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Abstract. In this paper we describe the class of idempotent n-ary uninorms on a
given chain. When the chain is finite, we axiomatize the latter class by means of
the following conditions: associativity, quasitriviality, symmetry, and nondecreas-
ing monotonicity. Also, we show that associativity can be replaced with bisym-
metry in this new axiomatization.

1 Introduction

Let X be a nonempty set and let n ≥ 2 be an integer. For a few decades, many classes
of binary aggregation functions have been investigated due to their great importance in
data fusion (see, e.g. [8] and the references therein). Among these classes, the class of
binary uninorms plays an important role in fuzzy logic. Recently, the study of the class
of n-ary uninorms gained an increasing interest (see, e.g. [9]).

This paper, which is a shorter version of [6]3, focuses on characterizations of the
class of idempotent n-ary uninorms (Definition 3). In Section 2, we provide a charac-
terization of these operations and show that they only depend on the extreme values of
the variables (Proposition 1). We also provide a description of these operations as well
as an alternative axiomatization when the underlying set is finite (Theorem 1). In partic-
ular, we extend characterizations of the class of idempotent binary uninorms obtained
by Couceiro et al. [4, Theorems 12 and 17] to the class of idempotent n-ary uninorms. In
Section 3, we investigate some subclasses of bisymmetric n-ary operations and derive
several equivalences involving associativity and bisymmetry. More precisely, we show
that if an n-ary operation has a neutral element, then it is associative and symmetric if
and only if it is bisymmetric (Corollary 1). Also, we show that if an n-ary operation is
quasitrivial and symmetric, then it is associative if and only if it is bisymmetric (Corol-
lary 1). These observations enable us to replace associativity with bisymmetry in our
axiomatization (Theorem 2).

We adopt the following notation throughout. We use the symbol Xk if X con-
tains k ≥ 1 elements, in which case we assume without loss of generality that Xk =
{1, . . . , k}. Finally, for any integer k ≥ 1 and any x ∈ X , we set k · x = x, . . . , x (k
times). For instance, we have F (3 · x, 2 · y) = F (x, x, x, y, y).

Recall that a binary relation R on X is said to be
3 This paper is also an extended version of [7].



– total if ∀x, y: xRy or yRx;
– transitive if ∀x, y, z: xRy and yRz implies xRz;
– antisymmetric if ∀x, y: xRy and yRx implies x = y.

Recall also that a total ordering on X is a binary relation ≤ on X that is total,
transitive, and antisymmetric. The ordered pair (X,≤) is then called a chain.

Definition 1. An operation F : Xn → X is said to be

– idempotent if F (n · x) = x for all x ∈ X;
– quasitrivial (or conservative) if F (x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈

X;
– symmetric if F (x1, . . . , xn) is invariant under any permutation of x1, . . . , xn;
– associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all i ∈ {1, . . . , n− 1};
– bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))

for all n× n matrices [c1 · · · cn] = [r1 · · · rn]T ∈ Xn×n.
– nondecreasing for some total ordering ≤ on X if F (x1, . . . , xn) ≤ F (x′1, . . . , x

′
n)

whenever xi ≤ x′i for all i ∈ {1, . . . , n}.

Given a total ordering≤ on X , the maximum (resp. minimum) operation on X for≤
is the symmetric n-ary operation max≤ (resp. min≤) defined by max≤(x1, . . . , xn) =
xi (resp. min≤(x1, . . . , xn) = xi) where i ∈ {1, . . . , n} is such that xj ≤ xi (resp.
xi ≤ xj) for all j ∈ {1, . . . , n}.

Definition 2. Let F : Xn → X be an operation. An element e ∈ X is said to be a
neutral element of F if

F ((i− 1) · e, x, (n− i) · e) = x

for all x ∈ X and all i ∈ {1, . . . , n}.

2 A first characterization

In this section we provide a characterization of the n-ary operations on X that are
associative, quasitrivial, symmetric, and nondecreasing for some total ordering ≤ on
X . We will also show that in the case where X is finite these operations are exactly the
idempotent n-ary uninorms.

Recall that a uninorm on a chain (X,≤) is a binary operation U : X2 → X that is
associative, symmetric, nondecreasing for ≤, and has a neutral element (see [5, 11]). It
is not difficult to see that any idempotent uninorm is quasitrivial.

The concept of uninorm can be easily extended to n-ary operations as follows.



Definition 3 (see [9]). Let ≤ be a total ordering on X . An n-ary uninorm is an op-
eration F : Xn → X that is associative, symmetric, nondecreasing for ≤, and has a
neutral element.

The next proposition provides a characterization of idempotent n-ary uninorms. In
particular, since any idempotent uninorm is quasitrivial, it shows that an idempotent
n-ary uninorm always outputs either the greatest or the smallest of its input values.

Proposition 1. Let ≤ be a total ordering on X and let F : Xn → X be an operation.
Then F is an idempotent n-ary uninorm if and only if there exists a unique idempotent
uninorm U : X2 → X such that

F (x1, . . . , xn) = U(min≤(x1, . . . , xn),max≤(x1, . . . , xn)), x1, . . . , xn ∈ X.

In this case, the uninorm U is uniquely defined as U(x, y) = F ((n− 1) · x, y).

We now introduce the concept of single-peaked total ordering which first appeared
for finite chains in social choice theory (see Black [2, 3]).

Definition 4. Let ≤ and � be total orderings on X . We say that � is single-peaked for
≤ if for any a, b, c ∈ X such that a < b < c we have b ≺ a or b ≺ c.

When X is finite, the single-peakedness property of a total ordering � on X for
some total ordering ≤ on X can be easily checked by plotting a function, say f�, in
a rectangular coordinate system in the following way. Represent the reference totally
ordered set (X,≤) on the horizontal axis and the reversed version of the totally ordered
set (X,�), that is (X,�−1), on the vertical axis. The function f� is defined by its
graph {(x, x) : x ∈ X}.4 We then see that the total ordering � is single-peaked for ≤
if and only if f� has only one local maximum.

Example 1. Consider X = X6 endowed with the usual total ordering ≤ defined by
1 < 2 < 3 < 4 < 5 < 6. Figure 1 gives the functions f� and f�′ corresponding to the
total orderings 3 ≺ 4 ≺ 2 ≺ 5 ≺ 1 ≺ 6 and 4 ≺′ 2 ≺′ 6 ≺′ 1 ≺′ 3 ≺′ 5, respectively,
on X6. We see that � is single-peaked for ≤ since f� has only one local maximum
while �′ is not single-peaked for ≤ since f�′ has three local maxima.

It is known (see, e.g., [1]) that there are exactly 2k−1 single-peaked total orderings
on Xk for the usual total ordering ≤ defined by 1 < . . . < k.

The following theorem provides several characterizations of the class of associative,
quasitrivial, symmetric, and nondecreasing operations F : Xn → X . In particular, it
provides a new axiomatization as well as a description of idempotent n-ary uninorms
when the underlying set X is finite. In the latter case, it also extends characterizations
of the class of idempotent uninorms obtained by Couceiro et al. [4, Theorems 12 and
17] to the class of idempotent n-ary uninorms.

Theorem 1. Let≤ be a total ordering on X and let F : Xn → X be an operation. The
following assertions are equivalent.

4 When X = Xk for some integer k ≥ 1, the graphical representation of f� is then obtained
by joining the points (1, 1), . . . , (k, k) by line segments.



-

6

1 2 3 4 5 6

6

1

5

2

4

3

�
�
�
�
�
�
�
�@
@
A
A
A
A
A
A
A
A

r
r

r r
r

r

f�

-

6

1 2 3 4 5 6

5

3

1

6

2

4

�
�
�
�B
B
B
B
B�
�
�
�
�
�
�D
D
D
D
D
D
D
D�
�
�
�
�r

r
r

r

r
r

f�′

Fig. 1. � is single-peaked (left) while �′ is not (right)

(i) F is associative, quasitrivial, symmetric, and nondecreasing for ≤.
(ii) There exists a quasitrivial, symmetric, and nondecreasing operation G : X2 → X

such that

F (x1, . . . , xn) = G(min≤(x1, . . . , xn),max≤(x1, . . . , xn)), x1, . . . , xn ∈ X.

(iii) There exists a total ordering � on X that is single-peaked for ≤ and such that
F = max�.

If X = Xk for some integer k ≥ 1, then any of the assertions (i) − (iii) above is
equivalent to the following one.

(iv) F is an idempotent n-ary uninorm.

Moreover, there are exactly 2k−1 operations F : Xn
k → Xk satisfying any of the asser-

tions (i)− (iv).

Now, let us illustrate Theorem 1 for binary operations. Recall that the contour plot
of any operation F : X2

k → Xk is the undirected graph (X2
k , E), where

E = {{(x, y), (u, v)} | (x, y) 6= (u, v) and F (x, y) = F (u, v)}.

We can always represent the contour plot of any operation F : X2
k → Xk by fixing

a total ordering on Xk. For instance, using the usual total ordering≤ on X6, in Figure 2
(left) we represent the contour plot of an operation F : X2

6 → X6
5. It is not difficult

to see that F is quasitrivial and symmetric. To check whether F is associative and
nondecreasing it suffices by Theorem 1 to find a total ordering � on X6 that is single-
peaked for ≤ and such that F = max�. In Figure 2 (right) we represent the contour
plot of F by using the total ordering � on X6 defined by 3 ≺ 4 ≺ 2 ≺ 5 ≺ 6 ≺ 1. It
is not difficult to see that � is single-peaked for ≤. Also, we have F = max� which
shows by Theorem 1 that F is associative and nondecreasing for ≤. Thus, by Theorem
1 we conclude that F is an idempotent uninorm.

5 To simplify the representation of the connected components, we omit edges that can be ob-
tained by transitivity.
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Fig. 2. An idempotent uninorm F : X2
6 → X6

Remark 1. We observe that an alternative characterization of idempotent uninorms on
chains was provided in [10]. Due to Proposition 1, we can extend this characterization
to the class of idempotent n-ary uninorms.

3 An alternative characterization

In this section we investigate bisymmetric n-ary operations and derive several equiv-
alences involving associativity and bisymmetry. More precisely, if an n-ary operation
has a neutral element, then it is associative and symmetric if and only if it is bisym-
metric. Also, if an n-ary operation is quasitrivial and symmetric, then it is associative
if and only if it is bisymmetric. In particular, these observations enable us to replace
associativity with bisymmetry in Theorem 1.

Definition 5. We say that an operation F : Xn → X is ultrabisymmetric if

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n))

for all n × n matrices [r1 · · · rn]T , [r′1 · · · r′n]T ∈ Xn×n, where [r′1 · · · r′n]T is
obtained from [r1 · · · rn]T by exchanging two entries.

Ultrabisymmetry seems to be a rather strong property. However, as the next result
shows, this property is satisfied by any operation that is bisymmetric and symmetric.

Proposition 2. Let F : Xn → X be an operation. If F is ultrabisymmetric, then it is
bisymmetric. The converse holds whenever F is symmetric.

Proposition 3. Let F : Xn → X be an operation. Then the following assertions hold.

(a) If F is quasitrivial and ultrabisymmetric, then it is associative and symmetric.
(b) If F is associative and symmetric, then it is ultrabisymmetric.
(c) If F is bisymmetric and has a neutral element, then it is associative and symmetric.



Corollary 1. Let F : Xn → X be an operation. Then the following assertions hold.

(a) If F is quasitrivial and symmetric, then it is associative if and only if it is bisym-
metric.

(b) If F has a neutral element, then it is associative and symmetric if and only if it is
bisymmetric.

From Corollary 1 we immediately derive the following theorem, which is an impor-
tant and surprising result.

Theorem 2. In Theorem 1(i) we can replace associativity with bisymmetry. Also, in
Theorem 1(iv) we can replace associativity and symmetry with bisymmetry.
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