On idempotent n-ary uninorms

Jimmy Devillet
University of Luxembourg
Luxembourg

in collaboraton with Gergely Kiss and Jean-Luc Marichal

Part I: Ultrabisymmetry

Associativity and symmetry

Definition.

$F: X^{3} \rightarrow X$ is said to be

$$
\begin{aligned}
& F\left(F\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right) \\
& =F\left(x_{1}, F\left(x_{2}, x_{3}, x_{4}\right), x_{5}\right) \\
& \\
& =F\left(x_{1}, x_{2}, F\left(x_{3}, x_{4}, x_{5}\right)\right)
\end{aligned}
$$

Associativity and symmetry

Definition.

$F: X^{3} \rightarrow X$ is said to be

- associative if for all $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in X$

$$
\begin{aligned}
& F\left(F\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right) \\
& =F\left(x_{1}, F\left(x_{2}, x_{3}, x_{4}\right), x_{5}\right) \\
& \quad=F\left(x_{1}, x_{2}, F\left(x_{3}, x_{4}, x_{5}\right)\right)
\end{aligned}
$$

- symmetric if $F\left(x_{1}, x_{2}, x_{3}\right)$ is invariant under any permutation

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$

Associativity and symmetry

Definition.

$F: X^{3} \rightarrow X$ is said to be

- associative if for all $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in X$

$$
\begin{aligned}
& F\left(F\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right) \\
& =F\left(x_{1}, F\left(x_{2}, x_{3}, x_{4}\right), x_{5}\right) \\
& \\
& =F\left(x_{1}, x_{2}, F\left(x_{3}, x_{4}, x_{5}\right)\right)
\end{aligned}
$$

- symmetric if $F\left(x_{1}, x_{2}, x_{3}\right)$ is invariant under any permutation of x_{1}, x_{2}, x_{3}

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$

Associativity and symmetry

Definition.

$F: X^{3} \rightarrow X$ is said to be

- associative if for all $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in X$

$$
\begin{aligned}
& F\left(F\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right) \\
& \qquad=F\left(x_{1}, F\left(x_{2}, x_{3}, x_{4}\right), x_{5}\right) \\
& \quad=F\left(x_{1}, x_{2}, F\left(x_{3}, x_{4}, x_{5}\right)\right)
\end{aligned}
$$

- symmetric if $F\left(x_{1}, x_{2}, x_{3}\right)$ is invariant under any permutation of x_{1}, x_{2}, x_{3}

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$

Bisymmetry

Definition. (Aczél, 1946)
$F: X^{3} \rightarrow X$ is said to be bisymmetric if

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
& \quad=F\left(F\left(x_{11}, x_{21}, x_{31}\right), F\left(x_{12}, x_{22}, x_{32}\right), F\left(x_{13}, x_{23}, x_{33}\right)\right)
\end{aligned}
$$

$$
\text { for all }\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \in X^{3 \times 3}
$$

Example. $F(x, y, z)=x+y+z$ on $X=\mathbb{R}$

Bisymmetry

Definition. (Aczél, 1946)
$F: X^{3} \rightarrow X$ is said to be bisymmetric if

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
& \quad=F\left(F\left(x_{11}, x_{21}, x_{31}\right), F\left(x_{12}, x_{22}, x_{32}\right), F\left(x_{13}, x_{23}, x_{33}\right)\right)
\end{aligned}
$$

$$
\text { for all }\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \in X^{3 \times 3}
$$

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$

Ultrabisymmetry

Definition.

We say that $F: X^{3} \rightarrow X$ is ultrabisymmetric if

$$
F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right)
$$

is invariant when replacing $x_{i j}$ by $x_{k l}$ for all $i, j, k, l \in\{1,2,3\}$

Example. $F(x, y, z)$

Ultrabisymmetry

Definition.

We say that $F: X^{3} \rightarrow X$ is ultrabisymmetric if

$$
F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right)
$$

is invariant when replacing $x_{i j}$ by $x_{k l}$ for all $i, j, k, l \in\{1,2,3\}$

$$
\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{33} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{21}
\end{array}\right) \in X^{3 \times 3}
$$

Example. $F(x, y, z)=x+y+z$ on $X=\mathbb{R}$

Ultrabisymmetry

Definition.

We say that $F: X^{3} \rightarrow X$ is ultrabisymmetric if

$$
F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right)
$$

is invariant when replacing $x_{i j}$ by $x_{k l}$ for all $i, j, k, l \in\{1,2,3\}$

$$
\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{33} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{21}
\end{array}\right) \in X^{3 \times 3}
$$

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$

Ultrabisymmetry

Definition.

We say that $F: X^{3} \rightarrow X$ is ultrabisymmetric if

$$
F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right)
$$

is invariant when replacing $x_{i j}$ by $x_{k l}$ for all $i, j, k, l \in\{1,2,3\}$

$$
\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{33} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{21}
\end{array}\right) \in X^{3 \times 3}
$$

Example. $F(x, y, z)=x+y+z \quad$ on $X=\mathbb{R}$
Fact. ultrabisymmetry \Longrightarrow bisymmetry

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric

Associativity and bisymmetry

$$
F(x, y, z)=x+y+z \text { is }
$$

- associative
- symmetric
\Rightarrow bisymmetric

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right)
$$

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
= & \left(x_{11}+x_{12}+x_{13}\right)+\left(x_{21}+x_{22}+x_{23}\right)+\left(x_{31}+x_{32}+x_{33}\right)
\end{aligned}
$$

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
= & \left(x_{11}+x_{12}+x_{13}\right)+\left(x_{21}+x_{22}+x_{23}\right)+\left(x_{31}+x_{32}+x_{33}\right) \\
= & x_{11}+x_{12}+x_{13}+x_{21}+x_{22}+x_{23}+x_{31}+x_{32}+x_{33}
\end{aligned}
$$

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
= & \left(x_{11}+x_{12}+x_{13}\right)+\left(x_{21}+x_{22}+x_{23}\right)+\left(x_{31}+x_{32}+x_{33}\right) \\
= & x_{11}+x_{12}+x_{13}+x_{21}+x_{22}+x_{23}+x_{31}+x_{32}+x_{33} \\
= & x_{11}+x_{21}+x_{31}+x_{12}+x_{22}+x_{32}+x_{13}+x_{23}+x_{33}
\end{aligned}
$$

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
= & \left(x_{11}+x_{12}+x_{13}\right)+\left(x_{21}+x_{22}+x_{23}\right)+\left(x_{31}+x_{32}+x_{33}\right) \\
= & x_{11}+x_{12}+x_{13}+x_{21}+x_{22}+x_{23}+x_{31}+x_{32}+x_{33} \\
= & x_{11}+x_{21}+x_{31}+x_{12}+x_{22}+x_{32}+x_{13}+x_{23}+x_{33} \\
= & \left(x_{11}+x_{21}+x_{31}\right)+\left(x_{12}+x_{22}+x_{32}\right)+\left(x_{13}+x_{23}+x_{33}\right) \\
= & F\left(F\left(x_{11}, x_{21}, x_{31}\right), F\left(x_{12}, x_{22}, x_{32}\right), F\left(x_{13}, x_{23}, x_{33}\right)\right)
\end{aligned}
$$

Associativity and bisymmetry

$F(x, y, z)=x+y+z$ is

- associative
- symmetric
\Rightarrow bisymmetric
\Rightarrow ultrabisymmetric

$$
\begin{aligned}
& F\left(F\left(x_{11}, x_{12}, x_{13}\right), F\left(x_{21}, x_{22}, x_{23}\right), F\left(x_{31}, x_{32}, x_{33}\right)\right) \\
= & \left(x_{11}+x_{12}+x_{13}\right)+\left(x_{21}+x_{22}+x_{23}\right)+\left(x_{31}+x_{32}+x_{33}\right) \\
= & x_{11}+x_{12}+x_{13}+x_{21}+x_{22}+x_{23}+x_{31}+x_{32}+x_{33} \\
= & x_{11}+x_{21}+x_{31}+x_{12}+x_{22}+x_{32}+x_{13}+x_{23}+x_{33} \\
= & \left(x_{11}+x_{21}+x_{31}\right)+\left(x_{12}+x_{22}+x_{32}\right)+\left(x_{13}+x_{23}+x_{33}\right) \\
= & F\left(F\left(x_{11}, x_{21}, x_{31}\right), F\left(x_{12}, x_{22}, x_{32}\right), F\left(x_{13}, x_{23}, x_{33}\right)\right)
\end{aligned}
$$

Associativity and bisymmetry

Proposition

- associativity + symmetry \Longrightarrow ultrabisymmetry \Longrightarrow bisymmetry

Associativity and bisymmetry

Proposition

- associativity + symmetry \Longrightarrow ultrabisymmetry \Longrightarrow bisymmetry
- bisymmetry + symmetry \Longrightarrow ultrabisymmetry

Quasitriviality

Definition

$F: X^{3} \rightarrow X$ is said to be - quasitrivial (or conservative) if

$$
F(x, y, z) \in\{x, y, z\} \quad(x, y, z \in X)
$$

Quasitriviality

Definition

$F: X^{3} \rightarrow X$ is said to be

- quasitrivial (or conservative) if

$$
F(x, y, z) \in\{x, y, z\} \quad(x, y, z \in X)
$$

- idempotent if

Fact. quasitriviality

Quasitriviality

Definition

$F: X^{3} \rightarrow X$ is said to be

- quasitrivial (or conservative) if

$$
F(x, y, z) \in\{x, y, z\} \quad(x, y, z \in X)
$$

- idempotent if

$$
F(x, x, x)=x \quad(x \in X)
$$

Quasitriviality

Definition

$F: X^{3} \rightarrow X$ is said to be

- quasitrivial (or conservative) if

$$
F(x, y, z) \in\{x, y, z\} \quad(x, y, z \in X)
$$

- idempotent if

$$
F(x, x, x)=x \quad(x \in X)
$$

Fact. quasitriviality \Longrightarrow idempotency

Associativity and bisymmetry

$$
\text { bisymmetry }+ \text { symmetry } \quad \Longrightarrow \quad \text { ultrabisymmetry }
$$

Proposition quasitriviality + ultrabisymmetry $\quad \Longrightarrow$ associativity + symmetry $\Longrightarrow \quad$ bisymmetry

Associativity and bisymmetry

bisymmetry + symmetry \Longrightarrow ultrabisymmetry

Proposition quasitriviality + ultrabisymmetry \Longrightarrow associativity + symmetry \Longrightarrow bisymmetry

Corollary

Associativity and bisymmetry

bisymmetry + symmetry $\Longrightarrow \quad$ ultrabisymmetry

Proposition quasitriviality + ultrabisymmetry \Longrightarrow associativity + symmetry \Longrightarrow bisymmetry

Corollary

$$
\begin{gathered}
\text { quasitriviality }+ \text { symmetry } \\
\Downarrow \\
\text { associativity } \Longleftrightarrow \text { bisymmetry }
\end{gathered}
$$

Part II: Idempotent n-ary uninorms

Uninorm

Definition

$e \in X$ is said to be a neutral element of $F: X^{3} \rightarrow X$ if

$$
F(x, e, e)=F(e, x, e)=F(e, e, x)=x \quad x \in X
$$

Definition. (Kiss et al., 2018)
A ternary uninorm on (X, \leq) is an operation $F: X^{3} \rightarrow X$ that

- has a neutral element $e \in X$
and is
- associative
- symmetric
- \leq-nondecreasing

First characterization

Proposition

$F: X^{3} \rightarrow X$ is an idempotent ternary uninorm if and only if there exists an idempotent binary uninorm $U: X^{2} \rightarrow X$ such that

$$
F(x, y, z)=U(\min (x, y, z), \max (x, y, z)) \quad x, y, z \in X
$$

Single-peaked orderings

Definition. (Black, 1948)
Let \leq and \preceq be total orderings on X.
Then \preceq is said to be single-peaked for \leq if for all $a, b, c \in X$

$$
a<b<c \quad \Longrightarrow \quad b \prec a \quad \text { or } \quad b \prec c
$$

Example. On $X=\{1,2,3,4\}$ consider \leq and \preceq defined by

Single-peaked orderings

Definition. (Black, 1948)
Let \leq and \preceq be total orderings on X.
Then \preceq is said to be single-peaked for \leq if for all $a, b, c \in X$

$$
a<b<c \quad \Longrightarrow \quad b \prec a \quad \text { or } \quad b \prec c
$$

Example. On $X=\{1,2,3,4\}$ consider \leq and \preceq defined by

$$
1<2<3<4 \quad \text { and } \quad 2 \prec 3 \prec 1 \prec 4
$$

Alternative characterization

Theorem

Let $F: X^{3} \rightarrow X$ be an operation. The following assertions are equivalent.
(i) F is associative, quasitrivial, symmetric, and $\leq-$ nondecreasing.
(ii) F is bisymmetric, quasitrivial, symmetric, and \leq-nondecreasing.
(iii) $F=\max _{\preceq}$ for some total ordering \preceq on X that is single-peaked for \leq

If F has a neutral element, then (i)-(iii) are equivalent to
(iv) F is an idempotent ternary uninorm.

Example

Some references

S．Berg and T．Perlinger．
Single－peaked compatible preference profiles：some combinatorial results． em Social Choice and Welfare 27（1）：89－102， 2006.

D．Black．
On the rationale of group decision－making．
J Polit Economy，56（1）：23－34， 1948
\square B．De Baets，J．Fodor，D．Ruiz－Aguilera，and J．Torrens．
Idempotent uninorms on finite ordinal scales．
Int．J．of Uncertainty，Fuzziness and Knowledge－Based Systems，17（1）：1－14， 2009.

J．Devillet，G．Kiss，and J．－L．Marichal．
Characterizations of quasitrivial symmetric nondecreasing associative operations．
Semigroup Forum（2019）98（1）：154－171．
https：／／doi．org／10．1007／s00233－018－9980－z．
五
R．R．Yager and A．Rybalov．
Uninorm aggregation operators．
Fuzzy Sets and Systems，80：111－120， 1996.

