A connection prover for first-order modal
logic. In International Joint Conference on Automated Reasoning,
pages 269-276. Springer, 2014.

Lawrence C. Paulson. A formulation of the simple theory of
types (for isabelle). In Per Martin-Lo6f and Grigori Mints, editors,
COLOG-88, International Conference on Computer Logic, Tallinn,

[Paull]

[PB10]

[PD10]

[Pie02]

[Pie09]

[PJ72]

[PJ87]

[PPO3]

[Pra60]

[Pre29]

[PS99]

Bibliography

USSR, December 1988, Proceedings, volume 417 of Lecture Notes
in Computer Science, pages 246-274. Springer, 1988.

C. Paulin-Mohring. Introduction to the coq proof-assistant for
practical software verification. In Tools for Practical Software Ver-
ification, LASER, International Summer School 2011, Elba Island,
Italy, Revised Tutorial Lectures, pages 45-95, 2011.

Lawrence C. Paulson and Jasmin Christian Blanchette. Three years
of experience with sledgehammer, a practical link between auto-
matic and interactive theorem provers. In PAAR@ [JCAR, pages
1-10, 2010.

Brigitte Pientka and Joshua Dunfield. Beluga: A framework for
programming and reasoning with deductive systems (system de-
scription). In Automated Reasoning, IJCAR, volume 6173 of
LNCS, pages 15-21. Springer, 2010.

Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002.

Brigitte Pientka. Higher-order term indexing using substitution
trees. ACM Trans. Comput. Logic, 11(1):6:1-6:40, November
2009.

T. Pietrzykowski and D. C. Jensen. A complete mechanization of
(Q)-order type theory. In Proceedings of the ACM Annual Con-
ference - Volume 1, ACM °72, pages 82-92, New York, NY, USA,
1972. ACM.

Simon L Peyton Jones. The implementation of functional program-
ming languages (prentice-hall international series in computer sci-
ence). Prentice-Hall, Inc., 1987.

Brigitte Pientka and Frank Pfenning. Optimizing higher-order pat-
tern unification. In 19th International Conference on Automated
Deduction, pages 473—487. Springer-Verlag, 2003.

Dag Prawitz. An improved proof procedure. Theoria, 26(2):102—
139, 1960.

M. Presburger. Uber die vollstindigkeit eines gewissen systems
der arithmetik ganzer zahlen, in welchem die addition als einzige
operation hervortritt. In Comptes Rendus du I congres de Mathé-
maticiens des Pays Slaves, pages 92—101, 1929.

Frank Pfenning and Carsten Schiirmann. System description:
Twelf - A meta-logical framework for deductive systems. In Auto-
mated Deduction, CADE, volume 1632 of LNAI, pages 202-206.
Springer, 1999.

223

Bibliography

[PU18]

[PW12]
[Qia96]

[RDK*15]

[Rey74]

[Rey98a]

[Rey98b]

[Rin09]

[RO12]

[Rob65]
[Rob69]
[Rus03]
[Rus08]
[Rus96]

[RVO1]

224

Bartosz Piotrowski and Josef Urban. Atpboost: Learning premise
selection in binary setting with ATP feedback. In IJCAR, vol-
ume 10900 of Lecture Notes in Computer Science, pages 566-574.
Springer, 2018.

Alvaro Pelayo and Michael A. Warren. Homotopy type theory and
voevodsky’s univalent foundations. CoRR, abs/1210.5658, 2012.
Zhenyu Qian. Unification of higher-order patterns in linear time
and space. Journal of Logic and Computation, 6(3):315-341, 1996.
Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli,
and Clark Barrett. Counterexample-guided quantifier instantiation
for synthesis in smt. In International Conference on Computer
Aided Verification, pages 198-216. Springer, 2015.

John C. Reynolds. Towards a theory of type structure. In Sympo-
sium on Programming, pages 408-423, 1974.

John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. Higher-Order and Symbolic Computation,
11(4):363-397, 1998.

John C. Reynolds. Theories of Programming Languages. Cam-
bridge University Press, 1998. Cambridge Books Online.

Jussi Rintanen. Planning and SAT. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations, pages 483-504. 10S Press, 2009.

Thomas Raths and Jens Otten. The QMLTP Problem Library for
First-Order Modal Logics. In B. Gramlich, D. Miller, and U. Sat-
tler, editors, IJCAR 2012, volume 7364 of LNCS, pages 454-461.
Springer, 2012.

John A. Robinson. A machine-oriented logic based on the resolu-
tion principle. J. ACM, 12(1):23—41, January 1965.

John A. Robinson. Mechanizing higher-order logic. Machine In-
telligence, 4(150-170):24, 1969.

Bertrand Russell. The Principles of Mathematics. Number v. 1 in
The Principles of Mathematics. University Press, 1903.

Bertrand Russell. Mathematical logic as based on the theory of
types. American journal of mathematics, 30(3):222-262, 1908.
Bertrand Russell. The principles of mathematics. WW Norton &
Company, 1996.

John Alan Robinson and Andrei Voronkov, editors. Handbook of
Automated Reasoning (in 2 volumes). Elsevier and MIT Press,
2001.

[RV02]

[RVO3]

[RW69]

[Sah75]

[SB10]

[SB15]

[SB16]

[SB18]

[SBAOG]

[SBP13]

[Sch24]
[Sch02]

[Sch13]

Bibliography

Alexandre Riazanov and Andrei Voronkov. The design and imple-
mentation of vampire. Al communications, 15(2, 3):91-110, 2002.
Alexandre Riazanov and Andrei Voronkov. Limited resource strat-
egy in resolution theorem proving. Journal of Symbolic Computa-
tion, 36(1):101 — 115, 2003. First Order Theorem Proving.
George Robinson and Larry Wos. Paramodulation and theorem-
proving in first-order theories with equality. Machine intelligence,
4:135-150, 1969.

Henrik Sahlqvist. Completeness and correspondence in the first
and second order semantics for modal logic. Studies in Logic and
the Foundations of Mathematics, 82:110-143, 1975.

Geoff Sutcliffe and Christoph Benzmiiller. Automated Reasoning
in Higher-Order Logic using the TPTP THF Infrastructure. Journal
of Formalized Reasoning, 3(1):1-27, 2010.

Alexander Steen and Christoph Benzmiiller. There Is No Best
Beta-Normalization Strategy for Higher-Order Reasoners. In
M. Davis, A. Fehnker, A. Mclver, and A. Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR),
volume 9450 of LNAI, pages 329-339, Suva, Fiji, 2015. Springer.
Alexander Steen and Christoph Benzmiiller. Sweet SIXTEEN: Au-
tomation via embedding into classical higher-order logic. Logic
and Logical Philosophy, 25:535-554, 2016.

Alexander Steen and Christoph Benzmiiller. The higher-order
prover Leo-III. In Didier Galmiche, Stephan Schulz, and Roberto
Sebastiani, editors, Automated Reasoning — 9th International
Joint Conference, IICAR 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, LNCS. Springer, 2018. To Appear.

Jorg Siekmann, Christoph Benzmiiller, and Serge Autexier. Com-
puter supported mathematics with OMEGA. Journal of Applied
Logic, 4(4):533-559, 2006.

Nik Sultana, Jasmin Christian Blanchette, and Lawrence C Paul-
son. Leo-ii and satallax on the sledgehammer test bench. Journal
of Applied Logic, 11(1):91-102, 2013.

Moses Schonfinkel. Uber die bausteine der mathematischen logik.
Mathematische annalen, 92(3-4):305-316, 1924.

Stephan Schulz. E - A Brainiac Theorem Prover. Al Communica-
tions, 15(2,3):111-126, August 2002.

Stephan Schulz. Simple and efficient clause subsumption with fea-
ture vector indexing. In Maria Paola Bonacina and Mark E. Stickel,

225

Bibliography

[Schl15]

[Sch17]

[Sco72]

[SG8I]

[SM16]

[Smu63]

[Smu95]
[Sny91]
[Sob87]

[SRVO1]

[SS15]

226

editors, Automated Reasoning and Mathematics - Essays in Mem-
ory of William W. McCune, volume 7788 of LNCS, pages 45-67.
Springer, 2013.

Lenhart Schubert. Computational linguistics. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, spring 2015 edition, 2015.
Stephan Schulz. We know (nearly) nothing! But can we learn? In
Giles Reger and Dmitriy Traytel, editors, ARCADE 2017. 1st Inter-
national Workshop on Automated Reasoning: Challenges, Appli-
cations, Directions, Exemplary Achievements, volume 51 of EPiC
Series in Computing, pages 29-32. EasyChair, 2017.

Dana Scott. Appx. b: Notes in dana scott’s hand. pages 145 —
146. 1972. In J.H. Sobel. Logic and Theism: Arguments for and
Against Beliefs in God. Cambridge U. Press, 2004.

Wayne Snyder and Jean Gallier. Higher-order unification revisited:
Complete sets of transformations. Journal of Symbolic Computa-
tion, 8(1-2):101-140, 1989.

Stephan Schulz and Martin Mohrmann. Performance of clause se-
lection heuristics for saturation-based theorem proving. In Nicola
Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th
International Joint Conference, IJCAR 2016, Coimbra, Portugal,
June 27 - July 2, 2016, Proceedings, volume 9706 of Lecture Notes
in Computer Science, pages 330-345. Springer, 2016.

Raymond M Smullyan. A unifying principal in quantification the-
ory. Proceedings of the National Academy of Sciences, 49(6):828—
832, 1963.

Raymond M Smullyan. First-order logic. Courier Corporation,
1995.

Wayne Snyder. Higher Order Unification, pages 123-153.
Birkhduser Boston, Boston, MA, 1991.

Jordan Howard Sobel. Godel’s ontological proof. On Being and
Saying. Essays for Richard Cartwright, pages 241-261, 1987.

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov. Term index-
ing. In Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 1853—1964. Elsevier, Amsterdam,
The Netherlands, 2001.

Simon Schifer and Stephan Schulz. Breeding theorem proving
heuristics with genetic algorithms. In Georg Gottlob, Geoff Sut-
cliffe, and Andrei Voronkov, editors, Global Conference on Arti-
ficial Intelligence, GCAI 2015, Tbilisi, Georgia, October 16-19,

[SSCB12]

[SST14]

[SSUP17]

[Sta77]

[Stal2]

[Stel4]

[Sti09]

[Sut06]

[Sut07]

Bibliography

2015, volume 36 of EPiC Series in Computing, pages 263-274.
EasyChair, 2015.

Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Peter Baum-
gartner. The tptp typed first-order form with arithmetic. In Interna-
tional Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 406—419. Springer, 2012.

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A
cross-community infrastructure for logic solving. In Stéphane
Demri, Deepak Kapur, and Christoph Weidenbach, editors, Au-
tomated Reasoning - 7th International Joint Conference, IJCAR
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 19-22, 2014. Proceedings, volume 8562 of Lec-
ture Notes in Computer Science, pages 367-373. Springer, 2014.
Stephan Schulz, Geoff Sutcliffe, Josef Urban, and Adam Pease.
Detecting inconsistencies in large first-order knowledge bases. In
Leonardo de Moura, editor, Automated Deduction - CADE 26 -
26th International Conference on Automated Deduction, Gothen-
burg, Sweden, August 6-11, 2017, Proceedings, volume 10395
of Lecture Notes in Computer Science, pages 310-325. Springer,
2017.

Richard Statman. The typed A-calculus is not elementary recur-
sive. In Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 90-94. IEEE, 1977.

Robert Stalnaker. Mere Possibilities: Metaphysical Foundations
of Modal Semantics. Carl G. Hempel Lecture Series. Princeton
University Press, 2012.

Alexander Steen. Efficient Data Structures for Automated Theo-
rem Proving in Expressive Higher-Order Logics. Master’s thesis,
Freie Universitit Berlin, Berlin, Germany, 2014.

Colin Stirling. Decidability of higher-order matching. arXiv
preprint arXiv:0907.3804, 2009.

Geoff Sutcliffe. Semantic derivation verification: Techniques and
implementation. [International Journal on Artificial Intelligence
Tools, 15(6):1053-1070, 2006.

Geoff Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov,
and A. Voronkov, editors, Proceedings of the 2nd International
Computer Science Symposium in Russia, number 4649 in Lecture
Notes in Computer Science, pages 7-23. Springer-Verlag, 2007.

227

Bibliography

[Sut08]

[Sut09]

[Sutl0]

[Sutl6a]
[Sutl6b]
[Sutl7a]

[Sutl7b]

[SWB16]

[SWSB17]

[Tam96]

228

Geoff Sutcliffe. The SZS Ontologies for Automated Reasoning
Software. In LPAR Workshops: Knowledge Exchange: Automated
Provers and Proof Assistants, and The 7th International Work-
shop on the Implementation of Logics (Doha, Qattar), volume 418,
pages 38-49. CEUR Workshop Proceedings, 2008.

Geoff Sutcliffe. The TPTP Problem Library and Associated Infras-
tructure: The FOF and CNF Parts, v3.5.0. Journal of Automated
Reasoning, 43(4):337-362, 2009.

Geoff Sutcliffe. The TPTP World - Infrastructure for Automated
Reasoning. In E. Clarke and A. Voronkov, editors, Proceedings of
the 16th International Conference on Logic for Programming Ar-
tificial Intelligence and Reasoning, number 6355 in Lecture Notes
in Artificial Intelligence, pages 1-12. Springer-Verlag, 2010.
Geoff Sutcliffe. The 8th IICAR automated theorem proving system
competition - CASC-J8. AI Commun., 29(5):607-619, 2016.
Geoff Sutcliffe. The CADE ATP System Competition - CASC. Al
Magazine, 37(2):99-101, 2016.

Geoff Sutcliffe. The CADE-26 automated theorem proving system
competition - CASC-26. Al Commun., 30(6):419-432, 2017.
Geoff Sutcliffe. The TPTP Problem Library and Associated Infras-
tructure. From CNF to THO, TPTP v6.4.0. Journal of Automated
Reasoning, 59(4):483-502, 2017.

Alexander Steen, Max Wisniewski, and Christoph Benzmiiller.
Agent-based HOL reasoning. In G.-M. Greuel, T. Koch, P. Paule,
and A. Sommese, editors, Mathematical Software — ICMS 2016,
Sth International Congress, Proceedings, volume 9725 of LNCS,
pages 75-81, Berlin, Germany, 2016. Springer.

Alexander Steen, Max Wisniewski, Hans-Jorg Schurr, and
Christoph Benzmiiller. Capability discovery for automated rea-
soning systems. In Thomas FEiter, David Sands, Geoff Sutcliffe,
and Andrei Voronkov, editors, IWIL@LPAR 2017 Workshop and
LPAR-21 Short Presentations, Maun, Botswana, May 7-12, 2017,
volume 1 of Kalpa Publications in Computing, Maun, Botswana,
2017. EasyChair.

Tanel Tammet. A resolution theorem prover for intuitonistic logic.
In M. A. McRobbie and J. K. Slaney, editors, Automated Deduction
- CADE-13, 13th International Conference on Automated Deduc-
tion, New Brunswick, NJ, USA, July 30 - August 3, 1996, Proceed-
ings, volume 1104 of Lecture Notes in Computer Science, pages
2-16. Springer, 1996.

[TBO6]

[TCMO02]

[Tho97]

[TO98]

[TSK12]

[Tur79]

[USPVO08]

[VBDS83]

[VH67]

[VN25]

[Vo6107]

[Wan83]

[Wanl14]

Bibliography

Frank Theiss and Christoph Benzmiiller. Term indexing for the
LEO-II prover. In IWIL-6 workshop at LPAR 2006: The 6th Inter-
national Workshop on the Implementation of Logics, Pnom Penh,
Cambodia, 2006.

Virginie Thion, Serenella Cerrito, and Marta Mayer. A general
theorem prover for quantified modal logics. Automated Reason-
ing with Analytic Tableaux and Related Methods, pages 193-258,
2002.

Simon Thompson. Higher-order + Polymorphic = Reusable.
http://www.cs.kent.ac.uk/pubs/1997/224, May 1997.

Andrew P. Tolmach and Dino Oliva. From ML to ada: Strongly-
typed language interoperability via source translation. J. Funct.
Program., 8(4):367-412, 1998.

Dmitry Tishkovsky, Renate A Schmidt, and Mohammad Kho-
dadadi. The tableau prover generator MetTeL2. In European Work-
shop on Logics in Artificial Intelligence, pages 492—495. Springer,
2012.

David A Turner. Another algorithm for bracket abstraction. The
Journal of Symbolic Logic, 44(2):267-270, 1979.

Josef Urban, Geoff Sutcliffe, Petr Pudldk, and Jifi Vyskocil.
Malarea sg1-machine learner for automated reasoning with seman-
tic guidance. In International Joint Conference on Automated Rea-
soning, pages 441-456. Springer, 2008.

Johan Van Benthem and Kees Doets. Higher-order logic. In Hand-
book of philosophical logic, pages 275-329. Springer, 1983.

Jean Van Heijenoort. From Frege to Godel: A Source Book in
Mathematics 1879-1931. Harvard University Press, Cambridge,
MA, 1967.

John Von Neumann. Eine axiomatisierung der mengenlehre. Jour-
nal fiir die reine und angewandte Mathematik, 154:219-240, 1925.
Norbert Volker. HOL2P — a system of classical higher order logic
with second order polymorphism. In Theorem Proving in Higher
Order Logics, pages 334-351. Springer, 2007.

Hao Wang. Towards mechanical mathematics. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning: Classical Papers
on Computational Logic, pages 244-264. Springer, 1983.

Daniel Wand. Polymorphic+typeclass superposition. In Stephan
Schulz, Leonardo de Moura, and Boris Konev, editors, 4th Work-
shop on Practical Aspects of Automated Reasoning, PAAR@IJCAR

229

Bibliography

[WB16]

[WCR64]

[WDF+09]

[Wei99]

[Weil7]

[Wie99]

[Will3]
[WM78]

[Wol98]

[Wol09]

[WRC65]

230

2014, Vienna, Austria, 2014, volume 31 of EPiC Series in Comput-
ing, pages 105-119. EasyChair, 2014.

Max Wisniewski and Christoph Benzmiiller. Is it reasonable to
employ agents in theorem proving? In Jan van den Heerik and
Joaquim Filipe, editors, Proceedings of the 8th International Con-
ference on Agents and Artificial Intelligence (ICAART 2016) — Vol-
ume 1, pages 281-286, volume 1, pages 281-286, Rome, Italy,
2016. SCITEPRESS - Science and Technology Publications, Lda.
Lawrence Wos, Daniel Carson, and George Robinson. The unit
preference strategy in theorem proving. In Proceedings of the Oc-
tober 27-29, 1964, fall joint computer conference, part I, pages
615-621. ACM, 1964.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit
Kumar, Martin Suda, and Patrick Wischnewski. Spass version 3.5.
In International Conference on Automated Deduction, pages 140—
145. Springer, 2009.

Gerhard Weiss. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Intelligent Robotics and Au-
tonomous Agents Series. CogNet, 1999.

Christoph Weidenbach. Do portfolio solvers harm? In Giles
Reger and Dmitriy Traytel, editors, ARCADE 2017. Ist Interna-
tional Workshop on Automated Reasoning: Challenges, Applica-
tions, Directions, Exemplary Achievements, volume 51 of EPiC
Series in Computing, pages 76-81. EasyChair, 2017.

Tomasz Wierzbicki. Complexity of the higher order matching. In
International Conference on Automated Deduction, pages 82-96.
Springer, 1999.

Timothy Williamson. Modal Logic as Metaphysics. Oxford Uni-
versity Press, 2013.

Mark N. Wegman and Paterson Mike. Linear unification. J. Com-
put. Syst. Sci, 16:158-167, 1978.

Andreas Wolf. P-setheo: Strategy parallelism in automated theo-
rem proving. In International Conference on Automated Reason-
ing with Analytic Tableaux and Related Methods, pages 320-324.
Springer, 1998.

David A Wolfram. The clausal theory of types, volume 21. Cam-
bridge University Press, 2009.

Lawrence Wos, George A Robinson, and Daniel F Carson. Effi-
ciency and completeness of the set of support strategy in theorem
proving. Journal of the ACM (JACM), 12(4):536-541, 1965.

[WSB15]

[WSB16]

[WSKB16]

[WTWDI17]

[Zall7]

[Zer08]

[Ziel8]

Bibliography

Max Wisniewski, Alexander Steen, and Christoph Benzmiiller.
LEOPARD - A Generic Platform for the Implementation of
Higher-Order Reasoners. In Manfred Kerber, Jacques Carette,
Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intel-
ligent Computer Mathematics - International Conference, CICM
2015, Washington, DC, USA, July 13-17, 2015, Proceedings, vol-
ume 9150 of LNCS, pages 325-330. Springer, 2015.

Max Wisniewski, Alexander Steen, and Christoph Benzmiiller.
TPTP and beyond: Representation of quantified non-classical log-
ics. In Christoph Benzmiiller and Jens Otten, editors, ARQNL
2016. Automated Reasoning in Quantified Non-Classical Log-
ics, volume 1770, pages 51-65. CEUR Workshop Proceedings,
http://ceur-ws.org, 2016.

Max Wisniewski, Alexander Steen, Kim Kern, and Christoph
Benzmiiller. Effective normalization techniques for HOL. In
Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning
— 8th International Joint Conference, IICAR 2016, Coimbra, Por-
tugal, June 27 — July 2, 2016, Proceedings, volume 9706 of LNCS,
pages 362-370. Springer, 2016.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise se-
lection for theorem proving by deep graph embedding. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 30, pages 2783-2793. Curran Associates, Inc., 2017.
Edward N. Zalta. Frege’s theorem and foundations for arithmetic.
In Edward N. Zalta, editor, The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, summer
2017 edition, 2017.

Ernst Zermelo. Untersuchungen iiber die grundlagen der mengen-
lehre. i. Mathematische Annalen, 65(2):261-281, 1908.

Marco Ziener. Mixing automated theorem proving and machine
learning. Master’s thesis, Freie Universitit Berlin, Berlin, Ger-
many, 2018.

231

	Introduction
	Motivation
	Higher-Order Logic
	Automated Theorem Proving
	The Leo Systems
	Structure of the Thesis

	Higher-Order Logic
	Syntax of HOL
	Semantics of HOL
	Related Systems

	Higher-Order Paramodulation
	Preliminaries
	Extensional Paramodulation Calculus EP
	Completeness
	Abstract Consistency Classes
	Hintikka Sets
	Model Existence
	Completeness of EP

	Ordering Constraints

	The Leo-III System
	System Architecture
	Calculus Extensions
	Clause Contraction
	Defined Equalities
	Choice
	Heuristic Instantiation
	Function Synthesis
	Pattern Unification

	Proof Search
	Pre-Processing
	Saturation Procedure
	Search Control

	External Cooperation
	Utilization during Proof Search
	Translation to First-Order Logic

	Proof Output
	Reasoning in Polymorphic HOL
	Adjustments to Leo-III
	External Cooperation

	Modal Logic Reasoning
	Higher-Order Modal Logic
	Semantics Variations
	Automation of HOML in Leo-III

	Implementation Details
	Term Data Structure
	Indexing Techniques
	Management of External Reasoners

	Additional Features
	Interactively Guided Refutation
	Editor Front-end for Leo-III
	Integration to Isabelle/HOL
	Further Minor Features

	Application Examples
	Higher-Order Reasoning
	Polymorphic Higher-Order Reasoning
	Modal Logic Reasoning
	Leo-III as a Meta-Prover

	Evaluation
	Higher-Order Reasoning
	Polymorphic Higher-Order Reasoning
	Modal Logic Reasoning
	Proof Certificates

	Conclusion and Outlook
	Installation and Usage of Leo-III
	Requirements
	Installation
	Usage

	List of Contributions
	Complete Leo-III Proofs
	Proof of SET557^1
	Proof of SYO037^1
	Proof of NUN025^1
	Proof of SYN997^1
	Proof of SYO548^1
	Proof of SYO519^1
	Proof of modified NUN025^1 (Ex. E8)
	Proof of Polymorphic Cantor
	Proof of SEV485^1
	Proof of the Barcan Formula
	Proof of the Converse Barcan Formula

	Deutsche Zusammenfassung
	About the Author
	List of Figures
	List of Tables
	Index
	Bibliography

